Hou Y, Dan X, Babbr M, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565–81. https://doi.org/10.1038/s41582-019-0244-7.
Article
PubMed
Google Scholar
Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4):a033118. Published 2018 Apr 2. https://doi.org/10.1101/cshperspect.a033118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019 Aug;90(8):870–81. https://doi.org/10.1136/jnnp-2018-320106.
Article
PubMed
Google Scholar
Disanto G, Barro C, Benkert P, et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81(6):857–70. https://doi.org/10.1002/ana.24954.
Article
PubMed
PubMed Central
CAS
Google Scholar
Olsson B, Portelius E, Cullen NC, et al. Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol. 76(3):318–25. https://doi.org/10.1001/jamaneurol.2018.3746.
Preische O, Schultz SA, Apel A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med. 2019;25(2):277–83. https://doi.org/10.1038/s41591-018-0304-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mattsson N, Andreasson U, Zetterberg H, Blennow K, Alzheimer’s Disease Neuroimaging Initiative. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2017;74(5):557–66. https://doi.org/10.1001/jamaneurol.2016.6117.
Article
PubMed
PubMed Central
Google Scholar
Lista S, Toschi N, Baldacci F, et al. Diagnostic accuracy of CSF neurofilament light chain protein in the biomarker-guided classification system for Alzheimer’s disease. Neurochem Int. 2017;108:355–60. https://doi.org/10.1016/j.neuint.2017.05.010.
Article
PubMed
CAS
Google Scholar
Lin Y, Lee W, Wang S, et al. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Sci Rep. 2019;8(1):17368. https://doi.org/10.1038/s41598-018-35766-w.
Article
CAS
Google Scholar
Massa F, Meli R, Morbelli S, Nobili F, Pardini M. Serum neurofilament light chain rate of change in Alzheimer’s disease: potentials applications and notes of caution. Ann Transl Med. 2019;7(Suppl 3):S133. https://doi.org/10.21037/atm.2019.05.81.
Article
PubMed
PubMed Central
Google Scholar
Sernagor E, Eglen SJ, Wong ROL. Development of retinal ganglion cell structure and function. Prog Retin Eye Res. 2010;20(2):139–74. https://doi.org/10.1016/S1350-9462(00)00024-0.
Article
Google Scholar
Cooper LS, Wong TY, Klein R, Sharrett AR, Bryan RN, Hubbard LD, Couper DJ, Heiss G, Sorlie PD. Retinal microvascular abnormalities and MRI-defined subclinical cerebral infarction: the Atherosclerosis Risk in Communities Study. Stroke. 2006;37(1):82–6. https://doi.org/10.1161/01.STR.0000195134.04355.e5.
Article
PubMed
Google Scholar
Hong JT, Chae JB, Lee JY, et al. Ocular involvement in patients with primary CNS lymphoma. J Neurooncol. 2011;102(1):139–45. https://doi.org/10.1007/s11060-010-0303-9.
Article
PubMed
Google Scholar
Sen HN, Bodaghi B, Hoang PL, Nussenblatt R. Primary intraocular lymphoma: diagnosis and differential diagnosis. Ocul Immunol Inflamm. 2009;17(3):133–41. https://doi.org/10.1080/09273940903108544.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yen MY, Lui JH. Malignant lymphoma involving the optic nerve head and the retina. Ann Ophthalmol. 1985;17(11):697–700.
PubMed
CAS
Google Scholar
Hirai T, Ando Y, Yamura M, et al. Transthyretin-related familial amyloid polyneuropathy: evaluation of CSF enhancement on serial T1-weighted and fluid-attenuated inversion recovery images following intravenous contrast administration. Am J Neuroradiol. 2005;26(8):2043–8.
PubMed
Google Scholar
Lamba PA, Bhalla JS, Mullick DN. Ocular manifestations of tubercular meningitis: a clinic-biochemical study. J Pediatr Ophthalmol Strabismus. 1986;23(3):123–5.
PubMed
CAS
Google Scholar
Hersi M, Irvine B, Gupta P, Gomes J, Birkett N, Krewski D. Risk factors associated with onset and progression of Alzheimer’s disease: a systematic review of the evidence. Neurotoxicology. 2107;61:143–87. https://doi.org/10.1016/j.neuro.2017.03.006.
