Wolozin B. Cholesterol and the biology of Alzheimer’s disease. Neuron. 2004;41:7–10. https://doi.org/10.1016/s0896-6273(03)00840-7.
Article
CAS
Google Scholar
Zinser EG, Hartmann T, Grimm MOW. Amyloid beta-protein and lipid metabolism. Biochim Biophys Acta. 2007;1768:1991–2001. https://doi.org/10.1016/j.bbamem.2007.02.014.
Article
CAS
Google Scholar
Jazvinšćak Jembrek M, Hof PR, Šimić G. Ceramides in Alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxidative Med Cell Longev. 2015;2015:346783. https://doi.org/10.1155/2015/346783.
Article
Google Scholar
Di Paolo G, Kim T-W. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci. 2011;12:284–96. https://doi.org/10.1038/nrn3012.
Article
CAS
Google Scholar
Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51:404–13. https://doi.org/10.1038/s41588-018-0311-9.
Article
CAS
Google Scholar
Orth M, Bellosta S. Cholesterol: its regulation and role in central nervous system disorders. Cholesterol. 2012;2012:292598. https://doi.org/10.1155/2012/292598.
Article
CAS
Google Scholar
Björkhem I, Lütjohann D, Diczfalusy U, Ståhle L, Ahlborg G, Wahren J. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res. 1998;39:1594–600.
Article
Google Scholar
Lee CYD, Tse W, Smith JD, Landreth GE. Apolipoprotein E promotes β-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem. 2012;287:2032–44. https://doi.org/10.1074/jbc.M111.295451.
Article
CAS
Google Scholar
Abramov AY, Ionov M, Pavlov E, Duchen MR. Membrane cholesterol content plays a key role in the neurotoxicity of β-amyloid: implications for Alzheimer’s disease. Aging Cell. 2011;10:595–603. https://doi.org/10.1111/j.1474-9726.2011.00685.x.
Article
CAS
Google Scholar
Koch S, Donarski N, Goetze K, Kreckel M, Stuerenburg HJ, Buhmann C, et al. Characterization of four lipoprotein classes in human cerebrospinal fluid. J Lipid Res. 2001;42:1143–51.
Article
CAS
Google Scholar
Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35. https://doi.org/10.1056/NEJMoa1001689.
Article
CAS
Google Scholar
Rosenson RS, Brewer HB, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125:1905–19. https://doi.org/10.1161/CIRCULATIONAHA.111.066589.
Article
Google Scholar
Saleheen D, Scott R, Javad S, Zhao W, Rodrigues A, Picataggi A, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3:507–13. https://doi.org/10.1016/S2213-8587(15)00126-6.
Article
CAS
Google Scholar
Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–93. https://doi.org/10.1056/NEJMoa1409065.
Article
CAS
Google Scholar
Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:1219–24. https://doi.org/10.1038/s41588-018-0183-z.
Article
CAS
Google Scholar
Cuchel M, Raper AC, Conlon DM, Pryma DA, Freifelder RH, Poria R, et al. A novel approach to measuring macrophage-specific reverse cholesterol transport in vivo in humans. J Lipid Res. 2017;58:752–62. https://doi.org/10.1194/jlr.M075226.
Article
CAS
Google Scholar
Cipollari E, Szapary HJ, Picataggi A, Billheimer JT, Lyssenko CA, Ying G-S, et al. Correlates and predictors of cerebrospinal fluid cholesterol efflux capacity from neural cells, a family of biomarkers for cholesterol epidemiology in Alzheimer’s disease. J Alzheimers Dis. 2020;74:563–78. https://doi.org/10.3233/JAD-191246.
Article
CAS
Google Scholar
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–44. https://doi.org/10.1212/wnl.34.7.939.
Article
CAS
Google Scholar
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9. https://doi.org/10.1016/j.jalz.2011.03.005.
Article
Google Scholar
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8. https://doi.org/10.1001/archneur.56.3.303.
