Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17(1):5–21. https://doi.org/10.1038/nrn.2015.1 Epub 2015/12/04. PubMed PMID: 26631930.
Article
CAS
PubMed
Google Scholar
Andreadis A. Misregulation of tau alternative splicing in neurodegeneration and dementia. Prog Mol Subcell Biol. 2006;44:89–107. https://doi.org/10.1007/978-3-540-34449-0_5 Epub 2006/11/02. PubMed PMID: 17076266.
Article
CAS
PubMed
Google Scholar
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull. 2016;126(Pt 3):238–92. https://doi.org/10.1016/j.brainresbull.2016.08.018 Epub 2016/10/26. PubMed PMID: 27615390.
Article
CAS
PubMed
Google Scholar
Avila EHaJ. Tauopathies. Cell Mol Life Sci 2007(64):2219–2233. Epub July 2, 2007.
Colin M, Dujardin S, Schraen-Maschke S, Meno-Tetang G, Duyckaerts C, Courade JP, Buee L. From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol. 2020;139(1):3–25. https://doi.org/10.1007/s00401-019-02087-9 Epub 2019/11/07. PubMed PMID: 31686182; PMCID: PMC6942016.
Article
CAS
PubMed
Google Scholar
Dujardin S, Hyman BT. Tau prion-like propagation: state of the art and current challenges. Adv Exp Med Biol. 2019;1184:305–25. https://doi.org/10.1007/978-981-32-9358-8_23 Epub 2020/02/26. PubMed PMID: 32096046.
Article
CAS
PubMed
Google Scholar
Walker LC, Diamond MI, Duff KE, Hyman BT. Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurolology. 2013;70(3):304–10. https://doi.org/10.1001/jamaneurol.2013.1453 PubMed PMID: 23599928; PMCID: 3665718.
Article
Google Scholar
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6 PubMed PMID: 12130773.
Article
CAS
Google Scholar
Pooler AM, Polydoro M, Wegmann S, Nicholls SB, Spires-Jones TL, Hyman BT. Propagation of tau pathology in Alzheimer’s disease: identification of novel therapeutic targets. Alzheimers Res Ther. 2013;5(5):49. https://doi.org/10.1186/alzrt214 Epub 2013/10/25. PubMed PMID: 24152385; PMCID: PMC3978816.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16(3):271–8 doi: 0197458095000216. discussion 8-84. Epub 1995/05/01. PubMed PMID: 7566337.
Article
CAS
Google Scholar
Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741–66.
Article
CAS
Google Scholar
He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L, Zhang B, Gathagan RJ, Yue C, Dengler C, Stieber A, Nitla M, Coulter DA, Abel T, Brunden KR, Trojanowski JQ, Lee VM. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med. 2018;24(1):29–38. https://doi.org/10.1038/nm.4443 Epub 2017/12/05. PubMed PMID: 29200205; PMCID: PMC5760353.
Article
CAS
PubMed
Google Scholar
Shin WS, Di J, Murray KA, Sun C, Li B, Bitan G, Jiang L. Different amyloid-β self-assemblies have distinct effects on intracellular tau aggregation. Front Mol Neurosci. 2019;12:268. https://doi.org/10.3389/fnmol.2019.00268 Epub 2019/12/04. PubMed PMID: 31787880; PMCID: PMC6856013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin WS, Di J, Cao Q, Li B, Seidler PM, Murray KA, Bitan G, Jiang L. Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau aggregation. Alzheimers Res Ther. 2019;11(1):86. https://doi.org/10.1186/s13195-019-0541-9 Epub 2019/10/20. PubMed PMID: 31627745; PMCID: PMC6800506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schrader T, Bitan G, Klärner FG. Molecular tweezers for lysine and arginine - powerful inhibitors of pathologic protein aggregation. Chem Commun (Camb). 2016;52(76):11318–34. https://doi.org/10.1039/c6cc04640a PubMed PMID: 27546596; PMCID: PMC5026632.