Article
Google Scholar
Zhang J, Chen C, Hua S, Liao H, Wang M, Xiong Y, Cao F. An updated meta-analysis of cohort studies: diabetes and risk of Alzheimer’s disease. Diabetes Res Clin Pract. 2017;124:41–7. https://doi.org/10.1016/j.diabres.2016.10.024.
Article
PubMed
Google Scholar
Lee CS, Larson EB, Gibbons LE, et al. Associations between recent and established ophthalmic conditions and risk of Alzheimer’s disease. Alzheimers Dement. 2019;15(1):34–41. https://doi.org/10.1016/j.jalz.2018.06.2856.
Article
PubMed
Google Scholar
Mancino R, Martucci A, Cesareo M, et al. Glaucoma and Alzheimer disease: one age-related neurodegenerative disease of the brain. Curr Neuropharmacol. 2018;16(7):971–7. https://doi.org/10.2174/1570159X16666171206144045.
Article
PubMed
PubMed Central
CAS
Google Scholar
Biscetti L, Luchetti E, Vergaro A, Menduno P, Cagini C, Parnetti L. Associations of Alzheimer’s disease with macular degeneration. Front Biosci. 2017;9:174–91. https://doi.org/10.2741/e794.
Article
Google Scholar
Ohno-Matsui K, Akiba M, Moriyama M, Ishibashi T, Tokoro T, Spaide R. Imaging retrobulbar subarachnoid space around optic nerve by swept-source optical coherence tomography in eyes with pathologic myopia. Invest Ophthalmol Vis Sci. 52(13):9644–50. https://doi.org/10.1167/iovs.11-8597.
Wright LM, Stein TD, Jun G, et al. Association of cognitive function with amyloid-β and tau proteins in the vitreous humor. J Alzheimers Dis. 2019;68(4):1429–38. https://doi.org/10.3233/JAD-181104.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oktem EO, Derle E, Kibaroglu S, Oktem C, Akkoyun I, Can U. The relationship between the degree of cognitive impairment and retinal nerve fiber layer thickness. Neurol Sci. 2015;36(7):1141–6. https://doi.org/10.1007/s10072-014-2055-3.
Article
PubMed
Google Scholar
Cheung CY, Ong YT, Hilal S, et al. Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis. 2015;45(1):45–56. https://doi.org/10.3233/JAD-141659.
Article
PubMed
CAS
Google Scholar
den Haan J, Verbraak FD, Visser PJ, Bouwman FH. Retinal thickness in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement (Amst). 2017;6:162–70. Published 2017 Jan 25. https://doi.org/10.1016/j.dadm.2016.12.014.
Article
Google Scholar
Cunha LP, Lopes LC, Costa-Cunha LV, et al. Macular thickness measurements with frequency domain-OCT for quantification of retinal neural loss and its correlation with cognitive impairment in Alzheimer’s disease. PLoS One. 2016;11(4):e0153830. Published 2016 Apr 22. https://doi.org/10.1371/journal.pone.0153830.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garcia-Martin ES, Rojas B, Ramirez AI, et al. Macular thickness as a potential biomarker of mild Alzheimer’s disease. Ophthalmology. 2014;121(5):1149–51. https://doi.org/10.1016/j.ophtha.2013.12.023.
Article
PubMed
Google Scholar
den Haan J, Janssen SF, van de Kreeke JA, Scheltens P, Verbraak FD, Bouwman FH. Retinal thickness correlates with parietal cortical atrophy in early-onset Alzheimer’s disease and controls. Alzheimers Dement (Amst). 2017;10:49–55. Published 2017 Nov 6. https://doi.org/10.1016/j.dadm.2017.10.005.
Article
Google Scholar
Garcia-Martin E, Bambo MP, Marques ML, et al. Ganglion cell layer measurements correlate with disease severity in patients with Alzheimer’s disease. Acta Ophthalmol. 2016;94(6):e454–9. https://doi.org/10.1111/aos.12977.
Article
PubMed
Google Scholar
Cunha JP, Proença R, Dias-Santos A, et al. OCT in Alzheimer’s disease: thinning of the RNFL and superior hemiretina. Graefes Arch Clin Exp Ophthalmol. 2017;255(9):1827–35. https://doi.org/10.1007/s00417-017-3715-9.
Article
PubMed
Google Scholar
Kwon JY, Yang JH, Han JS, Kim DG. Analysis of the retinal nerve fiber layer thickness in Alzheimer disease and mild cognitive impairment. Korean J Ophthalmol. 2017;31(6):548–56. https://doi.org/10.3341/kjo.2016.0118.
