Zhang X-Y, Wang X-R, Xu D-M, Yu S-Y, Shi Q-J, Zhang L-H, et al. HAMI 3379, a CysLT2 receptor antagonist, attenuates ischemia-like neuronal injury by inhibiting microglial activation. J Pharmacol Exp Ther. 2013;346(2):328–41 Available from: https://doi.org/10.1124/jpet.113.203604.
Article
CAS
PubMed
Google Scholar
Marschallinger J, Altendorfer B, Rockenstein E, Holztrattner M, Garnweidner-Raith J, Pillichshammer N, et al. The leukotriene receptor antagonist montelukast reduces alpha-synuclein load and restores memory in an animal model of dementia with Lewy bodies. Neurotherapeutics. 2020;17:1061–74 Available from: https://doi.org/10.1007/s13311-020-00836-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chu J, Praticò D. 5-lipoxygenase as an endogenous modulator of amyloid beta formation in vivo. Ann Neurol. 2011;69(1):34–46 Available from: https://doi.org/10.1002/ana.22234.
Article
CAS
PubMed
Google Scholar
Vagnozzi AN, Giannopoulos PF, Praticò D. The direct role of 5-lipoxygenase on tau pathology, synaptic integrity and cognition in a mouse model of tauopathy. Transl Psychiatry. 2017;7(12):1288 Available from: https://doi.org/10.1038/s41398-017-0017-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lai J, Mei ZL, Wang H, Hu M, Long Y, Miao MX, et al. Montelukast rescues primary neurons against Ab1–42-induced toxicity through inhibiting CysLT1R-mediated NF-κB signaling. Neurochem Int. 2014;75:26–31 Available from: https://doi.org/10.1016/j.neuint.2014.05.006.
Article
CAS
PubMed
Google Scholar
Marschallinger J, Schäffner I, Klein B, Gelfert R, Rivera FJ, Illes S, et al. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat Commun. 2015;6(8466):1–16 Available from: https://doi.org/10.1038/ncomms9466.
Google Scholar
Michael J, Zirknitzer J, Unger MS, Poupardin R, Rieß T, Paiement N, et al. The leukotriene receptor antagonist montelukast attenuates neuroinflammation and affects cognition in transgenic 5xFAD mice. Int J Mol Sci. 2021;22(5):2782 Available from: https://doi.org/10.3390/ijms22052782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai J, Hu M, Wang H, Hu M, Long Y, Miao M, et al. Montelukast targeting the cysteinyl leukotriene receptor 1 ameliorates Aβ1-42-induced memory impairment and neuroinflammatory and apoptotic responses in mice. Neuropharmacology. 2014;79:707–14 Available from: https://doi.org/10.1016/j.neuropharm.2014.01.011.
Article
CAS
PubMed
Google Scholar
Lipworth BJ. Leukotriene-receptor antagonists. Lancet. 1999;353(9146):57–62 Available from: https://doi.org/10.1016/S0140-6736(98)09019-9.
Article
CAS
PubMed
Google Scholar
Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J. 2006;25(19):4615–27 Available from: https://doi.org/10.1038/sj.emboj.7601341.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Li B, Solomon V, Fonteh A, Rapoport SI, Bennett DA, et al. Calcium-dependent cytosolic phospholipase A2 activation is implicated in neuroinflammation and oxidative stress associated with ApoE4. Mol Neurodegener. 2021;16(26):1–18 Available from: https://doi.org/10.1186/s13024-021-00438-3.
CAS
Google Scholar
Grinde B, Engdahl B. Prescription database analyses indicates that the asthma medicine montelukast might protect against dementia: a hypothesis to be verified. Immun Ageing. 2017;14(20):1–7 Available from: https://doi.org/10.1186/s12979-017-0102-7.
Google Scholar
Grinde B, Schirmer H, Eggen AE, Aigner L, Engdahl B. A possible effect of montelukast on neurological aging examined by the use of register data. Int J Clin Pharm. 2021;43:541–548. Available from: httpse://doi.org/10.1007/s11096-020-01160-8.
Rozin SI. Case series using montelukast in patients with memory loss and dementia. Open Neurol J. 2017;11:7–10 Available from: https://doi.org/10.2174/1874205X01711010007.
Article
PubMed
PubMed Central
Google Scholar
Morris JC, Weintraub S, Chui HC, Cummings J, DeCarli C, Ferris S, et al. The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Dis Assoc Disord. 2006;20(4):210–6 Available from: https://doi.org/10.1097/01.wad.0000213865.09806.92.
Article
PubMed
Google Scholar
Besser L, Kukull W, Knopman DS, Chui H, Galasko D, Weintraub S, et al. Version 3 of the National Alzheimer’s Coordinating Center’s Uniform Data Set. Alzheimer Dis Assoc Disord. 2018;32(4):351–8 Available from: https://doi.org/10.1097/WAD.0000000000000279.
Article
PubMed
PubMed Central
Google Scholar
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44 Available from: https://doi.org/10.1212/wnl.34.7.939.
Article
CAS
PubMed
Google Scholar
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9 Available from: https://doi.org/10.1016/j.jalz.2011.03.005.
Article
PubMed
PubMed Central
Google Scholar
American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV. 4th ed. Washington, DC: American Psychiatric Association; 1994.
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94 Available from: https://doi.org/10.1111/j.1365-2796.2004.01388.x.
Article
CAS
PubMed
Google Scholar
Weintraub S, Wicklund AH, Salmon DP. The neuropsychological profile of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(4):a006171 Available from: https://doi.org/10.1101/cshperspect.a006171.
