Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement. 2013;9:208–45.
Article
Google Scholar
Mullane K, Williams M. Alzheimer’s therapeutics: continued clinical failures question the validity of the amyloid hypothesis—but what lies beyond? Biochem Pharm. 2013;85:289–305.
Article
PubMed
CAS
Google Scholar
Pérez-Palma E, Bustos BI, Villamán CF, Alarcón MA, Avila ME, Ugarte GD, et al., Alzheimer’s Disease Neuroimaging Initiative; NIA- LOAD/NCRAD Family Study Group. Collaborators (448), Overrepresentation of glutamate signaling in Alzheimer’s disease: network-based pathway enrichment using meta-analysis of genome-wide association studies. PLoS One. 2014;9:e95413. doi:10.1371/journal.pone.0095413. eCollection 2014.
Kelleher RJ, Soiza RL. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: is Alzheimer’s a vascular disorder? Am J Cardiovasc Dis. 2013;3:197–226.
PubMed
PubMed Central
Google Scholar
Rincon F, Wright CB. Current pathophysiological concepts in cerebral small vessel disease. Front Aging Neurosci. 2014;6:24.
Article
PubMed
PubMed Central
Google Scholar
Takeda S, Sato N, Morishita R. Systemic inflammation, blood–brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front Aging Neurosci. 2014;6:171.
PubMed
PubMed Central
Google Scholar
Latta CH, Brothers HM, Wilcock DM. Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy. Neuroscience 2014 (14)00820-3. doi:10.1016/j.neuroscience.2014.09.061.
Esposito Z, Belli L, Toniolo S, Sancesario G, Bianconi C, Martorana A. Amyloid β, glutamate, excitotoxicity in Alzheimer’s disease: are we on the right track? CNS Neurosci Ther. 2013;19:549–55.
Article
PubMed
CAS
Google Scholar
Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A. 2013;110:E2518–27.
Article
PubMed
CAS
PubMed Central
Google Scholar
Danysz W, Parsons CG. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine—searching for the connections. Br J Pharmacol. 2012;167:324–52.
Article
PubMed
CAS
PubMed Central
Google Scholar
Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262:689–95.
Article
PubMed
CAS
Google Scholar
Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460:525–42.
Article
PubMed
CAS
Google Scholar
Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993;45:205–51.
PubMed
CAS
Google Scholar
Saavedra JM. Brain and pituitary angiotensin. Endocr Rev. 1992;13:329–80.
Article
PubMed
CAS
Google Scholar
Chrysant SG, Chrysant GS, Chrysant C, Shiraz M. The treatment of cardiovascular disease continuum: focus on prevention and RAS blockade. Curr Clin Pharmacol. 2010;5:89–95.
Article
PubMed
CAS
Google Scholar
Konstam MA, Neaton JD, Dickstein K, Drexler H, Komajda M, Martinez FA, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomized, double-blind trial. Lancet. 2009;374:1840–8.
Article
PubMed
CAS
Google Scholar
Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci. 2007;112:375–84.
Article
PubMed
CAS
Google Scholar
Michel MC, Foster C, Brunner HR, Liu L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev. 2013;65:809–48.
Article
PubMed
CAS
Google Scholar
Fleegal-DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29:640–7.
Article
PubMed
CAS
Google Scholar
Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke. 2000;31:2478–86.
Article
PubMed
CAS
Google Scholar
Phillips MI, de Oliveira EM. Brain renin angiotensin in disease. J Mol Med. 2008;86:715–22.
Article
PubMed
CAS
Google Scholar
Saavedra JM, Angiotensin II. AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond). 2012;123:567–90.
Article
CAS
Google Scholar
Saavedra JM, Sánchez-Lemus E, Benicky J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications. Psychoneuroendocrinology. 2011;36:1–18.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F, et al. Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-gamma activation. Hypertension. 2009;54:782–7.
Article
PubMed
CAS
Google Scholar
Wang J, Pang T, Hafko R, Benicky J, Sanchez-Lemus E, Saavedra JM. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPARγ activation. Neuropharmacology. 2014;79:249–61.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhu D, Shi J, Zhang Y, Wang B, Liu W, Chen Z, et al. Central angiotensin II stimulation promotes β amyloid production in Sprague Dawley rats. PLoS One. 2011;6:e16037. doi:10.1371/journal.pone.0016037.