Article
PubMed
PubMed Central
Google Scholar
Liu S, Ong YT, Hilal S, et al. The association between retinal neuronal layer and brain structure is disrupted in patients with cognitive impairment and Alzheimer’ disease. J Alzheimers Dis. 2016;54(2):585–95. https://doi.org/10.3233/JAD-160067.
Article
PubMed
Google Scholar
Cunha JP, Proença R, Dias-Santos A, et al. Choroidal thinning: Alzheimer’s disease and aging. Alzheimers Dement (Amst). 2017;8:11–7. Published 2017 Mar 30. https://doi.org/10.1016/j.dadm.2017.03.004.
Article
Google Scholar
Trebbastoni A, Marcelli M, Mallone F, et al. Attenuation of choroidal thickness in patients with Alzheimer disease: evidence from an Italian prospective study. Alzheimer Dis Assoc Disord. 2017;31(2):128–34 0.1097/WAD.0000000000000176.
Article
Google Scholar
Bayhan HA, Aslan Bayhan S, Celikbilek A, Tanık N, Gürdal C. Evaluation of the chorioretinal thickness changes in Alzheimer’s disease using spectral-domain optical coherence tomography. Clin Exp Ophthalmol. 2015;43(2):145–51. https://doi.org/10.1111/ceo.12386.
Article
PubMed
Google Scholar
Gharbiya M, Trebbastoni A, Parisi F, et al. Choroidal thinning as a new finding in Alzheimer’s disease: evidence from enhanced depth imaging spectral domain optical coherence tomography. J Alzheimers Dis. 2014;40(4):907–17. https://doi.org/10.3233/JAD-132039.
Article
PubMed
Google Scholar
O’Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP. Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA Ophthalmol. 2018;136(11):1242–8. https://doi.org/10.1001/jamaophthalmol.2018.3556.
Article
PubMed
PubMed Central
Google Scholar
Querques G, Borrelli E, Sacconi R, et al. Functional and morphological changes of the retinal vessels in Alzheimer’s disease and mild cognitive impairment. Sci Rep. 2019;9(1):63. Published 2019 Jan 11. https://doi.org/10.1038/s41598-018-37271-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lahme L, Esser EL, Mihailovic N, et al. Evaluation of ocular perfustion in Alzheimer’s disease using optical coherence tomography angiography. J Alzheimers Dis. 2018;66(4):1745–52. https://doi.org/10.3233/JAD-180738.
Article
PubMed
Google Scholar
Zhang YS, Zhou N, Knoll BM, et al. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s disease on optical coherence tomography angiography. PLoS One. 2019;14(4):e0214685. https://doi.org/10.1371/journal.pone.0214685.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mardin CY, Hosari S. Optical coherence tomography angiography in neuronal diseases: preliminary findings. Ophthalmologe. 2019;116(8):714–21. https://doi.org/10.1007/s00347-019-0883-5.
Article
PubMed
Google Scholar
van de Kreeke JA, Nguyen HT, Konijnenberg E, et al. Optical coherence tomography angiography in preclinical Alzheimer’s disease. Br J Ophthalmol. 2020;104(2):157–61. https://doi.org/10.1136/bjophthalmol-2019-314127.
Article
PubMed
Google Scholar
Yoon SP, Grewal DS, Thompson AC, et al. Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants. Ophthalmol Retina. 2019;3(6):489–99. https://doi.org/10.1016/j.oret.2019.02.002.
Article
PubMed
PubMed Central
Google Scholar
Zabel P, Kaluzny JJ, Wilkosc-Debczynska M, et al. Comparison of retinal microvasculature in patients with Alzheimer’s disease and primary open-angle glaucoma by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2019;60(10):3447–55. https://doi.org/10.1167/iovs.19-27028.
Article
PubMed
Google Scholar
Grewal DS, Fine HF, Fekrat S. Is OCT angiography useful in neurodegenerative diseases? Ophthalmic Surg Lasers Imaging Retina. 2019;50(5):269–73. https://doi.org/10.3928/23258160-20190503-02.
Article
PubMed
Google Scholar
Grewal DS, Polascik BW, Hoffmeyer GC, Fekrat S. Assessment of differences in retinal microvasculature using OCT angiography in Alzheimer’s disease: a twin discordance report. Ophthalmic Surg Lasers Imaging Retina. 2018;49(6):440–4. https://doi.org/10.3928/23258160-20180601-09.
