Ashton NJ, Leuzy A, Karikari TK, Mattsson-Carlgren N, Dodich A, Boccardi M, et al. The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers. Eur J Nucl Med Mol Imaging. 2021. [cited 2021 Mar 30]. Available from: http://link.springer.com/10.1007/s00259-021-05253-y.
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.
Article
CAS
Google Scholar
Lai KSP, Liu CS, Rau A, Lanctôt KL, Köhler CA, Pakosh M, et al. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry. 2017;88(10):876–82 Available from: https://jnnp.bmj.com/lookup/doi/10.1136/jnnp-2017-316201. [cited 2021 Feb 23].
Article
Google Scholar
Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol. 2014; Available from: http://www.ncbi.nlm.nih.gov/pubmed/24567119.
Jessen F, Spottke A, Boecker H, Brosseron F, Buerger K, Catak C, et al. Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer’s disease (DELCODE). Alzheimers Res Ther. 2018;10(1):15 Available from: https://alzres.biomedcentral.com/articles/10.1186/s13195-017-0314-2. [cited 2020 May 27].
Article
Google Scholar
Brosseron F, Kleemann K, Kolbe CC, Santarelli F, Castro-Gomez S, Tacik P, et al. Interrelations of Alzheimer’s disease candidate biomarkers neurogranin, fatty acid-binding protein 3 and ferritin to neurodegeneration and neuroinflammation. J Neurochem. 2020;157:2210-24.
Brosseron F, Kolbe CC, Santarelli F, Carvalho S, Antonell A, Castro-Gomez S, et al. Multicenter Alzheimer’s and Parkinson’s disease immune biomarker verification study. Alzheimers Dement J Alzheimers Assoc. 2019;16:292-304.
Brosseron F, Traschütz A, Widmann CN, Kummer MP, Tacik P, Santarelli F, et al. Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):25.
Article
Google Scholar
Brosseron F, Maass A, Kleineidam L, Ravichandran KA, González PG, McManus RM, et al. Soluble TAM receptors sAXL and sTyro3 predict structural and functional protection in Alzheimer’s disease. Neuron. 2021;110:1009-1022.e4.
Oikonomidi A, Tautvydaitė D, Gholamrezaee MM, Henry H, Bacher M, Popp J. Macrophage migration inhibitory factor is associated with biomarkers of Alzheimer’s disease pathology and predicts cognitive decline in mild cognitive impairment and mild dementia. J Alzheimers Dis JAD. 2017;60(1):273–81.
Article
CAS
Google Scholar
Kiddle SJ, Thambisetty M, Simmons A, Riddoch-Contreras J, Hye A, Westman E, et al. Plasma based markers of [11C] PiB-PET brain amyloid burden. PLoS ONE. 2012;7(9) Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3454385/. [cited 2020 Dec 21].
Morgan AR, Touchard S, Leckey C, O’Hagan C, Nevado-Holgado AJ, Barkhof F, et al. Inflammatory biomarkers in Alzheimer’s disease plasma. Alzheimers Dement. 2019;15(6):776–87 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565806/. [cited 2021 Feb 23].
Article
Google Scholar
Zabel M, Schrag M, Mueller C, Zhou W, Crofton A, Petersen F, et al. Assessing candidate serum biomarkers for Alzheimer’s disease: a longitudinal study. J Alzheimers Dis JAD. 2012;30(2):311–21 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616608/. [cited 2021 Mar 2].
Article
CAS
Google Scholar
Chen M, Xia W. Proteomic profiling of plasma and brain tissue from Alzheimer’s disease patients reveals candidate network of plasma biomarkers. J Alzheimers Dis JAD. 2020;76(1):349–68 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457324/. [cited 2021 Mar 2].
Article
CAS
Google Scholar
Gezen-Ak D, Dursun E, Hanağası H, Bilgiç B, Lohman E, Araz ÖS, et al. BDNF, TNFα, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer’s disease or mild cognitive impairment. J Alzheimers Dis JAD. 2013;37(1):185–95.
Article
CAS
Google Scholar
Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers HL, et al. Proteome-based plasma biomarkers for Alzheimer’s disease. Brain. 2006;129(Pt 11):3042–50 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17071923.
Article
CAS
Google Scholar
Thambisetty M, Hye A, Foy C, Daly E, Glover A, Cooper A, et al. Proteome-based identification of plasma proteins associated with hippocampal metabolism in early Alzheimer’s disease. J Neurol. 2008;255(11):1712–20 Available from: https://doi.org/10.1007/s00415-008-0006-8. [cited 2021 Mar 2].
Article
CAS
Google Scholar
Akuffo EL, Davis JB, Fox SM, Gloger IS, Hosford D, Kinsey EE, et al. The discovery and early validation of novel plasma biomarkers in mild-to-moderate Alzheimer’s disease patients responding to treatment with rosiglitazone. Biomarkers. 2008;13(6):618–36 Available from: https://doi.org/10.1080/13547500802445199. [cited 2021 Mar 2].
Article
CAS
Google Scholar
Bennett S, Grant M, Creese AJ, Mangialasche F, Cecchetti R, Cooper HJ, et al. Plasma levels of complement 4a protein are increased in Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2012;26(4):329–34 Available from: https://journals.lww.com/alzheimerjournal/Fulltext/2012/10000/Plasma_Levels_of_Complement_4a_Protein_are.7.aspx. [cited 2021 Mar 2].
Article
CAS
Google Scholar
Song F, Poljak A, Kochan NA, Raftery M, Brodaty H, Smythe GA, et al. Plasma protein profiling of mild cognitive impairment and Alzheimer’s disease using iTRAQ quantitative proteomics. Proteome Sci. 2014; [cited 2021 Mar 2];12(1):5. Available from: http://proteomesci.biomedcentral.com/articles/10.1186/1477-5956-12-5.
