Alkan E, Taporoski TP, Sterr A, von Schantz M, Vallada H, Krieger JE, et al. Metabolic syndrome alters relationships between cardiometabolic variables, cognition and white matter hyperintensity load. Sci Rep. 2019;9(1):4356. https://doi.org/10.1038/s41598-019-40630-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosia M, Buonocore M, Bechi M, Santarelli L, Spangaro M, Cocchi F, et al. Improving cognition to increase treatment efficacy in schizophrenia: effects of metabolic syndrome on cognitive remediation’s outcome. Front Psychiatry. 2018;9:647. https://doi.org/10.3389/fpsyt.2018.00647.
Article
PubMed
PubMed Central
Google Scholar
Monthe-Dreze C, Rifas-Shiman SL, Gold DR, Oken E, Sen S. Maternal obesity and offspring cognition: the role of inflammation. Pediatr Res. 2019;85(6):799–806. https://doi.org/10.1038/s41390-018-0229-z.
Article
CAS
PubMed
Google Scholar
Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Advances in our understanding of oxylipins derived from dietary PUFAs. Adv Nutr. 2015;6(5):513–40. https://doi.org/10.3945/an.114.007732.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nayeem MA. Role of oxylipins in cardiovascular diseases. Acta Pharmacol Sin. 2018;39(7):1142–54. https://doi.org/10.1038/aps.2018.24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang CC, Chang MT, Leu HB, Yin WH, Tseng WK, Wu YW, et al. Association of arachidonic acid-derived lipid mediators with subsequent onset of acute myocardial infarction in patients with coronary artery disease. Sci Rep. 2020;10(1):8105. https://doi.org/10.1038/s41598-020-65014-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma H, Patti ME. Bile acids, obesity, and the metabolic syndrome. Best Pract Res Clin Gastroenterol. 2014;28(4):573–83. https://doi.org/10.1016/j.bpg.2014.07.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101. https://doi.org/10.1038/nature13479.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schimke I, Griesmacher A, Weigel G, Holzhutter HG, Muller MM. Effects of reactive oxygen species on eicosanoid metabolism in human endothelial cells. Prostaglandins. 1992;43(3):281–92. https://doi.org/10.1016/0090-6980(92)90096-C.
Article
CAS
PubMed
Google Scholar
Bellocchio L, Cervino C, Pasquali R, Pagotto U. The endocannabinoid system and energy metabolism. J Neuroendocrinol. 2008;20(6):850–7. https://doi.org/10.1111/j.1365-2826.2008.01728.x.
Article
CAS
PubMed
Google Scholar
Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system.Int J Mol Sci. 2018;19(3):833.
Chiurchiu V, van der Stelt M, Centonze D, Maccarrone M. The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: clues for other neuroinflammatory diseases. Prog Neurobiol. 2018;160:82–100. https://doi.org/10.1016/j.pneurobio.2017.10.007.
Article
CAS
PubMed
Google Scholar
Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191–212. https://doi.org/10.1002/cphy.c120023.
Article
PubMed
PubMed Central
Google Scholar
Guo C, Chen WD, Wang YD. TGR5, not only a metabolic regulator. Front Physiol. 2016;7:646.
PubMed
PubMed Central
Google Scholar
Bazan NG, Colangelo V, Lukiw WJ. Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostaglandins Other Lipid Mediat. 2002;68-69:197–210.
Article
CAS
Google Scholar
Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer’s disease. IInt J Mol Sci. 2020;21(4):1505.
Miyazawa K, Fukunaga H, Tatewaki Y, Takano Y, Yamamoto S, Mutoh T, et al. Alzheimer’s disease and specialized pro-resolving lipid mediators: do MaR1, RvD1, and NPD1 show promise for prevention and treatment? Int J Mol Sci. 2020;21(16):5783.
MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-an emerging role for gut microbiome. Alzheimers Dement. 2019;15(1):76–92. https://doi.org/10.1016/j.jalz.2018.07.217.