Article
PubMed
Google Scholar
Yoon SP, Thompson AC, Polascik BW, et al. Correlation of OCTA and volumetric MRI in mild cognitive impairment and Alzheimer’s disease. Ophthalmic Surg Lasers Imaging Retina. 2019;50(11):709–18. https://doi.org/10.3928/23258160-20191031-06.
Article
PubMed
Google Scholar
Lee CS, Apte RS. Retinal biomarkers of Alzheimer’s disease. Am J Ophthalmol. 2020 S0002-9394(20)30226-9. doi: https://doi.org/10.1016/j.ajo.2020.04.040.
Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, Knopman DS, Petersen RC, Scheltens P, Sperling RA, Dubois B. A/T/N: an unbiased descriptive classification scheme for Alzheimer’s disease biomarkers. Neurology. 2016;87:539–47.
Article
CAS
Google Scholar
Zetterberg H, Blennow K. From cerebrospinal fluid to blood: the third wave of fluid biomarkers for Alzheimer’s disease. J Alzheimers Dis. 2018;64(s1):S271–9. https://doi.org/10.3233/JAD-179926.
Article
PubMed
Google Scholar
Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma beta-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019;93:e1647–e59.
PubMed
CAS
Google Scholar
Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–33.
Article
CAS
Google Scholar
Abu-Rumeileh S, Capellari S, Stanzani-Maserati M, et al. The CSF neurofilament light signature in rapidly progressive neurodegenerative dementias. Alz Res Therapy. 2018;10:Article no. 3. https://doi.org/10.1186/s13195-017-0331-1.
Article
CAS
Google Scholar
Hu H, Chen KL, Ou YN, et al. Neurofilament light chain plasma concentration predicts neurodegeneration and clinical progression in nondemented elderly adults. Aging (Albany NY). 2019;11(17):6904–14. https://doi.org/10.18632/aging.102220.
Article
CAS
Google Scholar
Lewczuk P, Ermann N, Andreasson U, et al. Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):71. Published 2018 Jul 28. https://doi.org/10.1186/s13195-018-0404-9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jin M, Cao L, Dai YP. Role of neurofilament light chain as a potential biomarker for Alzheimer’s disease: a correlative meta-analysis. Front Aging Neurosci. 2019;11:254. Published 2019 Sep 13. https://doi.org/10.3389/fnagi.2019.00254.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hampel H, Toschi N, Baldacci F, Alzheimer Precision Medicine Initiative (APMI), et al. Alzheimer’s disease biomarker-guided diagnostic workflow using the added value of six combined cerebrospinal fluid candidates: Aβ1-42, total-tau, phosphorylated-tau, NFL, neurogranin, and YKL-40. Alzheimers Dement. 2018;14(4):492–501. https://doi.org/10.1016/j.jalz.2017.11.015.
Article
PubMed
Google Scholar
Mattsson N, Insel PS, Palmqvist S, et al. Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer’s disease. EMBO Mol Med. 2016;8(10):1184–96. Published 2016 Oct 4. https://doi.org/10.15252/emmm.201606540.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dhiman K, Blennow K, Zetterberg H, Martins RN, Gupta VB. Cerebrospinal fluid biomarkers for understanding multiple aspects of Alzheimer’s disease pathogenesis. Cell Mol Life Sci. 2019;76(10):1833–63. https://doi.org/10.1007/s00018-019-03040-5.
Article
PubMed
CAS
Google Scholar
Lista S, Toschi N, Baldacci F, et al. Diagnostic accuracy of SCF neurofilament light chain protein in the biomarker-guided classification system for Alzheimer’s disease. Neurochem Int. 2017;108:355–60. https://doi.org/10.1016/j.neuint.2017.05.010.
Article
PubMed
CAS
Google Scholar
Chidlow G, Osborne NN. Rat retinal ganglion cell loss caused by kainate, NMDA and ischemia correlates with a reduction in mRNA and protein of Thy-1 and neurofilament light. Brain Res. 2003;963(1–2):298–306. https://doi.org/10.1016/S0006-8993(02)04052-0.
Article
PubMed
CAS
Google Scholar
Taniguchi T, Shimazawa M, Hara H. Alterations in neurofilament light in optic nerve in rat kainate and monkey ocular hypertension models. Brain Res. 2004;(2):1013, 241–8. https://doi.org/10.1016/S0006-8993(02)04052-0.
