Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med J Transl Pers Med. 2010;77(1):32–42.
Article
Google Scholar
Jucker M, Walker LC. Amyloid-β pathology induced in humans. Nature. 2015;525(7568):193–4.
Article
CAS
PubMed
Google Scholar
Silva MVF, Loures C, de Mello Gomide Loures C, Alves LCV, de Souza LC, Borges KBG, Carvalho M d G. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26(1):33.
Article
PubMed
PubMed Central
Google Scholar
Giri M, Lü Y, Zhang M. Genes associated with Alzheimer’s disease: an overview and current status. Clin Interv Aging. 2016;665–81. https://doi.org/10.2147/CIA.S105769.
Jana M, Palencia CA, Pahan K. Fibrillar amyloid-β peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol. 2008;181(10):7254–62.
Article
CAS
PubMed
Google Scholar
Ginhoux F, Prinz M. Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol. 2015;7(8):a020537.
Article
PubMed
PubMed Central
Google Scholar
Butovsky O, Weiner HL. Microglial signatures and their role in health and disease. Nat Rev Neurosci. 2018;19(10):622–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chitu V, Gokhan Ş, Nandi S, Mehler MF, Stanley ER. Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci. 2016;39(6):378–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82(2):380–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014;6(6):a021857.
Article
PubMed
PubMed Central
Google Scholar
Boulakirba S, Pfeifer A, Mhaidly R, Obba S, Goulard M, Schmitt T, et al. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Sci Rep. 2018;8(1) [cited 2018 Sep 18]. Available from: http://www.nature.com/articles/s41598-017-18433-4.
Nandi S, Gokhan S, Dai X-M, Wei S, Enikolopov G, Lin H, et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev Biol. 2012;367(2):100–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hume DA, Pavli P, Donahue RE, Fidler IJ. The effect of human recombinant macrophage colony-stimulating factor (CSF-1) on the murine mononuclear phagocyte system in vivo. J Immunol Baltim Md 1950. 1988;141(10):3405–9.
CAS
Google Scholar
Giulian D, Ingeman J. Colony-stimulating factors as promoters of ameboid microglia. J Neurosci. 1988;8(12):4707–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol. 2016;100(3):481–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med. 2007;13(11):1359–62.
Article
CAS
PubMed
Google Scholar
Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S. Powerful beneficial effects of macrophage colony-stimulating factor on -amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain. 2009;132(4):1078–92.
Article
PubMed
Google Scholar
Kawanishi S, Takata K, Itezono S, Nagayama H, Konoya S, Chisaki Y, et al. Bone-marrow-derived microglia-like cells ameliorate brain amyloid pathology and cognitive impairment in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2018;64(2):563–85.
Article
CAS
PubMed
Google Scholar
Mizuno T, Doi Y, Mizoguchi H, Jin S, Noda M, Sonobe Y, et al. Interleukin-34 selectively enhances the neuroprotective effects of microglia to attenuate oligomeric amyloid-β neurotoxicity. Am J Pathol. 2011;179(4):2016–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rivest S. TREM2 enables amyloid β clearance by microglia. Cell Res. 2015;25(5):535–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konishi H, Kiyama H. Microglial TREM2/DAP12 signaling: a double-edged sword in neural diseases. Front Cell Neurosci. 2018;12:206.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yin Z, Raj D, Saiepour N, Van Dam D, Brouwer N, Holtman IR, et al. Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiol Aging. 2017;55:115–22.
Article
CAS
PubMed
Google Scholar
Zheng H, Jia L, Liu C-C, Rong Z, Zhong L, Yang L, et al. TREM2 promotes microglial survival by activating Wnt/β-catenin pathway. J Neurosci. 2017;37(7):1772–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. 2015;160(6):1061–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim JY, Hsieh CL, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci. 2015;35(8):3384–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palomer E, Buechler J, Salinas PC. Wnt signaling deregulation in the aging and Alzheimer’s brain. Front Cell Neurosci. 2019;13:227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang S, Hua F, Hu Z-W. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. 2017;8(20):33972–89.
Article
PubMed
PubMed Central
Google Scholar
Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin: β-catenin: a life by, beyond, and against the Wnt canon. EMBO J. 2012;31(12):2714–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Harthi L. Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J NeuroImmune Pharmacol. 2012;7(4):725–30.
