Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci. 1986;83(13):4913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 1985;4(11):2757–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Westin K, Buchhave P, Nielsen H, Minthon L, Janciauskiene S, Hansson O. CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS One. 2012;7(1):e30525.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wennström M, Surova Y, Hall S, Nilsson C, Minthon L, Hansson O, et al. The inflammatory marker YKL-40 is elevated in cerebrospinal fluid from patients with Alzheimer’s but not Parkinson’s disease or dementia with Lewy bodies. PLoS One. 2015;10(8):e0135458.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang C, Wang Y, Wang D, Zhang J, Zhang F. NSAID exposure and risk of Alzheimer’s disease: an updated meta-analysis from cohort studies. Front Aging Neurosci. 2018;10:83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60–8.
Article
CAS
PubMed
Google Scholar
Carey IM, Anderson HR, Atkinson RW, Beevers SD, Cook DG, Strachan DP, et al. Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BMJ Open. 2018;8(9):e022404.
Article
PubMed
PubMed Central
Google Scholar
Peters R, Ee N, Peters J, Booth A, Mudway I, Anstey KJ. Air pollution and dementia: a systematic review. J Alzheimers Dis. 2019;70(s1):S145–s63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer’s disease? J Oral Microbiol. 2015;7:29143.
Article
PubMed
CAS
Google Scholar
Park J-C, Han S-H, Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer’s disease: a brief review. BMB Rep. 2020;53(1):10–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones K, Savulescu AF, Brombacher F, Hadebe S. Immunoglobulin M in health and diseases: how far have we come and what next? Front Immunol. 2020;11:595535.
van Hoeven KH, Joseph RE, Gaughan WJ, McBride L, Bilotti E, McNeill A, et al. The anion gap and routine serum protein measurements in monoclonal gammopathies. Clin J Am Soc Nephrol. 2011;6(12):2814–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leong KW, Ding JL. The unexplored roles of human serum IgA. DNA Cell Biol. 2014;33(12):823–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen D, Eisdorfer C. Serum immunoglobulins and cognitive status in the elderly: i. a population study. Br J Psychiatry. 1980;136:33–9.
Article
CAS
PubMed
Google Scholar
Elovaara I, Icen A, Palo J, Erkinjuntti T. CSF in Alzheimer’s disease: studies on blood-brain barrier function and intrathecal protein synthesis. J Neurol Sci. 1985;70(1):73–80.
Article
CAS
PubMed
Google Scholar
Hao J, Qiao Y, Li T, Yang J, Song Y, Jia L, et al. Investigating changes in the serum inflammatory factors in Alzheimer’s disease and their correlation with cognitive function. J Alzheimers Dis. 2021;84:835–42.
Article
CAS
PubMed
Google Scholar
Leblhuber FWJ, Tilz GP, Wachter H, Fuchs D. Systemische Veränderungen des Immunsystems bei Patienten mit Alzheimer-Demenz. DMW Dtsch Med Wochenschr. 1998;123(25/26):787–91.
Article
CAS
Google Scholar
Alafuzoff I, Adolfsson R, Bucht G, Winblad B. Albumin and immunoglobulin in plasma and cerebrospinal fluid, and blood-cerebrospinal fluid barrier function in patients with dementia of Alzheimer type and multi-infarct dementia. J Neurol Sci. 1983;60(3):465–72.
Article
CAS
PubMed
Google Scholar
Elovaara I, Palo J, Erkinjuntti T, Sulkava R. Serum and cerebrospinal fluid proteins and the blood-brain barrier in Alzheimer’s disease and multi-infarct dementia. Eur Neurol. 1987;26(4):229–34.
Article
CAS
PubMed
Google Scholar
Weksler ME, Relkin N, Turkenich R, LaRusse S, Zhou L, Szabo P. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol. 2002;37(7):943–8.
Article
CAS
PubMed
Google Scholar
Acierno G, Massaro A. Neuroimmunological findings in Alzheimer’s disease. Arch Psicol Neurol Psichiatr. 1983;44:147–58.
Google Scholar
Sindic CJM, Delacroix DL, Vaerman JP, Laterre EC, Masson PL. Study of IgA in the cerebrospinal fluid of neurological patients with special reference to size, subclass and local production. J Neuroimmunol. 1984;7:65–75.
Article
CAS
PubMed
Google Scholar
Elovaara I, Icén A, Palo J, Erkinjuntti T. CSF in Alzheimer’s disease. Studies on blood-brain barrier function and intrathecal protein synthesis. J Neurol Sci. 1985;70(1):73–80.
Article
CAS
PubMed
Google Scholar
Woo AH, Cserr HF, Knopf PM. Elevated cerebrospinal fluid IgA in humans and rats is not associated with secretory component. J Neuroimmunol. 1993;44(2):129–35.
Article
CAS
PubMed
Google Scholar
Tse A, Finney-Stable A, Lin J, Sadiq S. Cerebrospinal fluid IgA levels correlate with disease activity in patients with multiple sclerosis; a novel finding (P1.394). Neurology. 2018;90(15 Supplement):P1.394.
Google Scholar
Platt MP, Agalliu D, Cutforth T. Hello from the other side: how autoantibodies circumvent the blood–brain barrier in autoimmune encephalitis. Front Immunol. 2017;8:442.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goldwaser EL, Acharya NK, Wu H, Godsey GA, Sarkar A, DeMarshall CA, et al. Evidence that brain-reactive autoantibodies contribute to chronic neuronal internalization of exogenous amyloid-β1-42 and key cell surface proteins suring Alzheimer’s disease pathogenesis. J Alzheimers Dis. 2020;74(1):345–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grocott HP, Newman MF, El-Moalem H, Bainbridge D, Butler A, Laskowitz DT. Apolipoprotein E genotype differentially influences the proinflammatory and anti-inflammatory response to cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2001;122(3):622–3.
