Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.
Article
CAS
PubMed
Google Scholar
Mahley RW, Huang Y, Rall SC Jr. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J Lipid Res. 1999;40(11):1933–49.
CAS
PubMed
Google Scholar
Vitali C, Wellington CL, Calabresi L. HDL and cholesterol handling in the brain. Cardiovasc Res. 2014;103(3):405–13. https://doi.org/10.1093/cvr/cvu148.
Article
CAS
PubMed
Google Scholar
Koldamova R, Fitz NF, Lefterov I. ATP-binding cassette transporter A1: from metabolism to neurodegeneration. Neurobiol Dis. 2014;72(Pt A):13–21. https://doi.org/10.1016/j.nbd.2014.05.007.
Article
CAS
PubMed
Google Scholar
Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63(3):287–303. https://doi.org/10.1016/j.neuron.2009.06.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juva K, Verkkoniemi A, Viramo P, Polvikoski T, Kainulainen K, Kontula K, et al. Apolipoprotein E, cognitive function, and dementia in a general population aged 85 years and over. Int Psychogeriatr. 2000;12(3):379–87.
Article
CAS
PubMed
Google Scholar
O’Donoghue MC, Murphy SE, Zamboni G, Nobre AC, Mackay CE. APOE genotype and cognition in healthy individuals at risk of Alzheimer’s disease: a review. Cortex. 2018;104:103–23. https://doi.org/10.1016/j.cortex.2018.03.025.
Article
PubMed
Google Scholar
Trachtenberg AJ, Filippini N, Cheeseman J, Duff EP, Neville MJ, Ebmeier KP, et al. The effects of APOE on brain activity do not simply reflect the risk of Alzheimer’s disease. Neurobiol Aging. 2012;33(3):618 e1- e13. https://doi.org/10.1016/j.neurobiolaging.2010.11.011.
Article
CAS
PubMed
Google Scholar
Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011;10(3):241–52. https://doi.org/10.1016/S1474-4422(10)70325-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berlau DJ, Corrada MM, Head E, Kawas CH. APOE epsilon2 is associated with intact cognition but increased Alzheimer pathology in the oldest old. Neurology. 2009;72(9):829–34. https://doi.org/10.1212/01.wnl.0000343853.00346.a4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349–56.
Article
CAS
PubMed
Google Scholar
Qiu C, Kivipelto M, Aguero-Torres H, Winblad B, Fratiglioni L. Risk and protective effects of the APOE gene towards Alzheimer’s disease in the Kungsholmen project: variation by age and sex. J Neurol Neurosurg Psychiatry. 2004;75(6):828–33. https://doi.org/10.1136/jnnp.2003.021493.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serrano-Pozo A, Qian J, Monsell SE, Betensky RA, Hyman BT. APOEepsilon2 is associated with milder clinical and pathological Alzheimer disease. Ann Neurol. 2015;77(6):917–29. https://doi.org/10.1002/ana.24369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allan CM, Taylor S, Taylor JM. Two hepatic enhancers, HCR.1 and HCR.2, coordinate the liver expression of the entire human apolipoprotein E/C-I/C-IV/C-II gene cluster. J Biol Chem. 1997;272(46):29113–9.
Article
CAS
PubMed
Google Scholar
Glass CK. Genetic and genomic approaches to understanding macrophage identity and function. Arterioscler Thromb Vasc Biol. 2015;35(4):755–62. https://doi.org/10.1161/ATVBAHA.114.304051.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin S, Lin Y, Nery JR, Urich MA, Breschi A, Davis CA, et al. Comparison of the transcriptional landscapes between human and mouse tissues. Proc Natl Acad Sci U S A. 2014;111(48):17224–9. https://doi.org/10.1073/pnas.1413624111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30. https://doi.org/10.1038/nature14248.
Article
CAS
Google Scholar
Aviram R, Manella G, Kopelman N, Neufeld-Cohen A, Zwighaft Z, Elimelech M, et al. Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Mol Cell. 2016;62(4):636–48. https://doi.org/10.1016/j.molcel.2016.04.002.
Article
CAS
PubMed
Google Scholar
Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016;41(11):954–69. https://doi.org/10.1016/j.tibs.2016.08.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sparvero LJ, Amoscato AA, Kochanek PM, Pitt BR, Kagan VE, Bayir H. Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in traumatic brain injury. J Neurochem. 2010;115(6):1322–36. https://doi.org/10.1111/j.1471-4159.2010.07055.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grimm MO, Mett J, Grimm HS, Hartmann T. APP function and lipids: a bidirectional link. Front Mol Neurosci. 2017;10:63. https://doi.org/10.3389/fnmol.2017.00063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monteiro-Cardoso VF, Oliveira MM, Melo T, Domingues MR, Moreira PI, Ferreiro E, et al. Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer’s disease. J Alzheimers Dis. 2015;43(4):1375–92. https://doi.org/10.3233/JAD-141002.