Article
PubMed
CAS
PubMed Central
Google Scholar
Benicky J, Sánchez-Lemus E, Honda M, Pang T, Orecna M, Wang J, et al. Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology. 2011;36:857–70.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pang T, Benicky J, Wang J, Orecna M, Sanchez-Lemus E, Saavedra JM. Telmisartan ameliorates lipopolysaccharide-induced innate immune response through peroxisome proliferator-activated receptor-γ activation in human monocytes. J Hypertens. 2012;30:87–96.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pang T, Wang J, Benicky J, Sánchez-Lemus E, Saavedra JM. Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways. J Neuroinflammation. 2012;9:102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ando H, Zhou J, Macova M, Imboden H, Saavedra JM. Angiotensin II AT1 receptor blockade reverses pathological remodeling and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke. 2004;35:1726–31.
Article
PubMed
CAS
Google Scholar
Danielyan L, Klein R, Hanson L, Buadze M, Schwab M, Gleiter CH, et al. Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res. 2010;13:195–201.
Article
PubMed
CAS
Google Scholar
Ito T, Yamakawa H, Bregonzio C, Terrón JA, Falcón-Neri A, Saavedra JM. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke. 2002;33:2297–303.
Article
PubMed
CAS
Google Scholar
Villapol S, Yaszemski AK, Logan TT, Sánchez-Lemus E, Saavedra JM, Symes AJ. Candesartan, an angiotensin II AT1-receptor blocker and PPAR-γ agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacology. 2012;37:2817–29.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, et al. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Investig. 2007;117:3393–402.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhou J, Ando H, Macova M, Dou J, Saavedra JM. Angiotensin II AT(1) receptor blockade abolishes brain microvascular inflammation and heat shock protein responses in hypertensive rats. J Cereb Blood Flow Metab. 2005;25:878–86.
Article
PubMed
CAS
Google Scholar
Dandona P, Kumar V, Aljada A, Ghanim H, Syed T, Hofmayer D, et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: evidence of an anti-inflammatory action. J Clin Endocrinol Metab. 2003;88:4496–501.
Article
PubMed
CAS
Google Scholar
Miyoshi M, Miyano K, Moriyama N, Taniguchi M, Watanabe T. Angiotensin type 1 receptor antagonist inhibits lipopolysaccharide-induced stimulation of rat microglial cells by suppressing nuclear factor kB and activator protein-1 activation. Eur J Neurosci. 2008;27:343–51.
Article
PubMed
Google Scholar
Fogari R, Mugellini A, Zoppi A, Marasi G, Pasotti C, Poletti L, et al. Effects of valsartan compared with enalapril on blood pressure and cognitive function in elderly patients with essential hypertension. Eur J Clin Pharmacol. 2004;59:863–8.
Article
PubMed
CAS
Google Scholar
Anderson C. More indirect evidence of potential neuroprotective benefits of angiotensin receptor blockers. J Hypertens. 2010;28:429.
Article
PubMed
CAS
Google Scholar
Davies NM, Kehoe PG, Ben-Shlomo Y, Martin RM. Associations of antihypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias. J Alzheimer’s Dis. 2011;26:699–708.
Google Scholar
Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340:b5465.
Article
PubMed
PubMed Central
Google Scholar
Contestabile A. Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum. 2002;1:41–55.
Article
PubMed
CAS
Google Scholar
Krämer D, Minichiello L. Cell culture of primary cerebellar granule cells. Methods Mol Biol. 2010;633:233–9.
Article
PubMed
CAS
Google Scholar
Morkuniene R, Cizas P, Jankeviciute S, Petrolis R, Arandarcikaite O, Krisciukaitis A, et al. Small Aβ1-42 oligomer-induced membrane depolarization of neuronal and microglial cells: role of N-methyl-D-aspartate receptors. J Neurosci Res. 2015;93:475–86.
