2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020.
Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74. https://doi.org/10.1001/archpsyc.63.2.168.
Article
PubMed
Google Scholar
Ridge PG, Hoyt KB, Boehme K, Mukherjee S, Crane PK, Haines JL, et al. Assessment of the genetic variance of late-onset Alzheimer’s disease. Neurobiol Aging. 2016;41:200 e13–20.
Article
Google Scholar
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3. https://doi.org/10.1126/science.8346443.
Article
CAS
PubMed
Google Scholar
Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90(5):1977–81. https://doi.org/10.1073/pnas.90.5.1977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews SJ, Fulton-Howard B, Goate A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 2020;19(4):326–35. https://doi.org/10.1016/S1474-4422(19)30435-1.
Article
PubMed
PubMed Central
Google Scholar
Bellenguez C, Grenier-Boley B, Lambert JC. Genetics of Alzheimer’s disease: where we are, and where we are going. Curr Opin Neurobiol. 2020;61:40–8. https://doi.org/10.1016/j.conb.2019.11.024.
Article
CAS
PubMed
Google Scholar
Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538(7624):161–4. https://doi.org/10.1038/538161a.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reitz C, Mayeux R. Genetics of Alzheimer’s disease in Caribbean Hispanic and African American populations. Biol Psychiatry. 2014;75(7):534–41. https://doi.org/10.1016/j.biopsych.2013.06.003.
Article
CAS
PubMed
Google Scholar
Hohman TJ, Cooke-Bailey JN, Reitz C, Jun G, Naj A, Beecham GW, et al. Global and local ancestry in African-Americans: implications for Alzheimer’s disease risk. Alzheimers Dement. 2016;12(3):233–43. https://doi.org/10.1016/j.jalz.2015.02.012.
Article
PubMed
Google Scholar
Jun GR, Chung J, Mez J, Barber R, Beecham GW, Bennett DA, et al. Transethnic genome-wide scan identifies novel Alzheimer’s disease loci. Alzheimers Dement. 2017;13(7):727–38. https://doi.org/10.1016/j.jalz.2016.12.012.
Article
PubMed
PubMed Central
Google Scholar
McKeigue PM. Prospects for admixture mapping of complex traits. Am J Hum Genet. 2005;76(1):1–7. https://doi.org/10.1086/426949.
Article
CAS
PubMed
Google Scholar
Gouveia MH, Cesar CC, Santolalla ML, Anna HPS, Scliar MO, Leal TP, et al. Genetics of cognitive trajectory in Brazilians: 15 years of follow-up from the Bambui-Epigen Cohort Study of Aging. Sci Rep. 2019;9(1):18085. https://doi.org/10.1038/s41598-019-53988-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Cade BE, Sofer T, Sands SA, Chen H, Browning SR, et al. Admixture mapping identifies novel loci for obstructive sleep apnea in Hispanic/Latino Americans. Hum Mol Genet. 2019;28(4):675–87. https://doi.org/10.1093/hmg/ddy387.
Article
CAS
PubMed
Google Scholar
Ziyatdinov A, Parker MM, Vaysse A, Beaty TH, Kraft P, Cho MH, et al. Mixed-model admixture mapping identifies smoking-dependent loci of lung function in African Americans. Eur J Hum Genet. 2020;28(5):656–68. https://doi.org/10.1038/s41431-019-0545-8.
Article
CAS
PubMed
Google Scholar
Shriner D. Overview of admixture mapping. Curr Protoc Hum Genet. 2013;Chapter 1:Unit 1 23.
Chakraborty R, Weiss KM. Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc Natl Acad Sci U S A. 1988;85(23):9119–23. https://doi.org/10.1073/pnas.85.23.9119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu X, Cooper RS, Elston RC. Linkage analysis of a complex disease through use of admixed populations. Am J Hum Genet. 2004;74(6):1136–53. https://doi.org/10.1086/421329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benn-Torres J, Bonilla C, Robbins CM, Waterman L, Moses TY, Hernandez W, et al. Admixture and population stratification in African Caribbean populations. Ann Hum Genet. 2008;72(Pt 1):90–8. https://doi.org/10.1111/j.1469-1809.2007.00398.x.
Article
CAS
PubMed
Google Scholar
Blue EE, Horimoto A, Mukherjee S, Wijsman EM, Thornton TA. Local ancestry at APOE modifies Alzheimer’s disease risk in Caribbean Hispanics. Alzheimers Dement. 2019;15(12):1524–32. https://doi.org/10.1016/j.jalz.2019.07.016.