Article
PubMed
PubMed Central
Google Scholar
Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T, et al. Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin. Nat Immunol. 2009;10(7):734–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marzo A, Galli S, Lopes D, McLeod F, Podpolny M, Segovia-Roldan M, et al. Reversal of synapse degeneration by restoring Wnt signaling in the adult hippocampus. Curr Biol. 2016;26(19):2551–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fortress AM, Schram SL, Tuscher JJ, Frick KM. Canonical Wnt signaling is necessary for object recognition memory consolidation. J Neurosci. 2013;33(31):12619–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michaud J-P, Halle M, Lampron A, Theriault P, Prefontaine P, Filali M, et al. Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid a improves Alzheimer’s disease-related pathology. Proc Natl Acad Sci. 2013;110(5):1941–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13(2):93–110.
Article
CAS
PubMed
Google Scholar
Deacon RM. Assessing nest building in mice. Nat Protoc. 2006;1(3):1117–9.
Article
PubMed
Google Scholar
Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011;306(18):2001.
Article
CAS
PubMed
Google Scholar
Schelle J, Wegenast-Braun BM, Fritschi SK, Kaeser SA, Jährling N, Eicke D, et al. Early Aβ reduction prevents progression of cerebral amyloid angiopathy. Ann Neurol. 2019;86(4):561–71.
Article
CAS
PubMed
Google Scholar
Winkler DT, Bondolfi L, Herzig MC, Jann L, Calhoun ME, Wiederhold K-H, et al. Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci. 2001;21(5):1619–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pons V, Laflamme N, Préfontaine P, Rivest S. Role of macrophage colony-stimulating factor receptor on the proliferation and survival of microglia following systemic nerve and cuprizone-induced injuries. Front Immunol. 2020;11:47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laflamme N, Préfontaine P, Lampron A, Rivest S. Bone marrow chimeras to study neuroinflammation. Curr Protoc Immunol. 2018;123(1):e56.
Article
PubMed
Google Scholar
Pundir AS, Hameed LS, Dikshit PC, Kumar P, Mohan S, Radotra B, et al. Expression of medium and heavy chain neurofilaments in the developing human auditory cortex. Brain Struct Funct. 2012;217(2):303–21.
Article
CAS
PubMed
Google Scholar
Brenowitz WD, Nelson PT, Besser LM, Heller KB, Kukull WA. Cerebral amyloid angiopathy and its co-occurrence with Alzheimer’s disease and other cerebrovascular neuropathologic changes. Neurobiol Aging. 2015;36(10):2702–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosin JM, Vora SR, Kurrasch DM. Depletion of embryonic microglia using the CSF1R inhibitor PLX5622 has adverse sex-specific effects on mice, including accelerated weight gain, hyperactivity and anxiolytic-like behaviour. Brain Behav Immun. 2018;73:682–97.
Article
CAS
PubMed
Google Scholar
Gerber YN, Saint-Martin GP, Bringuier CM, Bartolami S, Goze-Bac C, Noristani HN, et al. CSF1R inhibition reduces microglia proliferation, promotes tissue preservation and improves motor recovery after spinal cord injury. Front Cell Neurosci. 2018;12 [cited 2019 Jun 27]. Available from: https://www.frontiersin.org/article/10.3389/fncel.2018.00368/full.
Ali S, Mansour AG, Huang W, Queen NJ, Mo X, Anderson JM, et al. CSF1R inhibitor PLX5622 and environmental enrichment additively improve metabolic outcomes in middle-aged female mice. Aging. 2020;12(3):2101–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casali BT, MacPherson KP, Reed-Geaghan EG, Landreth GE. Microglia depletion rapidly and reversibly alters amyloid pathology by modification of plaque compaction and morphologies. Neurobiol Dis. 2020;142:104956.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riquier AJ, Sollars SI. Astrocytic response to neural injury is larger during development than in adulthood and is not predicated upon the presence of microglia. Brain Behav Immun Health. 2020;1:100010.
Article
Google Scholar
Nissen JC, Thompson KK, West BL, Tsirka SE. Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes recovery. Exp Neurol. 2018;307:24–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spangenberg EE, Green KN. Inflammation in Alzheimer’s disease: lessons learned from microglia-depletion models. Brain Behav Immun. 2017;61:1–11.
Article
CAS
PubMed
Google Scholar
Zulfiqar S, Tanriöver G. β-Catenin pathway is involved in TREM2-mediated microglial survival. J Neurosci. 2017;37(30):7073–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker TW, Neufeld KL. APC controls Wnt-induced β-catenin destruction complex recruitment in human colonocytes. Sci Rep. 2020;10(1):2957.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paasila PJ, Davies DS, Sutherland GT, Goldsbury C. Clustering of activated microglia occurs before the formation of dystrophic neurites in the evolution of Aβ plaques in Alzheimer’s disease. Free Neuropathol. 2020;20:Seiten.