Article
PubMed
CAS
Google Scholar
Bobba A, Amadoro G, Azzariti A, Pizzuto R, Atlante A. Extracellular ADP prevents neuronal apoptosis via activation of cell antioxidant enzymes and protection of mitochondrial ANT-1. Biochim Biophys Acta. 2014;1837:1338–49.
Article
PubMed
CAS
Google Scholar
Vázquez de la Torre A, Junyent F, Folch J, Pelegrí C, Vilaplana J, Auladell C, et al. PI3K/AKT inhibition induces apoptosis through p38 activation in neurons. Pharmacol Res. 2013;70:116–25.
Article
PubMed
CAS
Google Scholar
Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.
Article
PubMed
CAS
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gao XM, Margolis RL, Leeds P, Hough C, Post RM, Chuang DM. Carbamazepine induction of apoptosis in cultured cerebellar neurons: effects of N-methyl-D-aspartate, aurintricarboxylic acid and cycloheximide. Brain Res. 1995;703:63–71.
Article
PubMed
CAS
Google Scholar
Lee HY, Greene LA, Mason CA, Manzini MC. Isolation and culture of post-natal mouse cerebellar granule neuron progenitor cells and neurons. J Vis Exp. 2009;23. doi:10.3791/990.
Delacrétaz E, Nussberger J, Biollaz J, Waeber B, Brunner HR. Characterization of the angiotensin II receptor antagonist TCV-116 in healthy volunteers. Hypertension. 1995;25:14–21.
Article
PubMed
Google Scholar
Gene Set enrichment analysis (GSEA). http://www.broadinstitute.org/gsea/. Accessed May 2015
Kyoto Encyclopedia of Genes and Genomes (KEGG). http://www.genome.jp/kegg/. Accessed May 2015
Biocarta. http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways. Accessed on May 2015.
Reactome. http://www.reactome.org/pages/documentation/citing-reactome-publications/. Accessed on May 2015.
Broad Molecular Signatures Database v5.0 (MSigDB). http://www.broadinstitute.org/gsea/. Accessed on May 2015.
Gene Omnibus database. http://www.ncbi.nlm.nih.gov/geo/. Accessed on May 2015.
Ingenuity pathway analysis. http://www.ingenuity.com. Accessed on May 2015.
Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW. Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A. 2004;101:2173–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Blair LJ, Nordhues BA, Hill SE, Scaglione KM, O’Leary 3rd JC, Fontaine SN, et al. Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest. 2013;123:4158–69.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hokama M, Oka S, Leon J, Ninomiya T, Honda H, Sasaki K, et al. Altered expression of diabetes-related genes in Alzheimer’s disease brains: the Hisayama study. Cereb Cortex. 2014;24:2476–688.
Article
PubMed
PubMed Central
Google Scholar
Harris LW, Wayland M, Lan M, Ryan M, Giger T, Lockstone H, et al. The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PLoS One. 2008;3:e3964.
Article
PubMed
PubMed Central
CAS
Google Scholar
Giger T, Khaitovich P, Somel M, Lorenc A, Lizano E, Harris LW, et al. Evolution of neuronal and endothelial transcriptomes in primates. Genome Biol Evol. 2010;12:284–92.
Article
CAS
Google Scholar
AbdAlla S, Langer A, Fu X, Quitterer U. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer’s disease. Int J Mol Sci. 2013;14:16917–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deuss M, Reiss K, Hartmann D. Part-time alpha-secretases: the functional biology of ADAM 9, 10 and 17. Curr Alzheimer Res. 2008;5:187–201.
Article
PubMed
CAS
Google Scholar
Asai M, Hattori C, Szabó B, Sasagawa N, Maruyama K, Tanuma S, et al. Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun. 2003;301:231–5.
Article
PubMed
CAS
Google Scholar
Meng P, Yoshida H, Matsumiya T, Imaizumi T, Tanji K, Xing F, et al. Carnosic acid suppresses the production of amyloid-β1–42 by inducing the metalloprotease gene TACE/ADAM17 in SH-SY5Y human neuroblastoma cells. Neurosci Res. 2013;75:94–102.
Article
PubMed
CAS
Google Scholar
Lane RM, Farlow MR. Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer’s disease. J Lipid Res. 2005;46:949–68.
