Scheltens P, Blennow K, Breteler MMB, de Strooper B, Frisoni GB, Salloway S, et al. Alzheimer’s disease. Lancet. 2016;388(10043):505–17.
Article
CAS
PubMed
Google Scholar
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362(4):329–44.
Article
CAS
PubMed
Google Scholar
Serrano-Pozo A, Muzikansky A, Gómez-Isla T, Growdon JH, Betensky RA, Frosch MP, et al. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol. 2013;72(6):462–71.
Article
CAS
PubMed
Google Scholar
Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30(4):572–80.
Article
CAS
PubMed
Google Scholar
Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2006;27(10):1372–84.
Article
CAS
PubMed
Google Scholar
Masliah E, Mallory M, Alford M. Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology. 2011;56:127–9.
Article
Google Scholar
Scheff SW, Price DA, Schmitt FA, Dekosky ST, Mufson EJ. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology. 2007;68(18):1501–8.
Article
CAS
PubMed
Google Scholar
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 1990;27(5):457–64.
Article
CAS
PubMed
Google Scholar
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer’s Dement. 2013;9:63–75.e2.
Article
Google Scholar
Voytyuk I, De Strooper B, Chávez-Gutiérrez L. Modulation of γ- and β-secretases as early prevention against Alzheimer’s disease. Biol Psychiatry. 2018;83(4):320–7.
Article
CAS
PubMed
Google Scholar
Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI. Tau as a therapeutic target in neurodegenerative disease. Pharmacol Ther. 2012;136(1):8–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Yang B, Ke J, Li W, Suen WC. Antibody-based drugs and approaches against amyloid-β species for Alzheimer’s disease immunotherapy. Drugs Aging. 2016;33(10):685–97.
Article
CAS
PubMed
Google Scholar
De Strooper B, Karran E. The cellular phase of Alzheimer’s disease. Cell. 2016;164(4):603–15.
Article
PubMed
CAS
Google Scholar
Murai KK, Nguyen LN, Koolpe M, McLennan R, Krull CE, Pasquale EB. Targeting the EphA4 receptor in the nervous system with biologically active peptides. Mol Cell Neurosci. 2003;24(4):1000–11.
Article
CAS
PubMed
Google Scholar
Shi L, Fu W-Y, Hung K-W, Porchetta C, Hall C, Fu AKY, et al. α-Chimaerin interacts with EphA4 and regulates EphA4-dependent growth cone collapse. Proc Natl Acad Sci. 2007;104(41):16347–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murai KK, Nguyen LN, Irie F, Yu Y, Pasquale EB. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci. 2003;6(2):153–60.
Article
CAS
PubMed
Google Scholar
Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, et al. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci. 2007;10(1):67–76.
Article
CAS
PubMed
Google Scholar
Fu AKY, Hung KW, Fu WY, Shen C, Chen Y, Xia J, et al. APCCdh1 mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat Neurosci. 2011;14(2):181–91.
Article
CAS
PubMed
Google Scholar
Filosa A, Paixo S, Honsek SD, Carmona MA, Becker L, Feddersen B, et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci. 2009;12(10):1285–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang JC, Yao W, Qu Y, Nakamura M, Dong C, Yang C, et al. Increased EphA4-ephexin1 signaling in the medial prefrontal cortex plays a role in depression-like phenotype. Sci Rep. 2017;7(1):7133.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vargas LM, Leal N, Estrada LD, González A, Serrano F, Araya K, et al. EphA4 activation of c-Abl mediates synaptic loss and LTP blockade caused by amyloid-β oligomers. PLoS One. 2014;9(3):e92309.
Article
PubMed
CAS
Google Scholar
Fu AKY, Hung K-W, Huang H, Gu S, Shen Y, Cheng EYL, et al. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease. Proc Natl Acad Sci. 2014;111(27):9959–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang TY, Zhao Y, Jiang L, Li X, Liu Y, Sun Y, et al. SORLA attenuates EphA4 signaling and amyloid β–induced neurodegeneration. J Exp Med. 2017;214(12):3669–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, et al. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006;7(9):940–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herrmann JE, Pence MA, Shapera EA, Shah RR, Geoffroy CG, Zheng B. Generation of an EphA4 conditional allele in mice. Genesis. 2010;48(2):101–5.
CAS
PubMed
PubMed Central
Google Scholar
Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell. 1996;87(7):1317–26.
Article
CAS
PubMed
Google Scholar
Goddyn H, Leo S, Meert T, D ‘hooge R. Differences in behavioural test battery performance between mice with hippocampal and cerebellar lesions. Behav Brain Res 2006;173:138–147.
Article
PubMed
Google Scholar
Lo AC, Callaerts-Vegh Z, Nunes AF, Rodrigues CMP, D’hooge R. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol Dis. 2013;50:21–9.
Article
CAS
PubMed
Google Scholar
Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav. 2004;3(5):303–14.
Article
CAS
PubMed
Google Scholar
Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S. Ventral CA1 neurons store social memory. Science. 2016;353(6307):1536–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borrie SC. Loss of Nogo receptor homolog NgR2 alters spine morphology of CA1 neurons and emotionality in adult mice. Front Behav Neurosci. 2014;8:175.