Article
CAS
PubMed
Google Scholar
Lynch JR, Tang W, Wang H, Vitek MP, Bennett ER, Sullivan PM, et al. APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response*. J Biol Chem. 2003;278(49):48529–33.
Article
CAS
PubMed
Google Scholar
Tao Q, Ang TFA, DeCarli C, Auerbach SH, Devine S, Stein TD, et al. Association of chronic low-grade inflammation with risk of Alzheimer disease in ApoE4 carriers. JAMA Netw Open. 2018;1(6):e183597-e.
Article
Google Scholar
Husain MA, Laurent B, Plourde M. APOE and Alzheimer’s disease: from lipid transport to physiopathology and therapeutics. Front Neurosci. 2021;15:630502.
Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer disease meta analysis consortium. Jama. 1997;278(16):1349–56.
Article
CAS
PubMed
Google Scholar
Parhizkar S, Holtzman DM. APOE mediated neuroinflammation and neurodegeneration in Alzheimer’s disease. Semin Immunol. 2022:101594.
Giannisis A, Patra K, Edlund AK, Nieto LA, Benedicto-Gras J, Moussaud S, et al. Brain integrity is altered by hepatic APOE ε4 in humanized-liver mice. Mol Psychiatry. 2022.
Schultz N, Janelidze S, Byman E, Minthon L, Nägga K, Hansson O, et al. Levels of islet amyloid polypeptide in cerebrospinal fluid and plasma from patients with Alzheimer’s disease. PLoS One. 2019;14(6):e0218561.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.
Article
CAS
PubMed
Google Scholar
World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. Jama. 2013;310(20):2191–4.
Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol. 2013;4:185.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pellegrini C, Antonioli L, Colucci R, Blandizzi C, Fornai M. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol. 2018;136(3):345–61.
Article
CAS
PubMed
Google Scholar
Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, et al. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease. Mol Neurodegener. 2022;17(1):19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andreu-Ballester JC, Pérez-Griera J, Ballester F, Colomer-Rubio E, Ortiz-Tarín I, Peñarroja OC. Secretory immunoglobulin a (sIgA) deficiency inserum of patients with GALTectomy (appendectomy and tonsillectomy). Clin Immunol. 2007;123(3):289–97.
Article
CAS
PubMed
Google Scholar
D’Andrea MR. Evidence linking neuronal cell death to autoimmunity in Alzheimer’s disease. Brain Res. 2003;982(1):19–30.
Article
PubMed
CAS
Google Scholar
Franceschi M, Comola M, Nemni R, Pinto P, Iannaccone S, Smirne S, et al. Neuron-binding antibodies in Alzheimer’s disease and Down’s syndrome. J Gerontol. 1989;44(5):M128–M30.
Article
CAS
PubMed
Google Scholar
Stein TD, Fedynyshyn JP, Kalil RE. Circulating autoantibodies recognize and bind dying neurons following injury to the brain. J Neuropathol Exp Neurol. 2002;61(12):1100–8.
Article
PubMed
Google Scholar
Ariizumi M. Localization of immunoglobulins in the central nervous system. No To Hattatsu. 1993;25(2):107–13.
CAS
PubMed
Google Scholar
Hadjivassiliou M, Mäki M, Sanders DS, Williamson CA, Grünewald RA, Woodroofe NM, et al. Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology. 2006;66(3):373.
Article
CAS
PubMed
Google Scholar
Bouras C, Riederer BM, Kövari E, Hof PR, Giannakopoulos P. Humoral immunity in brain aging and Alzheimer’s disease. Brain Res Rev. 2005;48(3):477–87.
Article
CAS
PubMed
Google Scholar
D’Andrea MR. Evidence that immunoglobulin-positive neurons in Alzheimer’s disease are dying via the classical antibody-dependent complement pathway. Am J Alzheimers Dis Other Dement. 2005;20(3):144–50.
Article
Google Scholar
Levin EC, Acharya NK, Han M, Zavareh SB, Sedeyn JC, Venkataraman V, et al. Brain-reactive autoantibodies are nearly ubiquitous in human sera and may be linked to pathology in the context of blood–brain barrier breakdown. Brain Res. 2010;1345:221–32.
Article
CAS
PubMed
Google Scholar
Xie J, Van Hoecke L, Vandenbroucke RE. The impact of systemic inflammation on Alzheimer’s disease pathology. Front Immunol. 2021;12:796867.
Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R. Increased blood–brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol Aging. 2013;34(8):2064–70.
Article
CAS
PubMed
Google Scholar
Magga J, Puli L, Pihlaja R, Kanninen K, Neulamaa S, Malm T, et al. Human intravenous immunoglobulin provides protection against Aβ toxicity by multiple mechanisms in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2010;7:90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Zhao W, Al-Muhtasib N, Rebeck GW. APOE genotype alters immunoglobulin subtypes in knock-in mice. J Alzheimers Dis. 2015;46(2):365–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Xu J, Gao J, Chen P, Yin M, Zhao W. Decreased immunoglobulin G in brain regions of elder female APOE4-TR mice accompany with Aβ accumulation. Immun Ageing. 2019;16(1):2.
Article
PubMed
PubMed Central
Google Scholar
Bartels F, Strönisch T, Farmer K, Rentzsch K, Kiecker F, Finke C. Neuronal autoantibodies associated with cognitive impairment in melanoma patients. Ann Oncol. 2019;30(5):823–9.
Article
CAS
PubMed
PubMed Central
Google Scholar