Article
CAS
PubMed
Google Scholar
Ball W, Neff JK, Gohil VM. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett. 2017. https://doi.org/10.1002/1873-3468.12887.
Article
PubMed
Google Scholar
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine metabolism in health and disease. Int Rev Cell Mol Biol. 2016;321:29–88. https://doi.org/10.1016/bs.ircmb.2015.10.001.
Article
CAS
PubMed
Google Scholar
Humphries C, Kohli MA. Rare variants and transcriptomics in Alzheimer disease. Curr Genet Med Rep. 2014;2(2):75–84. https://doi.org/10.1007/s40142-014-0035-9.
Article
PubMed
PubMed Central
Google Scholar
Humphries CE, Kohli MA, Nathanson L, Whitehead P, Beecham G, Martin E, et al. Integrated whole transcriptome and DNA methylation analysis identifies gene networks specific to late-onset Alzheimer’s disease. J Alzheimers Dis. 2015;44(3):977–87. https://doi.org/10.3233/JAD-141989.
Article
CAS
PubMed
Google Scholar
Xu PT, Li YJ, Qin XJ, Kroner C, Green-Odlum A, Xu H, et al. A SAGE study of apolipoprotein E3/3, E3/4 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Mol Cell Neurosci. 2007;36(3):313–31. https://doi.org/10.1016/j.mcn.2007.06.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braak H, Braak E. Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol. 1996;92(2):197–201.
Article
CAS
PubMed
Google Scholar
Jacobs HI, Van Boxtel MP, Jolles J, Verhey FR, Uylings HB. Parietal cortex matters in Alzheimer’s disease: an overview of structural, functional and metabolic findings. Neurosci Biobehav Rev. 2012;36(1):297–309. https://doi.org/10.1016/j.neubiorev.2011.06.009.
Article
PubMed
Google Scholar
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.
Article
CAS
PubMed
Google Scholar
Thal DR, Ghebremedhin E, Rub U, Yamaguchi H, Del Tredici K, Braak H. Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol. 2002;61(3):282–93. https://doi.org/10.1093/jnen/61.3.282.
Article
PubMed
Google Scholar
Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J. Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry. 2001;58(5):461–5.
Article
CAS
PubMed
Google Scholar
Bartzokis G, Lu PH, Geschwind DH, Edwards N, Mintz J, Cummings JL. Apolipoprotein E genotype and age-related myelin breakdown in healthy individuals: implications for cognitive decline and dementia. Arch Gen Psychiatry. 2006;63(1):63–72. https://doi.org/10.1001/archpsyc.63.1.63.
Article
CAS
PubMed
Google Scholar
Bartzokis G, Lu PH, Geschwind DH, Tingus K, Huang D, Mendez MF, et al. Apolipoprotein E affects both myelin breakdown and cognition: implications for age-related trajectories of decline into dementia. Biol Psychiatry. 2007;62(12):1380–7. https://doi.org/10.1016/j.biopsych.2007.03.024.
Article
CAS
PubMed
Google Scholar
Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging. 2004;25(1):5–18 author reply 49-62.
Article
CAS
PubMed
Google Scholar
McDonald CR, McEvoy LK, Gharapetian L, Fennema-Notestine C, Hagler DJ, Holland D, et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology. 2009;73(6):457–65. https://doi.org/10.1212/WNL.0b013e3181b16431.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bakkour A, Morris JC, Dickerson BC. The cortical signature of prodromal AD: regional thinning predicts mild AD dementia. Neurology. 2008;72(12):1048–55. https://doi.org/10.1212/01.wnl.0000340981.97664.2f.
Article
PubMed
Google Scholar
Saykin AJ, Wishart HA, Rabin LA, Santulli RB, Flashman LA, West JD, et al. Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology. 2006;67(5):834–42. https://doi.org/10.1212/01.wnl.0000234032.77541.a2.
Article
CAS
PubMed
Google Scholar
Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Jicha GA, Cooper G, et al. Brain structural alterations before mild cognitive impairment. Neurology. 2007;68(16):1268–73. https://doi.org/10.1212/01.wnl.0000259542.54830.34.