Article
PubMed
Google Scholar
Baloni P, Funk CC, Yan J, Yurkovich JT, Kueider-Paisley A, Nho K, et al. Metabolic network analysis reveals altered bile acid synthesis and metabolism in Alzheimer’s disease. Cell Rep Med. 2020;1(8):100138. https://doi.org/10.1016/j.xcrm.2020.100138.
Article
PubMed
PubMed Central
Google Scholar
Ackerman HD, Gerhard GS. Bile acids in neurodegenerative disorders. Front Aging Neurosci. 2016;8:263.
Article
Google Scholar
Borkowski K, Taha AY, Pedersen TL, De Jager PL, Bennett DA, Kaddurah-Daouk R, et al. Serum metabolomic biomarkers of perceptual speed in cognitively normal and mildly impaired subjects with fasting state stratification. BioRxiv. . https://doi.org/10.1101/2020.09.03.282343.
Goetz ME, Hanfelt JJ, John SE, Bergquist SH, Loring DW, Quyyumi A, et al. Rationale and design of the Emory Healthy Aging and Emory Healthy Brain Studies. Neuroepidemiology. 2019;53(3-4):187–200. https://doi.org/10.1159/000501856.
Article
PubMed
Google Scholar
Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65(4):403–13. https://doi.org/10.1002/ana.21610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP, et al. Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSF. Neurology. 1999;52(8):1555–62. https://doi.org/10.1212/WNL.52.8.1555.
Article
CAS
PubMed
Google Scholar
Pedersen TL, Gray IJ, Newman JW. Plasma and serum oxylipin, endocannabinoid, bile acid, steroid, fatty acid and nonsteroidal anti-inflammatory drug quantification in a 96-well plate format. Anal Chim Acta. 2021;1143:189–200. https://doi.org/10.1016/j.aca.2020.11.019.
Article
CAS
PubMed
Google Scholar
Agrawal K, Hassoun LA, Foolad N, Pedersen TL, Sivamani RK, Newman JW. Sweat lipid mediator profiling: a noninvasive approach for cutaneous research. J Lipid Res. 2017;58(1):188–95. https://doi.org/10.1194/jlr.M071738.
Article
CAS
PubMed
Google Scholar
Saito K, Hattori K, Andou T, Satomi Y, Gotou M, Kobayashi H, et al. Characterization of postprandial effects on CSF metabolomics: a pilot study with parallel comparison to plasma.Metabolites. 2020;10(5):185.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodological). 1995;57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Article
Google Scholar
Normand-Lauziere F, Frisch F, Labbe SM, Bherer P, Gagnon R, Cunnane SC, et al. Increased postprandial nonesterified fatty acid appearance and oxidation in type 2 diabetes is not fully established in offspring of diabetic subjects. PLoS One. 2010;5(6):e10956. https://doi.org/10.1371/journal.pone.0010956.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiamoncini J, Yiorkas AM, Gedrich K, Rundle M, Alsters SI, Roeselers G, et al. Determinants of postprandial plasma bile acid kinetics in human volunteers. Am J Physiol Gastrointest Liver Physiol. 2017;313(4):G300–G12. https://doi.org/10.1152/ajpgi.00157.2017.
Article
CAS
PubMed
Google Scholar
Lee CR, North KE, Bray MS, Fornage M, Seubert JM, Newman JW, et al. Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. Hum Mol Genet. 2006;15(10):1640–9. https://doi.org/10.1093/hmg/ddl085.
Article
CAS
PubMed
Google Scholar
Palmqvist S, Tideman P, Cullen N, Zetterberg H, Blennow K, Alzheimer’s Disease Neuroimaging I, et al. Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures. Nat Med. 2021;27:1034–42.
Jahn D, Geier A. Bile acids in nonalcoholic steatohepatitis: pathophysiological driving force or innocent bystanders? Hepatology. 2018;67(2):464–6. https://doi.org/10.1002/hep.29543.