Article
PubMed
PubMed Central
Google Scholar
Tosto G, Fu H, Vardarajan BN, Lee JH, Cheng R, Reyes-Dumeyer D, et al. F-box/LRR-repeat protein 7 is genetically associated with Alzheimer’s disease. Ann Clin Transl Neurol. 2015;2(8):810–20. https://doi.org/10.1002/acn3.223.
Article
CAS
PubMed
PubMed Central
Google Scholar
International HapMap C, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52–8. https://doi.org/10.1038/nature09298.
Article
CAS
Google Scholar
Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, Piouffre L, et al. A human genome diversity cell line panel. Science. 2002;296(5566):261–2. https://doi.org/10.1126/science.296.5566.261b.
Article
CAS
PubMed
Google Scholar
Cavalli-Sforza LL. The Human Genome Diversity Project: past, present and future. Nat Rev Genet. 2005;6(4):333–40. https://doi.org/10.1038/nrg1579.
Article
CAS
PubMed
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://doi.org/10.1086/519795.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuhn RM, Haussler D, Kent WJ. The UCSC genome browser and associated tools. Brief Bioinform. 2013;14(2):144–61. https://doi.org/10.1093/bib/bbs038.
Article
CAS
PubMed
Google Scholar
Vardarajan BN, Schaid DJ, Reitz C, Lantigua R, Medrano M, Jimenez-Velazquez IZ, et al. Inbreeding among Caribbean Hispanics from the Dominican Republic and its effects on risk of Alzheimer disease. Genet Med. 2015;17(8):639–43. https://doi.org/10.1038/gim.2014.161.
Article
PubMed
Google Scholar
Conomos MP, Reiner AP, Weir BS, Thornton TA. Model-free estimation of recent genetic relatedness. Am J Hum Genet. 2016;98(1):127–48. https://doi.org/10.1016/j.ajhg.2015.11.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conomos MP, Miller MB, Thornton TA. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness. Genet Epidemiol. 2015;39(4):276–93. https://doi.org/10.1002/gepi.21896.
Article
PubMed
PubMed Central
Google Scholar
Gogarten SM, Sofer T, Chen H, Yu C, Brody JA, Thornton TA, et al. Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics. 2019;35(24):5346–8. https://doi.org/10.1093/bioinformatics/btz567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867–73. https://doi.org/10.1093/bioinformatics/btq559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin ER, Tunc I, Liu Z, Slifer SH, Beecham AH, Beecham GW. Properties of global- and local-ancestry adjustments in genetic association tests in admixed populations. Genet Epidemiol. 2018;42(2):214–29. https://doi.org/10.1002/gepi.22103.
Article
PubMed
Google Scholar
Delaneau O, Coulonges C, Zagury JF. Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC Bioinformatics. 2008;9(1):540. https://doi.org/10.1186/1471-2105-9-540.
Article
CAS
PubMed
PubMed Central
Google Scholar
1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.
Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am J Hum Genet. 2013;93(2):278–88. https://doi.org/10.1016/j.ajhg.2013.06.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12(2):115–21. https://doi.org/10.1038/nmeth.3252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown LA, Sofer T, Stilp AM, Baier LJ, Kramer HJ, Masindova I, et al. Admixture mapping identifies an Amerindian ancestry locus associated with albuminuria in hispanics in the United States. J Am Soc Nephrol. 2017;28(7):2211–20. https://doi.org/10.1681/ASN.2016091010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grinde KE, Brown LA, Reiner AP, Thornton TA, Browning SR. Genome-wide significance thresholds for admixture mapping studies. Am J Hum Genet. 2019;104(3):454–65. https://doi.org/10.1016/j.ajhg.2019.01.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shriner D, Adeyemo A, Rotimi CN. Joint ancestry and association testing in admixed individuals. PLoS Comput Biol. 2011;7(12):e1002325. https://doi.org/10.1371/journal.pcbi.1002325.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. J Open Source Software. 2018;3(25):731.
Article
Google Scholar
Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26(18):2336–7. https://doi.org/10.1093/bioinformatics/btq419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li MX, Yeung JM, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet. 2012;131(5):747–56. https://doi.org/10.1007/s00439-011-1118-2.
Article
CAS
PubMed
Google Scholar
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5. https://doi.org/10.1093/bioinformatics/bth457.
Article
CAS
PubMed
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17(1):122. https://doi.org/10.1186/s13059-016-0974-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sieberts SK, Perumal TM, Carrasquillo MM, Allen M, Reddy JS, Hoffman GE, et al. Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Sci Data. 2020;7(1):340. https://doi.org/10.1038/s41597-020-00642-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Logsdon BA, Perumal TM, Swarup V, Wang M, Funk C, Gaiteri C, et al. Meta-analysis of the human brain transcriptome identifies heterogeneity across human AD coexpression modules robust to sample collection and methological approach. 2019.