Article
PubMed
PubMed Central
Google Scholar
Wechsler D. WMS-R: Wechsler Memory Scale-Revised Manual. San Antonio: Psychological Corporation; 1987.
Google Scholar
Wechsler D. WAIS-R Manual: Wechsler Adult Intelligence Scale-Revised. New York: Harcourt Brace Jovanovich [for] Psychological Corp; 1981.
Google Scholar
Isaacs B, Kennie AT. The set test as an aid to the detection of dementia in old people. Br J Psychiatry. 1973;123(575):467–70 Available from: https://doi.org/10.1192/bjp.123.4.467.
Article
CAS
PubMed
Google Scholar
Kaplan E, Goodglass H, Weintraub S. Boston Naming Test. Philadelphia: Lea & Febiger; 1983.
Google Scholar
Monsell SE, Dodge HH, Zhou X-H, Bu Y, Besser LM, Mock C, et al. Results from the NACC Uniform Data Set neuropsychological battery crosswalk study. Alzheimer Dis Assoc Disord. 2016;30(2):134–9 Available from: https://doi.org/10.1097/WAD.0000000000000111.
Article
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing; 2021. Available from: https://www.R-project.org/
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis [Internet]. New York: Springer-Verlag; 2016. Available from: https://ggplot2.tidyverse.org
Book
Google Scholar
Ho DE, Imai K, King G, Stuart EA. MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw. 2011;42(8):1–28 Available from: https://doi.org/10.18637/jss.v042.i08.
Article
Google Scholar
Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–4 Available from: https://doi.org/10.1212/WNL.43.11.2412.
Article
CAS
PubMed
Google Scholar
Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Amaducci L, et al. Vascular dementia: diagnostic criteria for research studies. Neurology. 1993;43(2):250–60 Available from: https://doi.org/10.1212/wnl.43.2.250.
Article
CAS
PubMed
Google Scholar
Román GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC. Subcortical ischaemic vascular dementia. Lancet Neurol. 2002;1(7):426–36 Available from: https://doi.org/10.1016/S1474-4422(02)00190-4.
Article
PubMed
Google Scholar
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9(2):378–400 Available from: https://doi.org/10.32614/RJ-2017-066.
Article
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48 Available from: https://doi.org/10.18637/jss.v067.i01.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300 Available from: https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Google Scholar
Zhou L, Sun X, Shi Y, Liu J, Luan G, Yang Y. Cysteinyl leukotriene receptor type 1 antagonist montelukast protects against injury of blood–brain barrier. Inflammopharmacology. 2019;27(5):933–40 Available from: https://doi.org/10.1007/s10787-019-00611-7.
Article
CAS
PubMed
Google Scholar
Michael J, de Sousa DB, Conway J, Gonzalez-Labrada E, Obeid R, Tevini J, et al. Improved bioavailability of montelukast through a novel oral mucoadhesive film in humans and mice. Pharmaceutics. 2020;13(12):1–17 Available from: https://doi.org/10.3390/pharmaceutics13010012.
Google Scholar
Woszczek G, Chen L-Y, Nagineni S, Kern S, Barb J, Munson PJ, et al. Leukotriene D4 induces gene expression in human monocytes through cysteinyl leukotriene type I receptor. J Allergy Clin Immunol. 2008;121(1):215–221.e1 Available from: https://doi.org/10.1016/j.jaci.2007.09.013.
Article
CAS
PubMed
Google Scholar
Fregonese L, Silvestri M, Sabatini F, Rossi GA. Cysteinyl leukotrienes induce human eosinophil locomotion and adhesion molecule expression via a CysLT1 receptor-mediated mechanism: cysteinyl leukotriene activity. Clin Exp Allergy. 2002;32(5):745–50 Available from: https://doi.org/10.1046/j.1365-2222.2002.01384.x.
Article
CAS
PubMed
Google Scholar
Göbel T, Diehl O, Heering J, Merk D, Angioni C, Wittmann SK, et al. Zafirlukast is a dual modulator of human soluble epoxide hydrolase and proxisome proliferator-activated receptor γ. Front Pharmacol. 2019;10:263 Available from: https://doi.org/10.3389/fphar.2019.00263.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ghosh A, Comerota MM, Wan D, Chen F, Propson NE, Hwang SH, et al. An epoxide hydrolase inhibitor reduces neuroinflammation in a mouse model of Alzheimer’s disease. Sci Transl Med. 2020;12(573):eabb1206 Available from: https://doi.org/10.1126/scitranslmed.abb1206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci. 2012;32(48):17321–31 Available from: https://doi.org/10.1523/JNEUROSCI.1569-12.2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu D, Hennebelle M, Sahlas DJ, Ramirez J, Gao F, Masellis M, et al. Soluble epoxide hydrolase-derived linoleic acid oxylipins in serum are associated with periventricular white matter hyperintensities and vascular cognitive impairment. Transl Stroke Res. 2019;10(5):522–33 Available from: https://doi.org/10.1007/s12975-018-0672-5.
Article
CAS
PubMed
Google Scholar
Shinto L, Lahna D, Murchison CF, Dodge H, Hagen K, David J, et al. Oxidized products of omega-6 and omega-3 long chain fatty acids are associated with increased white matter hyperintensity and poorer executive function performance in a cohort of cognitively normal hypertensive older adults. J Alzheimers Dis. 2020;74(1):65–77 Available from: https://doi.org/10.3233/JAD-191197.
Article
CAS
PubMed
PubMed Central
Google Scholar