Article
PubMed
CAS
Google Scholar
Zhou S, Wu H, Zeng C, Xiong X, Tang S, Tang Z, et al. Apolipoprotein E protects astrocytes from hypoxia and glutamate-induced apoptosis. FEBS Lett. 2013;587:254–8.
Article
PubMed
CAS
Google Scholar
Lee Y, Aono M, Laskowitz D, Warner DS, Pearlstein RD. Apolipoprotein E protects against oxidative stress in mixed neuronal-glial cell cultures by reducing glutamate toxicity. Neurochem Int. 2004;44:107–18.
Article
PubMed
CAS
Google Scholar
Liu L, Aboud O, Jones RA, Mrak RE, Griffin WS, Barger SW. Apolipoprotein E expression is elevated by interleukin 1 and other interleukin 1-induced factors. J Neuroinflammation. 2011;8:175. doi:10.1186/1742-2094-8-175.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hoe HS, Harris DC, Rebeck GW. Multiple pathways of apolipoprotein E signaling in primary neurons. J Neurochem. 2005;93:145–55.
Article
PubMed
CAS
Google Scholar
Nelson L, Gard P, Tabet N. Hypertension and inflammation in Alzheimer’s disease: close partners in disease development and progression. J Alzheimers Dis. 2014;41:331–43.
PubMed
CAS
Google Scholar
Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 2014;10:217–24.
Article
PubMed
CAS
Google Scholar
Medeiros R, Figueiredo CP, Pandolfo P, Duarte FS, Prediger RD, Passos GF, et al. The role of TNF-alpha signaling pathway on COX-2 upregulation and cognitive decline induced by beta-amyloid peptide. Behav Brain Res. 2010;209:165–73.
Article
PubMed
CAS
Google Scholar
Yu X, Wang LN, Du QM, Ma L, Chen L, You R, et al. Akebia Saponin D attenuates amyloid β-induced cognitive deficits and inflammatory response in rats: involvement of Akt/NF-κB pathway. Behav Brain Res. 2012;235:200–9.
Article
PubMed
CAS
Google Scholar
Ewers M, Mielke MM, Hampel H. Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp Gerontol. 2010;45:75–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sintes J, Romero X, de Salort J, Terhorst C, Engel P. Mouse CD84 is a pan-leukocyte cell-surface molecule that modulates LPS-induced cytokine secretion by macrophages. J Leukoc Biol. 2010;88:687–97.
Article
PubMed
CAS
Google Scholar
Israelsson C, Bengtsson H, Lobell A, Nilsson LN, Kylberg A, Isaksson M, et al. Appearance of Cxcl10-expressing cell clusters is common for traumatic brain injury and neurodegenerative disorders. Eur J Neurosci. 2010;31:852–63.
Article
PubMed
Google Scholar
Wang F, Liu H, Shen X, Ao H, Moore N, Gao L, et al. The combined treatment of amyloid-β1-42-stimulated bone marrow-derived dendritic cells plus splenocytes from young mice prevents the development of Alzheimer’s disease in APPswe/PSENldE9 mice. Neurobiol Aging. 2015;36:111–22.
Article
PubMed
CAS
Google Scholar
Skeie JM, Fingert JH, Russell SR, Stone EM, Mullins RF. Complement component C5a activates ICAM-1 expression on human choroidal endothelial cells. Invest Ophthalmol Vis Sci. 2010;51:5336–42.
Article
PubMed
PubMed Central
Google Scholar
Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout T, Broadway N, et al. The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol. 2004;172:6362–72.
Article
PubMed
CAS
Google Scholar
Chang MS, McNinch J, Basu R, Simonet S. Cloning and characterization of the human neutrophil-activating peptide (ENA-78) gene. J Biol Chem. 1994;269:25277–82.
PubMed
CAS
Google Scholar
Goruppi S, Iovanna JL. Stress-inducible protein p8 is involved in several physiological and pathological processes. J Biol Chem. 2010;285:1577–81.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jin P, Choi DY, Hong JT. Inhibition of extracellular signal-regulated kinase activity improves cognitive function in Tg2576 mice. Clin Exp Pharmacol Physiol. 2012;39:852–7.