Article
CAS
Google Scholar
Hadrovic I, Rebmann P, Klärner FG, Bitan G, Schrader T. Molecular lysine tweezers counteract aberrant protein aggregation. Front Chem. 2019;7:657. https://doi.org/10.3389/fchem.2019.00657 Epub 2019/10/22. PubMed PMID: 31632951; PMCID: PMC6779714.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attar A, Bitan G. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by “molecular tweezers” - from the test tube to animal models. Curr Pharm Des. 2014;20(15):2469–83. https://doi.org/10.2174/13816128113199990496 Epub 2013/07/19. PubMed PMID: 23859557; PMCID: PMC4261945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha S, Lopes DH, Du Z, Pang ES, Shanmugam A, Lomakin A, Talbiersky P, Tennstaedt A, McDaniel K, Bakshi R, Kuo PY, Ehrmann M, Benedek GB, Loo JA, Klärner FG, Schrader T, Wang C, Bitan G. Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J Am Chem Soc. 2011;133(42):16958–69. https://doi.org/10.1021/ja206279b Epub 2011/09/16. PubMed PMID: 21916458; PMCID: 3210512.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha S, Du Z, Maiti P, Klärner FG, Schrader T, Wang C, Bitan G. Comparison of three amyloid assembly inhibitors: the sugar scyllo-inositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01. ACS Chem Neurosci. 2012;3(6):451–8. https://doi.org/10.1021/cn200133x Epub 2012/08/04. PubMed PMID: 22860214; PMCID: 3386858.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attar A, Ripoli C, Riccardi E, Maiti P, Li Puma DD, Liu T, Hayes J, Jones MR, Lichti-Kaiser K, Yang F, Gale GD, Tseng CH, Tan M, Xie CW, Straudinger JL, Klärner FG, Schrader T, Frautschy SA, Grassi C, Bitan G. Protection of primary neurons and mouse brain from Alzheimer’s pathology by molecular tweezers. Brain. 2012;135(Pt 12):3735–48. https://doi.org/10.1093/brain/aws289 Epub 2012/11/28. PubMed PMID: 23183235; PMCID: 3525056.
Article
PubMed
PubMed Central
Google Scholar
Zheng X, Liu D, Klärner FG, Schrader T, Bitan G, Bowers MT. Amyloid β-protein assembly: the effect of molecular tweezers CLR01 and CLR03. J Phys Chem B. 2015;119(14):4831–41. https://doi.org/10.1021/acs.jpcb.5b00692 PubMed PMID: 25751170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malishev R, Nandi S, Kolusheva S, Levi-Kalisman Y, Klarner FG, Schrader T, Bitan G, Jelinek R. Toxicity inhibitors protect lipid membranes from disruption by Aβ42. ACS Chem Neurosci. 2015;6(11):1860–9. https://doi.org/10.1021/acschemneuro.5b00200 Epub 2015/09/01. PubMed PMID: 26317327.
Article
CAS
PubMed
Google Scholar
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron. 2003;39(3):409–21 Epub 2003/08/05. doi: S0896627303004343 [pii]. PubMed PMID: 12895417.
Article
CAS
Google Scholar
Flood DG, Lin YG, Lang DM, Trusko SP, Hirsch JD, Savage MJ, Scott RW, Howland DS. A transgenic rat model of Alzheimer’s disease with extracellular Aβ deposition. Neurobiol Aging. 2009;30(7):1078–90. https://doi.org/10.1016/j.neurobiolaging.2007.10.006 Epub 2007/12/07. PubMed PMID: 18053619.
Article
CAS
PubMed
Google Scholar
Malik R, Di J, Nair G, Attar A, Taylor K, Teng E, Klärner FG, Schrader T, Bitan G. Using molecular tweezers to remodel abnormal protein self-assembly and inhibit the toxicity of amyloidogenic proteins. Methods Mol Biol. 1777;2018:369–86. https://doi.org/10.1007/978-1-4939-7811-3_24 Epub 2018/05/11. PubMed PMID: 29744849.