Article
CAS
PubMed
Google Scholar
Schultz SA, Gordon BA, Mishra S, Su Y, Perrin RJ, Cairns NJ, et al. Widespread distribution of tauopathy in preclinical Alzheimer’s disease. Neurobiol Aging. 2018;72:177–85. https://doi.org/10.1016/j.neurobiolaging.2018.08.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamboh MI. Apolipoprotein E polymorphism and susceptibility to Alzheimer’s disease. Hum Biol. 1995;67(2):195–215.
CAS
PubMed
Google Scholar
Castranio EL, Mounier A, Wolfe CM, Nam KN, Fitz NF, Letronne F, et al. Gene co-expression networks identify Trem2 and Tyrobp as major hubs in human APOE expressing mice following traumatic brain injury. Neurobiol Dis. 2017;105:1–14. https://doi.org/10.1016/j.nbd.2017.05.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharm Stat. 2010;20(2):281–300. https://doi.org/10.1080/10543400903572753.
Article
PubMed
Google Scholar
Lun AT, Chen Y, Smyth GK. It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods Mol Biol. 2016;1418:391–416. https://doi.org/10.1007/978-1-4939-3578-9_19.
Article
PubMed
Google Scholar
Lund SP, Nettleton D, McCarthy DJ, Smyth GK. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat Appl Genet Mol Biol. 2012;11:5. https://doi.org/10.1515/1544-6115.1826.
Article
CAS
Google Scholar
Han X, Yang K, Gross RW. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev. 2012;31(1):134–78. https://doi.org/10.1002/mas.20342.
Article
CAS
PubMed
Google Scholar
Nam KN, Mounier A, Wolfe CM, Fitz NF, Carter AY, Castranio EL, et al. Effect of high fat diet on phenotype, brain transcriptome and lipidome in Alzheimer’s model mice. Sci Rep. 2017;7(1):4307. https://doi.org/10.1038/s41598-017-04412-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci U S A. 2010;107(28):12698–703. https://doi.org/10.1073/pnas.0914257107.
Article
PubMed
PubMed Central
Google Scholar
Miller JA, Woltjer RL, Goodenbour JM, Horvath S, Geschwind DH. Genes and pathways underlying regional and cell type changes in Alzheimer’s disease. Genome Med. 2013;5(5):48. https://doi.org/10.1186/gm452.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol. 2007;1:54. https://doi.org/10.1186/1752-0509-1-54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine AJ, Miller JA, Shapshak P, Gelman B, Singer EJ, Hinkin CH, et al. Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer’s disease. BMC Med Genet. 2013;6:4. https://doi.org/10.1186/1755-8794-6-4.
Article
CAS
Google Scholar
Deogharia M, Majumder M. Guide snoRNAs: drivers or passengers in human disease? Biology. 2018;8(1):1. https://doi.org/10.3390/biology8010001.
Article
CAS
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15 12:550; doi: https://doi.org/10.1186/s13059-014-0550-8.
Nixon RA. Amyloid precursor protein and endosomal–lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease. FASEB J. 2017;31(7):2729–43. https://doi.org/10.1096/fj.201700359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubinsztein DC, DiFiglia M, Heintz N, Nixon RA, Qin ZH, Ravikumar B, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005;1(1):11–22. https://doi.org/10.4161/auto.1.1.1513.
Article
CAS
PubMed
Google Scholar
Bustamante HA, Gonzalez AE, Cerda-Troncoso C, Shaughnessy R, Otth C, Soza A, et al. Interplay between the autophagy-lysosomal pathway and the ubiquitin-proteasome system: a target for therapeutic development in Alzheimer’s disease. Front Cell Neurosci. 2018;12:126. https://doi.org/10.3389/fncel.2018.00126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cavaillé J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. Wiley Interdisciplinary Reviews: RNA. 2017;8:4. https://doi.org/10.1002/wrna.1417.
Article
CAS
Google Scholar
Wu J, Wang X, Beveridge NJ, Tooney PA, Scott RJ, Carr VJ, et al. Transcriptome sequencing revealed significant alteration of cortical promoter usage and splicing in schizophrenia. PLoS One. 2012;7:4. https://doi.org/10.1371/journal.pone.0036351.
Article
CAS
Google Scholar
Cohen OS, McCoy SY, Middleton FA, Bialosuknia S, Zhang-James Y, Liu L, et al. Transcriptomic analysis of postmortem brain identifies dysregulated splicing events in novel candidate genes for schizophrenia. Schizophr Res. 2012;142(1–3):188–99. https://doi.org/10.1016/j.schres.2012.09.015.
Article
PubMed
PubMed Central
Google Scholar
Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS ONE. 2014;9:1. https://doi.org/10.1371/journal.pone.0086469.