Article
PubMed
CAS
Google Scholar
Chen CC, Liu HP, Chao M, Liang Y, Tsang NM, Huang HY, et al. NF-κB-mediated transcriptional upregulation of TNFAIP2 by the Epstein-Barr virus oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma. Oncogene. 2014;33:3648–59.
Article
PubMed
CAS
Google Scholar
Palmer JC, Barker R, Kehoe PG, Love S. Endothelin-1 is elevated in Alzheimer’s disease and upregulated by amyloid-β. J Alzheimers Dis. 2012;29:853–61.
PubMed
CAS
Google Scholar
Oh J, Lee HJ, Song JH, Park SI, Kim H. Plasminogen activator inhibitor-1 as an early potential diagnostic marker for Alzheimer’s disease. Exp Gerontol. 2014;60:87–91.
Article
PubMed
CAS
Google Scholar
Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15:827–35.
Article
PubMed
CAS
Google Scholar
Ben-Menachem-Zidon O, Ben-Menahem Y, Ben-Hur T, Yirmiya R. Intra-hippocampal transplantation of neural precursor cells with transgenic over-expression of IL-1 receptor antagonist rescues memory and neurogenesis impairments in an Alzheimer’s disease model. Neuropsychopharmacology. 2014;39:401–14.
Article
PubMed
CAS
PubMed Central
Google Scholar
Piantadosi CA, Withers CM, Bartz RR, MacGarvey NC, Fu P, Sweeney TE, et al. Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. J Biol Chem. 2011;286:16374–85.
Article
PubMed
CAS
PubMed Central
Google Scholar
McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE, et al. Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol. 2010;185:6317–28.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee HP, Pancholi N, Esposito L, Previll LA, Wang X, Zhu X, et al. Early induction of oxidative stress in mouse model of Alzheimer disease with reduced mitochondrial superoxide dismutase activity. PLoS One. 2012;7:e28033. doi:10.1371/journal.pone.0028033.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773:1358–75.
Article
PubMed
CAS
Google Scholar
Quintanilla RA, Orellana DI, González-Billault C, Maccioni RB. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res. 2004;295:245–57.
Article
PubMed
CAS
Google Scholar
Ashabi G, Alamdary SZ, Ramin M, Khodagholi F. Reduction of hippocampal apoptosis by intracerebroventricular administration of extracellular signal-regulated protein kinase and/or p38 inhibitors in amyloid beta rat model of Alzheimer’s disease: involvement of nuclear-related factor-2 and nuclear factor-κB. Basic Clin Pharmacol Toxicol. 2013;112:145–55.
Article
PubMed
CAS
Google Scholar
Zhou Q, Wang M, Du Y, Zhang W, Bai M, Zhang Z, et al. Inhibition of c- Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. Ann Neurol. 2015;77:637–54.
Article
PubMed
CAS
Google Scholar
Ha JS, Sung HY, Lim HM, Kwon KS, Park SS. PI3K-ERK1/2 activation contributes to extracellular H2O2 generation in amyloid β toxicity. Neurosci Lett. 2012;526:112–7.
Article
PubMed
CAS
Google Scholar
Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E. Chronic overproduction of transforming growth factor-β1 by astrocytes promotes Alzheimer’s disease-like microvascular degeneration in transgenic mice. Amer J Pathol. 2000;156:139–50.
Article
CAS
Google Scholar
Frankfurt M, Luine V. The evolving role of dendritic spines and memory: interaction(s) with estradiol. Horm Behav. 2015. doi:10.1016/j.yhbeh.2015.05.004.
Bian C, Zhu H, Zhao Y, Cai W, Zhang J. Intriguing roles of hippocampus-synthesized 17β-estradiol in the modulation of hippocampal synaptic plasticity. J Mol Neurosci. 2014;54:271–81.
Article
PubMed
CAS
Google Scholar
Petrone AB, Gatson JW, Simpkins JW, Reed MN. Non-feminizing estrogens: a novel neuroprotective therapy. Mol Cell Endocrinol. 2014;389:40–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–66.