Sasaoka M, Taniguchi T, Shimazawa M, Ishida N, Shimazaki A, Hara H. Intravitreal injection of endothelin-1 caused optic nerve damage following to ocular hypoperfusion in rabbits. Exp Eye Res. 2006;83(3):629–37. https://doi.org/10.1016/j.exer.2006.03.007.
Article
PubMed
CAS
Google Scholar
Balaratnasingam C, Morgan WH, Bass L, Kang M, Cringle SJ, Yu DY. Time-dependent effects of focal retinal ischemia on axonal cytoskeleton proteins. Invest Ophthalmol Vis Sci. 2010;51(6):3019–28. https://doi.org/10.1167/iovs.09-4692.
Article
PubMed
Google Scholar
Kamalden TA, Ji D, Fawcett RJ, Osborne NN. Genistein blunts the negative effect of ischaemia to the retina caused by an elevation of intraocular pressure. Ophthalmic Res. 2011;45(2):65–72. https://doi.org/10.1159/000313985.
Article
PubMed
CAS
Google Scholar
Modvig S, Degn M, Sander B, et al. Cerebrospinal fluid neurofilament light chain levels predict visual outcomes after optic neuritis. Mult Scler. 2016 Apr;22(5):590–8. https://doi.org/10.1177/1352458515599074.
Article
PubMed
CAS
Google Scholar
Schmidt KG, Bergert H, Funk RH. Neurodegenerative diseases of the retina and potential for protection and recovery. Curr Neuropharmacol. 2008;6(2):164–78. https://doi.org/10.2174/157015908784533851.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prakasam A, Muthuswamy A, Ablonczy Z, et al. Differential accumulation of secreted AβPP metabolites in ocular fluids. J Alzheimers Dis. 2010;20(4):1243–53. https://doi.org/10.3233/JAD-2010-100210.
Article
PubMed
PubMed Central
CAS
Google Scholar
More Swati S, Robert V. Hyperspectral imaging signatures detect amyloidopathy in Alzheimer’s mouse retina well before onset of cognitive decline. ACS Chem Neurosci. 2015;6(2):306–15. https://doi.org/10.1021/cn500242z.
Article
PubMed
CAS
Google Scholar
Zheng C, Zhou XW, Wang JZ. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Transl Neurodegener. 2016;5:7. https://doi.org/10.1186/s40035-016-0054-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen X, Hu Y, Cao Z, Liu Q, Cheng Y. Cerebrospinal fluid inflammatory cytokine aberrations in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Front Immunol. 2018;9:2122. https://doi.org/10.3389/fimmu.2018.02122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li DW, Ren H, Jeromin A, et al. Diagnostic performance of neurofilaments in Chinese patients with amyotrophic lateral sclerosis: a prospective study. Front Neurol. 2018;9:726. https://doi.org/10.3389/fneur.2018.00726.
Article
PubMed
PubMed Central
Google Scholar
Westin K, Buchhave P, Nielsen H, Minthon L, Janciauskiene S, Hansson O. CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS One. 2012;7(1):e30525. https://doi.org/10.1371/journal.pone.0030525.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tripathy D, Thirumangalakudi L, Grammas P. Expression of macrophage inflammatory protein 1-α is elevated in Alzheimer’s vessels and regulated by oxidative stress. J Alzheimer’s Dis. 2007;11(4):447–55. https://doi.org/10.3233/JAD-2007-11405.
Article
CAS
Google Scholar
Kim H, Shin A, Lee KJ. Differences in C-reactive protein level in patients with Alzheimer’s disease and mild cognitive impairment. J Psychiatry. 2015;18(1):Psychiatry-14-Psychiatry155. doi: 18:1.https://doi.org/10.4172/1994-8220.1000194.
Cipollini V, Troili F, Giubilei F. Emerging biomarkers in vascular cognitive impairment and dementia: from pathophysiological pathways to clinical application. Int J Mol Sci. 2019;20(11):2812. https://doi.org/10.3390/ijms20112812.
Article
PubMed Central
CAS
Google Scholar
Sabe L, Jason L, Juejati M, Leiguarda R, Starkstein S. Sensitivity and specificity of the Mini-Mental State Exam in the diagnosis of dementia. Behav Neurol. 1993;6(4):207–10. https://doi.org/10.3233/BEN-1993-6405.
Article
PubMed
CAS
Google Scholar