Article
CAS
Google Scholar
Beekly DL, Ramos EM, Lee WW, Deitrich WD, Jacka ME, Wu J, et al. The National Alzheimer’s Coordinating Center (NACC) database: the Uniform Data Set. Alzheimer Dis Assoc Disord. 2007;21:249–58. https://doi.org/10.1097/WAD.0b013e318142774e.
Article
Google Scholar
Morris JC, Weintraub S, Chui HC, Cummings J, Decarli C, Ferris S, et al. The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Dis Assoc Disord. 2006;20:210–6. https://doi.org/10.1097/01.wad.0000213865.09806.92.
Article
Google Scholar
Weintraub S, Salmon D, Mercaldo N, Ferris S, Graff-Radford NR, Chui H, et al. The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): the neuropsychologic test battery. Alzheimer Dis Assoc Disord. 2009;23:91–101. https://doi.org/10.1097/WAD.0b013e318191c7dd.
Article
Google Scholar
Kang J-H, Vanderstichele H, Trojanowski JQ, Shaw LM. Simultaneous analysis of cerebrospinal fluid biomarkers using microsphere-based xMAP multiplex technology for early detection of Alzheimer’s disease. Methods. 2012;56:484–93. https://doi.org/10.1016/j.ymeth.2012.03.023.
Article
CAS
Google Scholar
Shaw LM, Vanderstichele H, Knapik-Czajka M, Figurski M, Coart E, Blennow K, et al. Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathol. 2011;121:597–609. https://doi.org/10.1007/s00401-011-0808-0.
Article
CAS
Google Scholar
Wang L-S, Leung YY, Chang S-K, Leight S, Knapik-Czajka M, Baek Y, et al. Comparison of xMAP and ELISA assays for detecting cerebrospinal fluid biomarkers of Alzheimer’s disease. J Alzheimers Dis. 2012;31:439–45. https://doi.org/10.3233/JAD-2012-120082.
Article
CAS
Google Scholar
Horiuchi Y, Ohkawa R, Lai S-J, Shimano S, Hagihara M, Tohda S, et al. Usefulness of apolipoprotein B-depleted serum in cholesterol efflux capacity assays using immobilized liposome-bound gel beads. Biosci Rep. 2019:39. https://doi.org/10.1042/BSR20190213.
Yassine HN, Feng Q, Chiang J, Petrosspour LM, Fonteh AN, Chui HC, et al. ABCA1-mediated cholesterol efflux capacity to cerebrospinal fluid is reduced in patients with mild cognitive impairment and Alzheimer’s disease. J Am Heart Assoc. 2016:5. https://doi.org/10.1161/JAHA.115.002886.
Marchi C, Adorni MP, Caffarra P, Ronda N, Spallazzi M, Barocco F, et al. ABCA1- and ABCG1-mediated cholesterol efflux capacity of cerebrospinal fluid is impaired in Alzheimer’s disease. J Lipid Res. 2019;60:1449–56. https://doi.org/10.1194/jlr.P091033.
Article
CAS
Google Scholar
de Silva HV, Stuart WD, Duvic CR, Wetterau JR, Ray MJ, Ferguson DG, et al. A 70-kDa apolipoprotein designated ApoJ is a marker for subclasses of human plasma high density lipoproteins. J Biol Chem. 1990;265:13240–7.
Article
Google Scholar
Suzuki T, Tozuka M, Kazuyoshi Y, Sugano M, Nakabayashi T, Okumura N, et al. Predominant apolipoprotein J exists as lipid-poor mixtures in cerebrospinal fluid. Ann Clin Lab Sci. 2002;32:369–76.
CAS
Google Scholar
Slot RER, Sikkes SAM, Berkhof J, Brodaty H, Buckley R, Cavedo E, et al. Subjective cognitive decline and rates of incident Alzheimer’s disease and non-Alzheimer’s disease dementia. Alzheimers Dement. 2019;15:465–76. https://doi.org/10.1016/j.jalz.2018.10.003.