Article
CAS
Google Scholar
Despres C, Di J, Cantrelle FX, Li Z, Huvent I, Chambraud B, Zhao J, Chen J, Chen S, Lippens G, Zhang F, Linhardt R, Wang C, Klarner FG, Schrader T, Landrieu I, Bitan G, Smet-Nocca C. Major differences between the self-assembly and seeding behavior of heparin-induced and in vitro phosphorylated tau and their modulation by potential inhibitors. ACS Chem Biol. 2019;14(6):1363–79. https://doi.org/10.1021/acschembio.9b00325 Epub 2019/05/03. PubMed PMID: 31046227; PMCID: PMC6636790.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nshanian M, Lantz C, Wongkongkathep P, Schrader T, Klärner F-G, Blumke A, Despres C, Ehrmann M, Smet-Nocca C, Bitan G, Loo JA. Native top-down mass spectrometry and ion mobility spectrometry of the interaction of tau protein with a molecular tweezer assembly modulator. J Am Soc Mass Spectrom. 2019;30(1):16–23. https://doi.org/10.1007/s13361-018-2027-6 Epub 2018/08/01. PubMed PMID: 30062477; PMCID: PMC6320309.
Article
CAS
PubMed
Google Scholar
Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53(3):337–51. https://doi.org/10.1016/j.neuron.2007.01.010 Epub 2007/02/03. PubMed PMID: 17270732.
Article
CAS
PubMed
Google Scholar
Talbiersky P, Bastkowski F, Klärner FG, Schrader T. Molecular clip and tweezer introduce new mechanisms of enzyme inhibition. J Am Chem Soc. 2008;130(30):9824–8. https://doi.org/10.1021/Ja801441j PubMed PMID: ISI:000257902500043.
Article
CAS
PubMed
Google Scholar
Sterniczuk R, Antle MC, Laferla FM, Dyck RH. Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 2. Behavioral and cognitive changes. Brain Res. 2010;1348:149–55. https://doi.org/10.1016/j.brainres.2010.06.011 Epub 2010/06/19. PubMed PMID: 20558146.
Article
CAS
PubMed
Google Scholar
Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophoton Int. 2004;11(7):36–42.
Google Scholar
Herrera-Vaquero M, Bouquio D, Kallab M, Biggs K, Nair G, Ochoa J, Heras-Garvin A, Heid C, Hadrovic I, Poewe W, Wenning GK, Klärner FG, Schrader T, Bitan G, Stefanova N. The molecular tweezer CLR01 reduces aggregated, pathologic, and seeding-competent α-synuclein in experimental multiple system atrophy. Biochim Biophys Acta Mol basis Dis. 2019;1865(11):165513. https://doi.org/10.1016/j.bbadis.2019.07.007 Epub 2019/07/19. PubMed PMID: 31319154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sperfeld AD, Collatz MB, Baier H, Palmbach M, Storch A, Schwarz J, Tatsch K, Reske S, Joosse M, Heutink P, Ludolph AC. FTDP-17: an early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Ann Neurol. 1999;46(5):708–15. https://doi.org/10.1002/1531-8249(199911)46:5<708::aid-ana5>3.0.co;2-k Epub 1999/11/30. PubMed PMID: 10553987.
Article
CAS
PubMed
Google Scholar
Bugiani O, Murrell JR, Giaccone G, Hasegawa M, Ghigo G, Tabaton M, Morbin M, Primavera A, Carella F, Solaro C, Grisoli M, Savoiardo M, Spillantini MG, Tagliavini F, Goedert M, Ghetti B. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol. 1999;58(6):667–77.
Article
CAS
Google Scholar
Samaey C, Schreurs A, Stroobants S, Balschun D. Early cognitive and behavioral deficits in mouse models for tauopathy and Alzheimer’s disease. Front Aging Neurosci. 2019;11:335. https://doi.org/10.3389/fnagi.2019.00335 Epub 2019/12/24. PubMed PMID: 31866856; PMCID: PMC6908963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter F, Subramaniam SR, Magen I, Lee P, Hayes J, Attar A, Zhu C, Franich NR, Bove N, De La Rosa K, Kwong J, Klärner FG, Schrader T, Chesselet MF, Bitan G. A molecular tweezer ameliorates motor deficits in mice overexpressing α-synuclein. Neurotherapeutics. 2017;14(4):1107–19. https://doi.org/10.1007/s13311-017-0544-9 Epub 2017/06/07. PubMed PMID: 28585223; PMCID: PMC5722755.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreira N, Pereira-Henriques A, Attar A, Klärner FG, Schrader T, Bitan G, Gales L, Saraiva MJ, Almeida MR. Molecular tweezers targeting transthyretin amyloidosis. Neurotherapeutics. 2014;11(2):450–61. https://doi.org/10.1007/s13311-013-0256-8 PubMed PMID: 24459092; PMCID: 3996111.