Article
CAS
Google Scholar
Ragan C, Patel K, Edson J, Zhang Z-H, Gratten J, Mowry B. Small non-coding RNA expression from anterior cingulate cortex in schizophrenia shows sex specific regulation. Schizophrenia Research. 2017;183 Int. Rev. Psychiatry 22 5 2010:82-7; doi: https://doi.org/10.1016/j.schres.2016.11.024.
Article
PubMed
Google Scholar
Gibbons A, Udawela M, Dean B. Non-coding RNA as novel players in the pathophysiology of schizophrenia. Non-Coding RNA. 2018;4(2):11. https://doi.org/10.3390/ncrna4020011.
Article
CAS
PubMed Central
Google Scholar
Yu Y-T, Meier TU. RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol. 2014;11(12):1483–94. https://doi.org/10.4161/15476286.2014.972855.
Article
PubMed
Google Scholar
Pardini B, Sabo A, Birolo G, Calin G. Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancers. 2019;11(8):1170. https://doi.org/10.3390/cancers11081170.
Article
PubMed Central
Google Scholar
Kosicek M, Hecimovic S. Phospholipids and Alzheimer’s disease: alterations, mechanisms and potential biomarkers. Int J Mol Sci. 2013;14(1):1310–22. https://doi.org/10.3390/ijms14011310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fumagalli F, Noack J, Bergmann TJ, Cebollero E, Pisoni GB, Fasana E, et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol. 2016;18(11):1173–84. https://doi.org/10.1038/ncb3423.
Article
CAS
PubMed
Google Scholar
Hirao K, Natsuka Y, Tamura T, Wada I, Morito D, Natsuka S, et al. EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J Biol Chem. 2006;281(14):9650–8. https://doi.org/10.1074/jbc.M512191200.
Article
CAS
PubMed
Google Scholar
Hosokawa N, Kamiya Y, Kamiya D, Kato K, Nagata K. Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J Biol Chem. 2009;284(25):17061–8. https://doi.org/10.1074/jbc.M809725200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scrivo A, Bourdenx M, Pampliega O, Cuervo AM. Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 2018;17(9):802–15. https://doi.org/10.1016/S1474-4422(18)30238-2.
Article
PubMed
PubMed Central
Google Scholar
Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008;118(6):2190–9. https://doi.org/10.1172/JCI33585.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2018;17(9):660–88. https://doi.org/10.1038/nrd.2018.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kragh CL, Ubhi K, Wyss-Coray T, Masliah E. Autophagy in dementias. Brain Pathol. 2012;22(1):99–109. https://doi.org/10.1111/j.1750-3639.2011.00545.x.
Article
CAS
PubMed
Google Scholar
Loeffler DA. Influence of normal aging on brain autophagy: a complex scenario. Front Aging Neurosci. 2019;11:49. https://doi.org/10.3389/fnagi.2019.00049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wild P, McEwan DG, Dikic I. The LC3 interactome at a glance. J Cell Sci. 2014;127(Pt 1):3–9. https://doi.org/10.1242/jcs.140426.
Article
CAS
PubMed
Google Scholar
Zhang M, Wang Y, Ge L. Endomembrane remodeling in autophagic membrane formation. Autophagy. 2018;14(5):918–20. https://doi.org/10.1080/15548627.2018.1425053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khaminets A, Behl C, Dikic I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 2016;26(1):6–16. https://doi.org/10.1016/j.tcb.2015.08.010.
Article
CAS
PubMed
Google Scholar
Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ, Che S, et al. Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy. 2016;12(12):2467–83. https://doi.org/10.1080/15548627.2016.1239003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frake RA, Ricketts T, Menzies FM, Rubinsztein DC. Autophagy and neurodegeneration. J Clin Invest. 2015;125(1):65–74. https://doi.org/10.1172/JCI73944.
Article
PubMed
PubMed Central
Google Scholar
Hsu M, Dedhia M, Crusio WE, Delprato A. Sex differences in gene expression patterns associated with the APOE4 allele. F1000Res. 2019;8:387. https://doi.org/10.12688/f1000research.18671.2.
Article
PubMed
PubMed Central
Google Scholar
Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13:5. https://doi.org/10.1371/journal.pcbi.1005457.
Article
CAS
Google Scholar
Trachtenberg AJ, Filippini N, Mackay CE. The effects of APOE-epsilon4 on the BOLD response. Neurobiol Aging. 2012;33(2):323–34. https://doi.org/10.1016/j.neurobiolaging.2010.03.009.
Article
CAS
PubMed
Google Scholar
Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron. 2014;84(3):608–22. https://doi.org/10.1016/j.neuron.2014.10.038.
Article
CAS
PubMed
PubMed Central
Google Scholar