Google Scholar
Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, et al. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 2018;19(1):151. https://doi.org/10.1186/s13059-018-1519-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–80. https://doi.org/10.1038/nature11082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang L, Smith JA, Zhao W, Kho M, Turner ST, Mosley TH, et al. Genetic architecture of gene expression in European and African Americans: an eQTL mapping study in GENOA. Am J Hum Genet. 2020;106(4):496–512. https://doi.org/10.1016/j.ajhg.2020.03.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383. https://doi.org/10.1371/journal.pgen.1004383.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Gloudemans MJ, Rao AS, Ingelsson E, Montgomery SB. Abundant associations with gene expression complicate GWAS follow-up. Nat Genet. 2019;51(5):768–9. https://doi.org/10.1038/s41588-019-0404-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamin R, Leake A, McArthur FK, Ince PG, Candy JM, Edwardson JA, et al. Protective effect of apoE epsilon 2 in Alzheimer’s disease. Lancet. 1994;344(8920):473–4. https://doi.org/10.1016/S0140-6736(94)91804-X.
Article
CAS
PubMed
Google Scholar
Benedet AL, Moraes CF, Camargos EF, Oliveira LF, Souza VC, Lins TC, et al. Amerindian genetic ancestry protects against Alzheimer’s disease. Dement Geriatr Cogn Disord. 2012;33(5):311–7. https://doi.org/10.1159/000339672.
Article
PubMed
Google Scholar
Moreno DJ, Ruiz S, Rios A, Lopera F, Ostos H, Via M, et al. Association of GWAS top genes with late-onset Alzheimer’s disease in Colombian population. Am J Alzheimers Dis Other Demen. 2017;32(1):27–35. https://doi.org/10.1177/1533317516679303.
Article
PubMed
Google Scholar
Kunkle BW, Schmidt M, Klein HU, Naj AC, Hamilton-Nelson KL, Larson EB, et al. Novel Alzheimer disease risk loci and pathways in African American individuals using the african genome resources panel: a meta-analysis. JAMA Neurol. 2021;78(1):102–13. https://doi.org/10.1001/jamaneurol.2020.3536.
Article
PubMed
Google Scholar
Zelaya MV, Perez-Valderrama E, de Morentin XM, Tunon T, Ferrer I, Luquin MR, et al. Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer’s disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies. Oncotarget. 2015;6(37):39437–56. https://doi.org/10.18632/oncotarget.6254.
Article
PubMed
PubMed Central
Google Scholar
Gonzalez H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol. 2014;274(1-2):1–13. https://doi.org/10.1016/j.jneuroim.2014.07.012.
Article
CAS
PubMed
Google Scholar
Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis. 2017;107:41–56. https://doi.org/10.1016/j.nbd.2016.07.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, et al. Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med. 2013;5(10):1613–34. https://doi.org/10.1002/emmm.201201974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghanbari M, Munshi ST, Ma B, Lendemeijer B, Bansal S, Adams HH, et al. A functional variant in the miR-142 promoter modulating its expression and conferring risk of Alzheimer disease. Hum Mutat. 2019;40(11):2131–45. https://doi.org/10.1002/humu.23872.
Article
CAS
PubMed
Google Scholar
Pang X, Zhao Y, Wang J, Zhou Q, Xu L, Kang, et al. The bioinformatic analysis of the dysregulated genes and microRNAs in entorhinal cortex, hippocampus, and blood for Alzheimer’s disease. Biomed Res Int. 2017;2017:9084507.
PubMed
PubMed Central
Google Scholar
Wang Y, Wang Z. Identification of dysregulated genes and pathways of different brain regions in Alzheimer’s disease. Int J Neurosci. 2020;130(11):1082–94. https://doi.org/10.1080/00207454.2020.1720677.
Article
CAS
PubMed
Google Scholar
Aubry S, Shin W, Crary JF, Lefort R, Qureshi YH, Lefebvre C, et al. Assembly and interrogation of Alzheimer’s disease genetic networks reveal novel regulators of progression. Plos One. 2015;10(3):e0120352. https://doi.org/10.1371/journal.pone.0120352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43(5):429–35. https://doi.org/10.1038/ng.803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8. https://doi.org/10.1038/ng.2802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang LS, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E 4,and the risk of late-onset Alzheimer disease in African Americans. JAMA. 2013;309(14):1483–92. https://doi.org/10.1001/jama.2013.2973.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol. 2019;138(2):201–20. https://doi.org/10.1007/s00401-019-01994-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cam JA, Zerbinatti CV, Knisely JM, Hecimovic S, Li Y, Bu G. The low density lipoprotein receptor-related protein 1B retains beta-amyloid precursor protein at the cell surface and reduces amyloid-beta peptide production. J Biol Chem. 2004;279(28):29639–46. https://doi.org/10.1074/jbc.M313893200.