Article
PubMed
Google Scholar
Grant SM, DeMorrow S. Bile acid signaling in neurodegenerative and neurological disorders. Int J Mol Sci. 2020;21(17):5982.
Neu SC, Pa J, Kukull W, Beekly D, Kuzma A, Gangadharan P, et al. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol. 2017;74(10):1178–89. https://doi.org/10.1001/jamaneurol.2017.2188.
Article
PubMed
PubMed Central
Google Scholar
Ghosh A, Comerota ME, Wan D, Chen F, Propson NE, Hwang SH, et al. Epoxy fatty acid dysregulation and neuroinflammation in Alzheimer’s disease is resolved by a soluble epoxide hydrolase inhibitor. BioRxiv. . https://doi.org/10.1101/2020.06.30.180984.
Kodani SD, Morisseau C. Role of epoxy-fatty acids and epoxide hydrolases in the pathology of neuro-inflammation. Biochimie. 2019;159:59–65. https://doi.org/10.1016/j.biochi.2019.01.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altamura C, Ventriglia M, Martini MG, Montesano D, Errante Y, Piscitelli F, et al. Elevation of plasma 2-arachidonoylglycerol levels in Alzheimer’s disease patients as a potential protective mechanism against neurodegenerative decline. J Alzheimers Dis. 2015;46(2):497–506. https://doi.org/10.3233/JAD-142349.
Article
CAS
PubMed
Google Scholar
Grinan-Ferre C, Codony S, Pujol E, Yang J, Leiva R, Escolano C, et al. Pharmacological inhibition of soluble epoxide hydrolase as a new therapy for Alzheimer’s disease. Neurotherapeutics. 2020;17(4):1825–35. https://doi.org/10.1007/s13311-020-00854-1.
Article
CAS
PubMed
Google Scholar
Deng Y, Theken KN, Lee CR. Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. J Mol Cell Cardiol. 2010;48(2):331–41. https://doi.org/10.1016/j.yjmcc.2009.10.022.
Article
CAS
PubMed
Google Scholar
Ulu A, Harris TR, Morisseau C, Miyabe C, Inoue H, Schuster G, et al. Anti-inflammatory effects of omega-3 polyunsaturated fatty acids and soluble epoxide hydrolase inhibitors in angiotensin-II-dependent hypertension. J Cardiovasc Pharmacol. 2013;62(3):285–97. https://doi.org/10.1097/FJC.0b013e318298e460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imig JD, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov. 2009;8(10):794–805. https://doi.org/10.1038/nrd2875.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner KM, McReynolds CB, Schmidt WK, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for pain, inflammatory and neurodegenerative diseases. Pharmacol Ther. 2017;180:62–76. https://doi.org/10.1016/j.pharmthera.2017.06.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Firoz CK, Jabir NR, Khan MS, Mahmoud M, Shakil S, Damanhouri GA, et al. An overview on the correlation of neurological disorders with cardiovascular disease. Saudi J Biol Sci. 2015;22(1):19–23. https://doi.org/10.1016/j.sjbs.2014.09.003.
Article
CAS
PubMed
Google Scholar
Klett EL, Chen S, Edin ML, Li LO, Ilkayeva O, Zeldin DC, et al. Diminished acyl-CoA synthetase isoform 4 activity in INS 832/13 cells reduces cellular epoxyeicosatrienoic acid levels and results in impaired glucose-stimulated insulin secretion. J Biol Chem. 2013;288(30):21618–29. https://doi.org/10.1074/jbc.M113.481077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greene JF, Williamson KC, Newman JW, Morisseau C, Hammock BD. Metabolism of monoepoxides of methyl linoleate: bioactivation and detoxification. Arch Biochem Biophys. 2000;376(2):420–32. https://doi.org/10.1006/abbi.2000.1753.