Article
PubMed
CAS
Google Scholar
Klohs J, Rudin M, Shimshek DR, Beckmann N. Imaging of cerebrovascular pathology in animal models of Alzheimer’s disease. Front Aging Neurosci. 2014;6:32. doi:10.3389/fnagi.2014.00032.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee CW, Shih YH, Kuo YM. Cerebrovascular pathology and amyloid plaque formation in Alzheimer’s disease. Curr Alzheimer Res. 2014;11:4–10.
Article
PubMed
CAS
Google Scholar
Lyros E, Bakogiannis C, Liu Y, Fassbender K. Molecular links between endothelial dysfunction and neurodegeneration in Alzheimer’s disease. Curr Alzheimer Res. 2014;11:18–26.
Article
PubMed
CAS
Google Scholar
Muresanu DF, Popa-Wagner A, Stan A, Buga AM, Popescu BO. The vascular component of Alzheimer’s disease. Curr Neurovasc Res. 2014;11:168–76.
Article
PubMed
CAS
Google Scholar
Wiesmann M, Kiliaan AJ, Claassen JA. Vascular aspects of cognitive impairment and dementia. J Cereb Blood Flow Metab. 2013;33:1696–706.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, et al. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease. Biochim Biophys Acta. 2015;1852:1428–41.
Article
PubMed
CAS
Google Scholar
Villapol S, Saavedra JM. Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens. 2015;28:289–99.
Article
PubMed
Google Scholar
Tian M, Zhu D, Xie W, Shi J. Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett. 2012;586:3737–45. Erratum in FEBS Lett. 2013;587:818.
Article
PubMed
CAS
Google Scholar
Shindo T, Takasaki K, Uchida K, Onimura R, Kubota K, Uchida N, et al. Ameliorative effects of telmisartan on the inflammatory response and impaired spatial memory in a rat model of Alzheimer’s disease incorporating additional cerebrovascular disease factors. Biol Pharm Bull. 2012;35:2141–7.
Article
PubMed
CAS
Google Scholar
Zhao W, Wang J, Ho L, Ono K, Teplow DB, Pasinetti GM. Identification of antihypertensive drugs which inhibit amyloid-beta protein oligomerization. J Alzheimers Dis. 2009;16:49–57.
PubMed
CAS
Google Scholar
Miners JS, Palmer JC, Tayler H, Palmer LE, Ashby E, Kehoe PG, et al. Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes. Front Aging Neurosci. 2014;6:238. doi:10.3389/fnagi.2014.00238. eCollection2014.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trenkwalder P. Potential for antihypertensive treatment with an AT(1)-receptor blocker to reduce dementia in the elderly. J Hum Hypertens. 2002;16:S71–5.
Article
PubMed
CAS
Google Scholar
Larrayoz IM, Pang T, Benicky J, Pavel J, Sánchez-Lemus E, Saavedra JM. Candesartan reduces the innate immune response to lipopolysaccharide in human monocytes. J Hypertens. 2009;27:2365–76.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rouch L, Cestac P, Hanon O, Cool C, Helmer C, Bouhanick B, et al. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs. 2015. [Epub ahead of print] doi:10.1007/s 40263-015-0230-6.
Igase M, Kohara K, Miki T. The association between hypertension and dementia in the elderly. Int J Hypertens. 2012;320648. doi:10.1155/2012/320648.
Ashby EL, Kehoe PG. Current status of renin-aldosterone angiotensin system-targeting anti-hypertensive drugs as therapeutic options for Alzheimer’s disease. Expert Opin Investig Drugs. 2013;22:1229–42.
Article
PubMed
CAS
Google Scholar
Hajjar I, Hart M, Milberg W, Novak V, Lipsitz L. The rationale and design of the antihypertensives and vascular, endothelial, and cognitive function (AVEC) trial in elderly hypertensives with early cognitive impairment: role of the renin angiotensin system inhibition. BMC Geriatr. 2009;9:48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu X, Kihara T, Hongo H, Akaike A, Niidome T, Sugimoto H. Angiotensin receptor type 1 antagonists protect against neuronal injury induced by oxygen-glucose depletion. Br J Pharmacol. 2010;161:33–50.
Article
PubMed
CAS
PubMed Central
Google Scholar