Article
PubMed
PubMed Central
Google Scholar
Xu N, Bitan G, Schrader T, Klärner FG, Osinska H, Robbins J. Inhibition of mutant αB crystallin-induced protein aggregation by a molecular tweezer. J Am Heart Assoc. 2017;6(8):e006182. https://doi.org/10.1161/JAHA.117.006182 PubMed PMID: 28862927; PMCID: PMC5586456.
Article
PubMed
PubMed Central
Google Scholar
Malik R, Meng H, Wongkongkathep P, Corrales CI, Sepanj N, Atlasi RS, Klärner FG, Schrader T, Spencer MJ, Loo JA, Wiedau M, Bitan G. The molecular tweezer CLR01 inhibits aberrant superoxide dismutase 1 (SOD1) self-assembly in vitro and in the G93A-SOD1 mouse model of ALS. J Biol Chem. 2019;294(10):3501–13. https://doi.org/10.1074/jbc.RA118.005940 Epub 2019/01/04. PubMed PMID: 30602569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monaco A, Maffia V, Sorrentino NC, Sambri I, Ezhova Y, Giuliano T, Cacace V, Nusco E, De Risi M, De Leonibus E, Schrader T, Klarner FG, Bitan G, Fraldi A. The amyloid inhibitor CLR01 relieves autophagy and ameliorates neuropathology in a severe lysosomal storage disease. Mol Ther. 2020;28(4):1167–76. https://doi.org/10.1016/j.ymthe.2020.02.005 Epub 2020/02/23. PubMed PMID: 32087148; PMCID: PMC7132627.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bengoa-Vergniory N, Faggiani E, Ramos-Gonzalez P, Kirkiz E, Connor-Robson N, Brown LV, Siddique I, Li Z, Vingill S, Cioroch M, Cavaliere F, Threlfell S, Roberts B, Schrader T, Klärner F-G, Cragg S, Dehay B, Bitan G, Matute C, Bezard E, Wade-Martins R. CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson’s disease. Nat Commun. 2020;11(1):4885. https://doi.org/10.1038/s41467-020-18689-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attar A, Chan WT, Klärner FG, Schrader T, Bitan G. Safety and pharmacological characterization of the molecular tweezer CLR01 – a broad-spectrum inhibitor of amyloid proteins’ toxicity. BMC Pharmacol Toxicol. 2014;15(1):23. https://doi.org/10.1186/2050-6511-15-23 PubMed PMID: 24735982; PMCID: 3996151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova N, Calingasan NY, Yang L, Tampellini D, Starkov AA, Chan RB, Di Paolo G, Pujol A, Beal MF. Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum Mol Genet. 2012;21(23):5091–105. https://doi.org/10.1093/hmg/dds355 PubMed PMID: 22922230; PMCID: 3490516.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Eersel J, Stevens CH, Przybyla M, Gladbach A, Stefanoska K, Chan CK, Ong WY, Hodges JR, Sutherland GT, Kril JJ, Abramowski D, Staufenbiel M, Halliday GM, Ittner LM. Early-onset axonal pathology in a novel P301S-tau transgenic mouse model of frontotemporal lobar degeneration. Neuropathol Appl Neurobiol. 2015;41(7):906–25. https://doi.org/10.1111/nan.12233 Epub 2015/03/13. PubMed PMID: 25763777.