Article
Google Scholar
Johansson P, Almqvist EG, Bjerke M, Wallin A, Johansson J-O, Andreasson U, et al. Reduced cerebrospinal fluid concentration of apolipoprotein A-I in patients with Alzheimer’s disease. J Alzheimers Dis. 2017;59:1017–26. https://doi.org/10.3233/JAD-170226.
Article
CAS
Google Scholar
Castaño EM, Roher AE, Esh CL, Kokjohn TA, Beach T. Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol Res. 2006;28:155–63. https://doi.org/10.1179/016164106X98035.
Article
Google Scholar
Sattlecker M, Kiddle SJ, Newhouse S, Proitsi P, Nelson S, Williams S, et al. Alzheimer’s disease biomarker discovery using SOMAscan multiplexed protein technology. Alzheimers Dement. 2014;10:724–34. https://doi.org/10.1016/j.jalz.2013.09.016.
Article
Google Scholar
Saito K, Seishima M, Heyes MP, Song H, Fujigaki S, Maeda S, et al. Marked increases in concentrations of apolipoprotein in the cerebrospinal fluid of poliovirus-infected macaques: relations between apolipoprotein concentrations and severity of brain injury. Biochem J. 1997;321(Pt 1):145–9. https://doi.org/10.1042/bj3210145.
Article
CAS
Google Scholar
Merched A, Xia Y, Visvikis S, Serot JM, Siest G. Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer’s disease. Neurobiol Aging. 2000;21:27–30. https://doi.org/10.1016/s0197-4580(99)00103-7.
Article
CAS
Google Scholar
Smach MA, Edziri H, Charfeddine B, Ben Othman L, Lammouchi T, Ltaief A, et al. Polymorphism in apoA1 influences high-density lipoprotein cholesterol levels but is not a major risk factor of Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2012;1:249–57. https://doi.org/10.1159/000329910.
Article
Google Scholar
Deming Y, Xia J, Cai Y, Lord J, Holmans P, Bertelsen S, et al. A potential endophenotype for Alzheimer’s disease: cerebrospinal fluid clusterin. Neurobiol Aging. 2016;37:208.e1–9. https://doi.org/10.1016/j.neurobiolaging.2015.09.009.
Article
CAS
Google Scholar
Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, et al. Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab. 2007;27:909–18. https://doi.org/10.1038/sj.jcbfm.9600419.
Article
CAS
Google Scholar
DeMattos RB, O’dell MA, Parsadanian M, Taylor JW, JAK H, Bales KR, et al. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. PNAS. 2002;99:10843–8. https://doi.org/10.1073/pnas.162228299.
Article
CAS
Google Scholar
De Miguel Z, Khoury N, Betley MJ, Lehallier B, Willoughby D, Olsson N, et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature. 2021;600:494–9. https://doi.org/10.1038/s41586-021-04183-x.
Article
CAS
Google Scholar
Wang J, Zhang X, Zhu B, Fu P. Association of clusterin levels in cerebrospinal fluid with synaptic degeneration across the Alzheimer’s disease continuum. Neuropsychiatr Dis Treat. 2020;16:183–90. https://doi.org/10.2147/NDT.S224877.
Article
CAS
Google Scholar
Minta K, Brinkmalm G, Janelidze S, Sjödin S, Portelius E, Stomrud E, et al. Quantification of total apolipoprotein E and its isoforms in cerebrospinal fluid from patients with neurodegenerative diseases. Alzheimers Res Ther. 2020;12:19. https://doi.org/10.1186/s13195-020-00585-7.
Article
CAS
Google Scholar
Martínez-Morillo E, Hansson O, Atagi Y, Bu G, Minthon L, Diamandis EP, et al. Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s disease patients and controls. Acta Neuropathol. 2014;127:633–43. https://doi.org/10.1007/s00401-014-1266-2.
Article
CAS
Google Scholar