Google Scholar
Zhou Y, Ulland TK, Colonna M. TREM2-dependent effects on microglia in Alzheimer’s disease. Front Aging Neurosci. 2018;10:202.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jay TR, Hirsch AM, Broihier ML, Miller CM, Neilson LE, Ransohoff RM, et al. Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer’s disease. J Neurosci. 2017;37(3):637–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee CYD, Daggett A, Gu X, Jiang L-L, Langfelder P, Li X, et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron. 2018;97(5):1032–1048.e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tapia-Rojas C, Inestrosa NC. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer’s disease in J20-APP transgenic and wild-type mice. J Neurochem. 2018;144(4):443–65.
Article
CAS
PubMed
Google Scholar
Obst J, Simon E, Martin-Estebane M, Pipi E, Barkwill LM, Gonzalez-Rivera I, et al. Inhibition of IL34 unveils tissue-selectivity and is sufficient to reduce microglial proliferation in chronic neurodegeneration. Neuroscience. 2020; [cited 2020 Sep 18]. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.03.09.976118.
Lelios I, Cansever D, Utz SG, Mildenberger W, Stifter SA, Greter M. Emerging roles of IL-34 in health and disease. J Exp Med. 2020;217(3):e20190290.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sauter KA, Pridans C, Sehgal A, Tsai YT, Bradford BM, Raza S, et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol. 2014;96(2):265–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, et al. Stroma-derived Interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity. 2012;37(6):1050–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ségaliny AI, Brion R, Brulin B, Maillasson M, Charrier C, Téletchéa S, et al. IL-34 and M-CSF form a novel heteromeric cytokine and regulate the M-CSF receptor activation and localization. Cytokine. 2015;76(2):170–81.
Article
PubMed
CAS
Google Scholar
Fan Y, Ma Y, Huang W, Cheng X, Gao N, Li G, et al. Up-regulation of TREM2 accelerates the reduction of amyloid deposits and promotes neuronal regeneration in the hippocampus of amyloid beta1-42 injected mice. J Chem Neuroanat. 2019;97:71–9.
Article
CAS
PubMed
Google Scholar
Garcia A, Udeh A, Kalahasty K, Hackam A. A growing field: the regulation of axonal regeneration by Wnt signaling. Neural Regen Res. 2018;13(1):43.
Article
PubMed
PubMed Central
Google Scholar
Guglielmotto M, Repetto IE, Monteleone D, Vasciaveo V, Franchino C, Rinaldi S, et al. Stroke and amyloid-β downregulate TREM-2 and Uch-L1 expression that synergistically promote the inflammatory response. J Alzheimers Dis. 2019;71(3):907–20.
Article
CAS
PubMed
Google Scholar
Jellinger KA. Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm. 2002;109(5–6):813–36.
Article
CAS
PubMed
Google Scholar
Zhang C, Qin H, Zheng R, Wang Y, Yan T, Huan F, et al. A new approach for Alzheimer’s disease treatment through P-gp regulation via ibuprofen. Pathol Res Pract. 2018;214(11):1765–71.
Article
CAS
PubMed
Google Scholar
ElAli A, Rivest S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol. 2013;4 [cited 2020 Mar 26]. Available from: http://journal.frontiersin.org/article/10.3389/fphys.2013.00045/abstract.
Vogelgesang S, Warzok R, Cascorbi I, Kunert-Keil C, Schroeder E, Kroemer H, et al. The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimers disease. Curr Alzheimer Res. 2004;1(2):121–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, et al. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci. 2017;114(7):E1168–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corrêa S, Binato R, Du Rocher B, Castelo-Branco MT, Pizzatti L, Abdelhay E. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC Cancer. 2012;12(1):303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kania KD, Wijesuriya HC, Hladky SB, Barrand MA. Beta amyloid effects on expression of multidrug efflux transporters in brain endothelial cells. Brain Res. 2011;1418:1–11.
Article
CAS
PubMed
Google Scholar
Thériault P, ElAli A, Rivest S. The dynamics of monocytes and microglia in Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng Y, Tian D-Y, Wang Y-J. Peripheral clearance of brain-derived Aβ in Alzheimer’s disease: pathophysiology and therapeutic perspectives. Transl Neurodegener. 2020;9(1):16.
Article
CAS
PubMed
PubMed Central
Google Scholar