Article
CAS
PubMed
Google Scholar
Lindau M, Almkvist O, Kushi J, Boone K, Johansson SE, Wahlund LO, Cummings JL, Miller BL. First symptoms - frontotemporal dementia versus Alzheimer’s disease. Dement Geriatr Cogn Disord. 2000;11(5):286–93.
Article
CAS
Google Scholar
Moretti R, Torre P, Antonello RM, Cazzato G. Fronto-temporal dementia versus Alzheimer disease. Arch Gerontol Geriatr. 2001;7:273–8.
Article
CAS
Google Scholar
Przybyla M, Stevens CH, van der Hoven J, Harasta A, Bi M, Ittner A, van Hummel A, Hodges JR, Piguet O, Karl T, Kassiou M, Housley GD, Ke YD, Ittner LM, Eersel J. Disinhibition-like behavior in a P301S mutant tau transgenic mouse model of frontotemporal dementia. Neurosci Lett. 2016;631:24–9. https://doi.org/10.1016/j.neulet.2016.08.007 Epub 2016/08/16. PubMed PMID: 27521751.
Article
CAS
PubMed
Google Scholar
Zamboni G, Huey ED, Krueger F, Nichelli PF, Grafman J. Apathy and disinhibition in frontotemporal dementia: Insights into their neural correlates. Neurology. 2008;71(10):736–42. https://doi.org/10.1212/01.wnl.0000324920.96835.95 Epub 2008/09/04. PubMed PMID: 18765649; PMCID: PMC2676948.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mustapic M, Eitan E, Werner JK Jr, Berkowitz ST, Lazaropoulos MP, Tran J, Goetzl EJ, Kapogiannis D. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci. 2017;11:278. https://doi.org/10.3389/fnins.2017.00278 PubMed PMID: 28588440; PMCID: PMC5439289.
Article
PubMed
PubMed Central
Google Scholar
Hornung S, Dutta S, Bitan G. CNS-derived blood exosomes as a promising source of biomarkers: opportunities and challenges. Front Mol Neurosci. 2020;13:38. https://doi.org/10.3389/fnmol.2020.00038 Epub 2020/04/09. PubMed PMID: 32265650; PMCID: PMC7096580.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl EJ. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement. 2015;11(6):600–7 e1. https://doi.org/10.1016/j.jalz.2014.06.008 PubMed PMID: 25130657; PMCID: PMC4329112.
Article
PubMed
Google Scholar
Shi M, Kovac A, Korff A, Cook TJ, Ginghina C, Bullock KM, Yang L, Stewart T, Zheng D, Aro P, Atik A, Kerr KF, Zabetian CP, Peskind ER, Hu SC, Quinn JF, Galasko DR, Montine TJ, Banks WA, Zhang J. CNS tau efflux via exosomes is likely increased in Parkinson’s disease but not in Alzheimer’s disease. Alzheimers Dement. 2016;12(11):1125–31. https://doi.org/10.1016/j.jalz.2016.04.003 PubMed PMID: 27234211; PMCID: PMC5107127.
Article
PubMed
PubMed Central
Google Scholar
Winston CN, Goetzl EJ, Akers JC, Carter BS, Rockenstein EM, Galasko D, Masliah E, Rissman RA. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement (Amst). 2016;3:63–72. https://doi.org/10.1016/j.dadm.2016.04.001 PubMed PMID: 27408937; PMCID: PMC4925777.
Article
Google Scholar
Eren E, Hunt JFV, Shardell M, Chawla S, Tran J, Gu J, Vogt NM, Johnson SC, Bendlin BB, Kapogiannis D. Extracellular vesicle biomarkers of Alzheimer’s disease associated with sub-clinical cognitive decline in late middle age. Alzheimers Dement. 2020. https://doi.org/10.1002/alz.12130 Epub 2020/06/27. PubMed PMID: 32588967.
Goedert M, Jakes R, Vanmechelen E. Monoclonal antibody AT8 recognises tau protein phosphorylated AT both serine 202 and threonine 205. Neurosci Lett. 1995;189(3):167–9 doi: 030439409511484E Epub 1995/04/21. PubMed PMID: 7624036.