Article
CAS
PubMed
Google Scholar
Hennebelle M, Morgan RK, Sethi S, Zhang Z, Chen H, Grodzki AC, et al. Linoleic acid-derived metabolites constitute the majority of oxylipins in the rat pup brain and stimulate axonal growth in primary rat cortical neuron-glia co-cultures in a sex-dependent manner. J Neurochem. 2020;152(2):195–207. https://doi.org/10.1111/jnc.14818.
Article
CAS
PubMed
Google Scholar
Takahashi H, Ishizaki T, Ameshima S, Kishi Y, Sasaki F, Nakai T, et al. Leukotoxin, 9,10-epoxy-12-octadecenoate, causes vasodilation in isolated pulmonary artery rings preconstricted with endothelin 1. Nihon Kyobu Shikkan Gakkai Zasshi. 1992;30(3):418–24.
CAS
PubMed
Google Scholar
Hildreth K, Kodani SD, Hammock BD, Zhao L. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: a review of recent studies. J Nutr Biochem. 2020;86:108484. https://doi.org/10.1016/j.jnutbio.2020.108484.
Article
CAS
PubMed
Google Scholar
Moghaddam MF, Grant DF, Cheek JM, Greene JF, Williamson KC, Hammock BD. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat Med. 1997;3(5):562–6. https://doi.org/10.1038/nm0597-562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green D, Ruparel S, Gao X, Ruparel N, Patil M, Akopian A, et al. Central activation of TRPV1 and TRPA1 by novel endogenous agonists contributes to mechanical allodynia and thermal hyperalgesia after burn injury. Mol Pain. 2016;12:174480691666172. https://doi.org/10.1177/1744806916661725.
Article
CAS
Google Scholar
Balleza-Tapia H, Crux S, Andrade-Talavera Y, Dolz-Gaiton P, Papadia D, Chen G, et al. TrpV1 receptor activation rescues neuronal function and network gamma oscillations from Abeta-induced impairment in mouse hippocampus in vitro. Elife. 2018;7. https://doi.org/10.7554/eLife.37703.
Du Y, Fu M, Huang Z, Tian X, Li J, Pang Y, et al. TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer’s disease. Aging Cell. 2020;19(3):e13113. https://doi.org/10.1111/acel.13113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raboune S, Stuart JM, Leishman E, Takacs SM, Rhodes B, Basnet A, et al. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front Cell Neurosci. 2014;8:195.
Article
Google Scholar
Borkowski K, Yim SJ, Holt RR, Hackman RM, Keen CL, Newman JW, et al. Walnuts change lipoprotein composition suppressing TNFalpha-stimulated cytokine production by diabetic adipocyte. J Nutr Biochem. 2019;68:51–8. https://doi.org/10.1016/j.jnutbio.2019.03.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahley RW. Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler Thromb Vasc Biol. 2016;36(7):1305–15. https://doi.org/10.1161/ATVBAHA.116.307023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan HC, Kong YY, He BX, Huang MK, Li J, Zheng JQ, et al. CYP2J2 rs890293 polymorphism is associated with susceptibility to Alzheimer’s disease in the Chinese Han population. Neuroscience Letters. 2015;593:56–60. https://doi.org/10.1016/j.neulet.2015.03.024.
Article
CAS
PubMed
Google Scholar
Srivastava PK, Sharma VK, Kalonia DS, Grant DF. Polymorphisms in human soluble epoxide hydrolase: effects on enzyme activity, enzyme stability, and quaternary structure. Arch Biochem Biophys. 2004;427(2):164–9. https://doi.org/10.1016/j.abb.2004.05.003.
Article
CAS
PubMed
Google Scholar
Koerner IP, Jacks R, DeBarber AE, Koop D, Mao P, Grant DF, et al. Polymorphisms in the human soluble epoxide hydrolase gene EPHX2 linked to neuronal survival after ischemic injury. J Neurosci. 2007;27(17):4642–9. https://doi.org/10.1523/JNEUROSCI.0056-07.2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson JW, Young JM, Borkar RN, Woltjer RL, Quinn JF, Silbert LC, et al. Role of soluble epoxide hydrolase in age-related vascular cognitive decline. Prostaglandins Other Lipid Mediat. 2014;113-115:30–7.