Article
CAS
PubMed
Google Scholar
Poduslo SE, Huang R, Spiro A 3rd. A genome screen of successful aging without cognitive decline identifies LRP1B by haplotype analysis. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):114–9. https://doi.org/10.1002/ajmg.b.30963.
Article
CAS
PubMed
Google Scholar
Shang Z, Lv H, Zhang M, Duan L, Wang S, Li J, et al. Genome-wide haplotype association study identify TNFRSF1A, CASP7, LRP1B, CDH1 and TG genes associated with Alzheimer’s disease in Caribbean Hispanic individuals. Oncotarget. 2015;6(40):42504–14. https://doi.org/10.18632/oncotarget.6391.
Article
PubMed
PubMed Central
Google Scholar
Chouraki V, De Bruijn RF, Chapuis J, Bis JC, Reitz C, Schraen S, et al. A genome-wide association meta-analysis of plasma Abeta peptides concentrations in the elderly. Mol Psychiatry. 2014;19(12):1326–35. https://doi.org/10.1038/mp.2013.185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trampush JW, Yang ML, Yu J, Knowles E, Davies G, Liewald DC, et al. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol Psychiatry. 2017;22(3):336–45. https://doi.org/10.1038/mp.2016.244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller JB, Ward E, Staley LA, Stevens J, Teerlink CC, Tavana JP, et al. Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. Neurobiol Dis. 2020;143:104972. https://doi.org/10.1016/j.nbd.2020.104972.
Article
CAS
PubMed
Google Scholar
Maxwell TJ, Corcoran C, Del-Aguila JL, Budde JP, Deming Y, Cruchaga C, et al. Genome-wide association study for variants that modulate relationships between cerebrospinal fluid amyloid-beta 42, tau, and p-tau levels. Alzheimers Res Ther. 2018;10(1):86. https://doi.org/10.1186/s13195-018-0410-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li QS, Parrado AR, Samtani MN, Narayan VA. Alzheimer’s disease neuroimaging I. Variations in the FRA10AC1 fragile site and 15q21 are associated with cerebrospinal fluid Abeta1-42 level. Plos One. 2015;10(8):e0134000.
Article
Google Scholar
Sherva R, Gross A, Mukherjee S, Koesterer R, Amouyel P, Bellenguez C, et al. Genome-wide association study of rate of cognitive decline in Alzheimer’s disease patients identifies novel genes and pathways. Alzheimers Dement. 2020;16(8):1134–45. https://doi.org/10.1002/alz.12106.
Article
PubMed
PubMed Central
Google Scholar
Zuchner S, Gilbert JR, Martin ER, Leon-Guerrero CR, Xu PT, Browning C, et al. Linkage and association study of late-onset Alzheimer disease families linked to 9p21.3. Ann Hum Genet. 2008;72(Pt 6):725–31. https://doi.org/10.1111/j.1469-1809.2008.00474.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emanuele E, Lista S, Ghidoni R, Binetti G, Cereda C, Benussi L, et al. Chromosome 9p21.3 genotype is associated with vascular dementia and Alzheimer’s disease. Neurobiol Aging. 2011;32(7):1231–5. https://doi.org/10.1016/j.neurobiolaging.2009.07.003.
Article
CAS
PubMed
Google Scholar
Gay NR, Gloudemans M, Antonio ML, Abell NS, Balliu B, Park Y, et al. Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx. Genome Biol. 2020;21(1):233. https://doi.org/10.1186/s13059-020-02113-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang MX, Cross P, Andrews H, Jacobs DM, Small S, Bell K, et al. Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. Neurology. 2001;56(1):49–56. https://doi.org/10.1212/WNL.56.1.49.
Article
CAS
PubMed
Google Scholar
Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88(4):640–51. https://doi.org/10.1016/j.bcp.2013.12.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vega IE, Cabrera LY, Wygant CM, Velez-Ortiz D, Counts SE. Alzheimer’s disease in the Latino community: intersection of genetics and social determinants of health. J Alzheimers Dis. 2017;58(4):979–92. https://doi.org/10.3233/JAD-161261.
Article
PubMed
PubMed Central
Google Scholar