Article
CAS
Google Scholar
Despres C, Byrne C, Qi H, Cantrelle FX, Huvent I, Chambraud B, Baulieu EE, Jacquot Y, Landrieu I, Lippens G, Smet-Nocca C. Identification of the Tau phosphorylation pattern that drives its aggregation. Proc Natl Acad Sci USA. 2017;114(34):9080–5. https://doi.org/10.1073/pnas.1708448114 PubMed PMID: 28784767; PMCID: PMC5576827.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gallyas F. Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung. 1971;19(1):1–8 Epub 1971/01/01. PubMed PMID: 4107507.
CAS
PubMed
Google Scholar
Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, Zhang MR, Trojanowski JQ, Lee VM, Ono M, Masamoto K, Takano H, Sahara N, Iwata N, Okamura N, Furumoto S, Kudo Y, Chang Q, Saido TC, Takashima A, Lewis J, Jang MK, Aoki I, Ito H, Higuchi M. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108. https://doi.org/10.1016/j.neuron.2013.07.037 Epub 2013/09/21. PubMed PMID: 24050400; PMCID: PMC3809845.
Article
CAS
PubMed
Google Scholar
Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Nicholson L, Zhou XZ, Lu KP. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell. 2012;149(1):232–44. https://doi.org/10.1016/j.cell.2012.02.016 Epub 2012/04/03. PubMed PMID: 22464332; PMCID: PMC3601591.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shafiei SS, Guerrero-Munoz MJ, Castillo-Carranza DL. Tau oligomers: cytotoxicity, propagation, and mitochondrial damage. Front Aging Neurosci. 2017;9:83. https://doi.org/10.3389/fnagi.2017.00083 Epub 2017/04/20. PubMed PMID: 28420982; PMCID: PMC5378766.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghag G, Bhatt N, Cantu DV, Guerrero-Munoz MJ, Ellsworth A, Sengupta U, Kayed R. Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior. Protein Sci. 2018;27(11):1901–9. https://doi.org/10.1002/pro.3499 Epub 2018/08/21. PubMed PMID: 30125425; PMCID: PMC6201727.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Kayed R. Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis. 2014;40(Suppl 1):S97–S111. https://doi.org/10.3233/JAD-132477 PubMed PMID: 24603946.
Article
CAS
PubMed
Google Scholar
Shin S, Kim D, Song JY, Jeong H, Hyeon SJ, Kowall NW, Ryu H, Pae AN, Lim S, Kim YK. Visualization of soluble tau oligomers in TauP301L-BiFC transgenic mice demonstrates the progression of tauopathy. Prog Neurobiol. 2020;101782. https://doi.org/10.1016/j.pneurobio.2020.101782 Epub 2020/02/28. PubMed PMID: 32105751.
Ward SM, Himmelstein DS, Lancia JK, Fu Y, Patterson KR, Binder LI. TOC1: characterization of a selective oligomeric tau antibody. J Alzheimers Dis. 2013;37(3):593–602. https://doi.org/10.3233/JAD-131235 Epub 2013/08/28. PubMed PMID: 23979027; PMCID: PMC4791958.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonawane SK, Chinnathambi S. Prion-like propagation of post-translationally modified tau in Alzheimer’s disease: a hypothesis. J Mol Neurosci. 2018;65(4):480–90. https://doi.org/10.1007/s12031-018-1111-5 Epub 2018/07/10. PubMed PMID: 29982964.
Article
CAS
PubMed
Google Scholar
Frost B, Jacks RL, Diamond MI. Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem. 2009;284(19):12845–52. https://doi.org/10.1074/jbc.M808759200 PubMed PMID: 19282288; PMCID: PMC2676015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11(7):909–13. https://doi.org/10.1038/ncb1901 PubMed PMID: 19503072; PMCID: PMC2726961.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes BB, Furman JL, Mahan TE, Yamasaki TR, Mirbaha H, Eades WC, Belaygorod L, Cairns NJ, Holtzman DM, Diamond MI. Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci USA. 2014;111(41):E4376–85. https://doi.org/10.1073/pnas.1411649111 PubMed PMID: 25261551; PMCID: PMC4205609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laurent C, Buee L, Blum D. Tau and neuroinflammation: what impact for Alzheimer’s disease and tauopathies? Biomed J. 2018;41(1):21–33. https://doi.org/10.1016/j.bj.2018.01.003 Epub 2018/04/21. PubMed PMID: 29673549; PMCID: PMC6138617.