Article
CAS
Google Scholar
Wingo AP, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat Genet. 2021;53(2):143–6. https://doi.org/10.1038/s41588-020-00773-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol. 2015;97(6):1049–70. https://doi.org/10.1189/jlb.3RU0115-021R.
Article
CAS
PubMed
Google Scholar
Petrosino S, Di Marzo V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br J Pharmacol. 2017;174(11):1349–65. https://doi.org/10.1111/bph.13580.
Article
CAS
PubMed
Google Scholar
Saito VM, Rezende RM, Teixeira AL. Cannabinoid modulation of neuroinflammatory disorders. Curr Neuropharmacol. 2012;10(2):159–66. https://doi.org/10.2174/157015912800604515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bisogno T, Di Marzo V. The role of the endocannabinoid system in Alzheimer’s disease: facts and hypotheses. Curr Pharm Des. 2008;14(23):2299–3305. https://doi.org/10.2174/138161208785740027.
Article
CAS
PubMed
Google Scholar
Bradshaw HB, Walker JM. The expanding field of cannabimimetic and related lipid mediators. Br J Pharmacol. 2005;144(4):459–65. https://doi.org/10.1038/sj.bjp.0706093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradshaw HB, Raboune S, Hollis JL. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication. Life Sci. 2013;92(8-9):404–9. https://doi.org/10.1016/j.lfs.2012.11.008.
Article
CAS
PubMed
Google Scholar
Li K, Luo X, Zeng Q, Jiaerken Y, Wang S, Xu X, et al. Interactions between sleep disturbances and Alzheimer’s disease on brain function: a preliminary study combining the static and dynamic functional MRI. Sci Rep. 2019;9(1):19064. https://doi.org/10.1038/s41598-019-55452-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koethe D, Schreiber D, Giuffrida A, Mauss C, Faulhaber J, Heydenreich B, et al. Sleep deprivation increases oleoylethanolamide in human cerebrospinal fluid. J Neural Transm (Vienna). 2009;116(3):301–5. https://doi.org/10.1007/s00702-008-0169-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giordano C, Plastina P, Barone I, Catalano S, Bonofiglio D. n-3 polyunsaturated fatty acid amides: new avenues in the prevention and treatment of breast cancer. Int J Mol Sci. 2020;21(7):2279.
Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol. 2018;38(1):121–32. https://doi.org/10.1007/s10571-017-0554-5.
Article
CAS
PubMed
Google Scholar
Berry AJ, Zubko O, Reeves SJ, Howard RJ. Endocannabinoid system alterations in Alzheimer’s disease: a systematic review of human studies. Brain Res. 2020;1749:147135.
Article
CAS
Google Scholar
Aso E, Ferrer I. Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic. Front Pharmacol. 2014;5:37.
Article
Google Scholar
Hammock BD, McReynolds CB, Wagner K, Buckpitt A, Cortes-Puch I, Croston G, et al. Movement to the clinic of soluble epoxide hydrolase inhibitor EC5026 as an analgesic for neuropathic pain and for use as a nonaddictive opioid alternative. J Med Chem. 2021;64(4):1856–72. https://doi.org/10.1021/acs.jmedchem.0c01886.
Article
CAS
PubMed
PubMed Central
Google Scholar
Booker L, Kinsey SG, Abdullah RA, Blankman JL, Long JZ, Ezzili C, et al. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice. Br J Pharmacol. 2012;165(8):2485–96. https://doi.org/10.1111/j.1476-5381.2011.01445.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedersen TL, Newman JW. Establishing and performing targeted multi-residue analysis for lipid mediators and fatty acids in small clinical plasma samples. Methods Mol Biol. 2018;1730:175–212.
Article
CAS
Google Scholar