Article
PubMed
PubMed Central
CAS
Google Scholar
Perez-Cruz C, Nolte MW, van Gaalen MM, Rustay NR, Termont A, Tanghe A, et al. Reduced spine density in specific regions of CA1 pyramidal neurons in two transgenic mouse models of Alzheimer’s disease. J Neurosci. 2011;31(10):3926–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pillai AG, de Jong D, Kanatsou S, Krugers H, Knapman A, Heinzmann JM, et al. Dendritic morphology of hippocampal and amygdalar neurons in adolescent mice is resilient to genetic differences in stress reactivity. PLoS One. 2012;7(6):e38971.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris’ KM, Stevens JK. Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 1989;9(8):2982–2997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuzaki M, Ellis-Davies GCR, Nemoto T, Miyashita Y, Iino M, Kasai H. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci. 2001;4(11):1086–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willi R, Winter C, Wieske F, Kempf A, Yee BK, Schwab ME, et al. Loss of EphA4 impairs short-term spatial recognition memory performance and locomotor habituation. Genes, Brain Behav. 2012;11(8):1020–31.
CAS
Google Scholar
Restrepo D, Arellano J, Oliva AM, Schaefer ML, Lin W. Emerging views on the distinct but related roles of the main and accessory olfactory systems in responsiveness to chemosensory signals in mice. Horm Behav. 2004;46(3):247–56.
Article
CAS
PubMed
Google Scholar
Prusky GT, Douglas RM. Characterization of mouse cortical spatial vision. Vis Res. 2004;44(28):3411–8.
Article
CAS
PubMed
Google Scholar
Hitti FL, Siegelbaum SA. The hippocampal CA2 region is essential for social memory. Nature. 2014;508(1):88–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stackman RW, Cohen SJ, Lora JC, Rios LM. Temporary inactivation reveals that the CA1 region of the mouse dorsal hippocampus plays an equivalent role in the retrieval of long-term object memory and spatial memory. Neurobiol Learn Mem. 2016;133:118–28.
Article
PubMed
PubMed Central
Google Scholar
Moser E, Moser M, Andersen P. Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J Neurosci. 1993;13(9):3916–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Florian C, Roullet P. Hippocampal CA3-region is crucial for acquisition and memory consolidation in Morris water maze task in mice. Behav Brain Res. 2004;154(2):365–74.
Article
PubMed
Google Scholar
Wang Y, Zhao S, Liu X, Fu Q. Effects of the medial or basolateral amygdala upon social anxiety and social recognition in mice. Turkish J Med Sci. 2014;44(3):353–9.
Article
Google Scholar
Vincent MY, Hussain RJ, Zampi ME, Sheeran K, Solomon MB, Herman JP, et al. Sensitivity of depression-like behavior to glucocorticoids and antidepressants is independent of forebrain glucocorticoid receptors. Brain Res. 2013;1525:1–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bittner T, Burgold S, Dorostkar MM, Fuhrmann M, Wegenast-Braun BM, Schmidt B, et al. Amyloid plaque formation precedes dendritic spine loss. Acta Neuropathol. 2012;124(6):797–807.
Article
PubMed
PubMed Central
Google Scholar
Liebscher S, Page RM, Käfer K, Winkler E, Quinn K, Goldbach E, et al. Chronic γ-secretase inhibition reduces amyloid plaque-associated instability of pre- and postsynaptic structures. Mol Psychiatry. 2014;19(8):937–46.
Article
CAS
PubMed
Google Scholar
Spires-Jones TL, Meyer-Luehmann M, Osetek JD, Jones PB, Stern EA, Bacskai BJ, et al. Impaired spine stability underlies plaque-related spine loss in an Alzheimer’s disease mouse model. Am J Pathol. 2007;171(4):1304–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spires TL, Meyer-Luehmann M, Stern EA, Mclean PJ, Skoch J, Nguyen PT, et al. Dendritic spine abnormalities in APP transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci. 2005;25(31):7278–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grutzendler J, Helmin K, Tsai J, Gan WB. Various dendritic abnormalities are associated with fibrillar amyloid deposits in Alzheimer’s disease. In: Ann NY Acad Sci. 2007;1097:30–9.
Google Scholar
Tsai J, Grutzendler J, Duff K, Gan WB. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci. 2004;7(11):1181–3.
Article
CAS
PubMed
Google Scholar
Liu J, Supnet C, Sun S, Zhang H, Good L, Popugaeva E, et al. The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease. Channels. 2014;8(3):230–42.
Article
PubMed
PubMed Central
Google Scholar
Boros BD, Greathouse KM, Gentry EG, Curtis KA, Birchall EL, Gearing M, et al. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol. 2017;82(4):602–14.
Article
PubMed
PubMed Central
Google Scholar
Zhou L, Martinez SJ, Haber M, Jones EV, Bouvier D, Doucet G, et al. EphA4 signaling regulates phospholipase C 1 activation, cofilin membrane association, and dendritic spine morphology. J Neurosci. 2007;27(19):5127–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourne JN, Harris KM. Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci. 2008;31:47–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai W. Bin, Wang BJ, Hu MK, Hsu WM, Her GM, Liao YF. Ligand-dependent activation of EphA4 signaling regulates the proteolysis of amyloid precursor protein through a Lyn-mediated pathway. Mol Neurobiol. 2014;49(2):1055–68.
Article
CAS
PubMed
Google Scholar
Vints K, Vandael D, Baatsen P, Pavie B, Vernaillen F, Corthout N, et al. Modernization of Golgi staining techniques for high-resolution, 3-dimensional imaging of individual neurons. Sci Rep. 2019;9(1):130.
Article
PubMed
PubMed Central
CAS
Google Scholar