Article
PubMed
PubMed Central
Google Scholar
Leyns CEG, Holtzman DM. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener. 2017;12(1):50. https://doi.org/10.1186/s13024-017-0192-x Epub 2017/07/01. PubMed PMID: 28662669; PMCID: PMC5492997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buee L. Dementia therapy targeting tau. Adv Exp Med Biol. 2019;1184:407–16. https://doi.org/10.1007/978-981-32-9358-8_30 Epub 2020/02/26. PubMed PMID: 32096053.
Article
CAS
PubMed
Google Scholar
VandeVrede L, Boxer AL, Polydoro M. Targeting tau: clinical trials and novel therapeutic approaches. Neurosci Lett. 2020;731:134919. https://doi.org/10.1016/j.neulet.2020.134919 Epub 2020/05/08. PubMed PMID: 32380145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y, Zheng Y, Fu L, Yu B, Zhang H, Wu J, Yu X, Wu H, Kong W. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3alpha in tau P301S mouse model of Alzheimer’s disease. J Neuroinflammation. 2020;17(1):72. https://doi.org/10.1186/s12974-020-01749-w Epub 2020/02/26. PubMed PMID: 32093751; PMCID: PMC7041244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prabhudesai S, Sinha S, Attar A, Kotagiri A, Fitzmaurice AG, Lakshmanan R, Ivanova MI, Loo JA, Klärner FG, Schrader T, Stahl M, Bitan G, Bronstein JM. A novel “molecular tweezer” inhibitor of α-synuclein neurotoxicity in vitro and in vivo. Neurotherapeutics. 2012;9(2):464–76. https://doi.org/10.1007/s13311-012-0105-1 Epub 2012/03/01. PubMed PMID: 22373667; PMCID: 3337029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopes DH, Attar A, Nair G, Hayden EY, Du Z, McDaniel K, Dutt S, Bravo-Rodriguez K, Mittal S, Klärner FG, Wang C, Sanchez-Garcia E, Schrader T, Bitan G. Molecular tweezers inhibit islet amyloid polypeptide assembly and toxicity by a new mechanism. ACS Chem Biol. 2015;10(6):1555–69. https://doi.org/10.1021/acschembio.5b00146 PubMed PMID: 25844890.
Article
CAS
PubMed
Google Scholar
Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry. 2019;24(8):1112–34. https://doi.org/10.1038/s41380-018-0342-8 Epub 2019/01/13. PubMed PMID: 30635637; PMCID: PMC6756230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iaccarino L, Sala A, Caminiti SP, Perani D. The emerging role of PET imaging in dementia. F1000Res. 2017;6:1830. https://doi.org/10.12688/f1000research.11603.1 Epub 2017/10/27. PubMed PMID: 29071066; PMCID: PMC5639932.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janelidze S, Stomrud E, Smith R, Palmqvist S, Mattsson N, Airey DC, Proctor NK, Chai X, Shcherbinin S, Sims JR, Triana-Baltzer G, Theunis C, Slemmon R, Mercken M, Kolb H, Dage JL, Hansson O. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat Commun. 2020;11(1):1683. https://doi.org/10.1038/s41467-020-15436-0 Epub 2020/04/05. PubMed PMID: 32246036; PMCID: PMC7125218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E, Su Y, Chen Y, Serrano GE, Leuzy A, Mattsson-Carlgren N, Strandberg O, Smith R, Villegas A, Sepulveda-Falla D, Chai X, Proctor NK, Beach TG, Blennow K, Dage JL, Reiman EM, Hansson O. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020. https://doi.org/10.1001/jama.2020.12134 Epub 2020/07/30. PubMed PMID: 32722745; PMCID: PMC7388060.