Muenchhoff J, Poljak A, Song F, Raftery M, Brodaty H, Duncan M, et al. Plasma protein profiling of mild cognitive impairment and Alzheimer’s disease across two independent cohorts. J Alzheimers Dis JAD. 2015;43(4):1355–73.
Article
CAS
Google Scholar
Ashton NJ, Kiddle SJ, Graf J, Ward M, Baird AL, Hye A, et al. Blood protein predictors of brain amyloid for enrichment in clinical trials? Alzheimers Dement Diagn Assess Dis Monit. 2015;1(1):48–60 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876903/. [cited 2021 Mar 2].
Google Scholar
Williams MA, Haughton D, Stevenson M, Craig D, Passmore AP, Silvestri G. Plasma complement factor H in Alzheimer’s disease. J Alzheimers Dis JAD. 2015;45(2):369–72.
Article
CAS
Google Scholar
Sattlecker M, Khondoker M, Proitsi P, Williams S, Soininen H, Kłoszewska I, et al. Longitudinal protein changes in blood plasma associated with the rate of cognitive decline in Alzheimer’s disease. J Alzheimers Dis. 2016;49(4):1105–14 Available from: https://content.iospress.com/articles/journal-of-alzheimers-disease/jad140669. [cited 2021 Mar 2].
Article
CAS
Google Scholar
Cheng Z, Yin J, Yuan H, Jin C, Zhang F, Wang Z, et al. Blood-derived plasma protein biomarkers for Alzheimer’s disease in Han Chinese. Front Aging Neurosci. 2018;10 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305130/. [cited 2021 Mar 2].
Westwood S, Baird AL, Hye A, Ashton NJ, Nevado-Holgado AJ, Anand SN, et al. Plasma protein biomarkers for the prediction of CSF amyloid and tau and [18F]-Flutemetamol PET scan result. Front Aging Neurosci. 2018;10:409.
Article
CAS
Google Scholar
Morgan AR, Touchard S, O’Hagan C, Sims R, Majounie E, Escott-Price V, et al. The correlation between inflammatory biomarkers and polygenic risk score in Alzheimer’s disease. J Alzheimers Dis JAD. 2017;56(1):25–36.
Article
CAS
Google Scholar
Westwood S, Leoni E, Hye A, Lynham S, Khondoker MR, Ashton NJ, et al. Blood-based biomarker candidates of cerebral amyloid using PiB PET in non-demented elderly. J Alzheimers Dis JAD. 2016;52(2):561–72.
Article
CAS
Google Scholar
Ohara T, Hata J, Tanaka M, Honda T, Yamakage H, Yoshida D, et al. Serum soluble triggering receptor expressed on myeloid cells 2 as a biomarker for incident dementia: the Hisayama study. Ann Neurol. 2019;85(1):47–58 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.25385. [cited 2021 Feb 22].
Article
CAS
Google Scholar
Hu N, Tan MS, Yu JT, Sun L, Tan L, Wang YL, et al. Increased expression of TREM2 in peripheral blood of Alzheimer’s disease patients. J Alzheimers Dis. 2013;38(3):497–501 Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-130854. [cited 2021 Feb 22].
Article
Google Scholar
Liu D, Cao B, Zhao Y, Huang H, McIntyre RS, Rosenblat JD, et al. Soluble TREM2 changes during the clinical course of Alzheimer’s disease: a meta-analysis. Neurosci Lett. 2018;(686):10–6.
Wilczyńska K, Waszkiewicz N. Diagnostic utility of selected serum dementia biomarkers: amyloid β-40, amyloid β-42, tau protein, and YKL-40: a review. J Clin Med. 2020;9(11) Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692800/. [cited 2021 Feb 22].
Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry. 2010;68(10):903–12 Available from: http://www.sciencedirect.com/science/article/pii/S0006322310008905. [cited 2018 Nov 12].
Article
CAS
Google Scholar
Grewal R, Haghighi M, Huang S, Smith AG, Cao C, Lin X, et al. Identifying biomarkers of dementia prevalent among amnestic mild cognitively impaired ethnic female patients. Alzheimers Res Ther. 2016;8(1):43.
Article
Google Scholar
Vergallo A, Lista S, Lemercier P, Chiesa PA, Zetterberg H, Blennow K, et al. Association of plasma YKL-40 with brain amyloid-β levels, memory performance, and sex in subjective memory complainers. Neurobiol Aging. 2020;96:22–32.
Article
CAS
Google Scholar
Wolfsgruber S, Kleineidam L, Weyrauch AS, Barkhoff M, Röske S, Peters O, et al. Relevance of subjective cognitive decline in older adults with a first-degree family history of Alzheimer’s disease. J Alzheimers Dis JAD. 2022;87(2):545–55.
Article
CAS
Google Scholar
Suarez-Calvet M, Kleinberger G, Araque Caballero MA, Brendel M, Rominger A, Alcolea D, et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med. 2016;8(5):466–76 Available from: https://www.ncbi.nlm.nih.gov/pubmed/26941262.
Article
CAS
Google Scholar
Bertens D, Tijms BM, Scheltens P, Teunissen CE, Visser PJ. Unbiased estimates of cerebrospinal fluid β-amyloid 1-42 cutoffs in a large memory clinic population. Alzheimers Res Ther. 2017;9(1):8.
Article
Google Scholar
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.
Article
CAS
Google Scholar
Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex N Y N 1991. 2004;14(1):11–22.
Google Scholar
Schöll M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89(5):971–82.
Article
Google Scholar
Baker SL, Maass A, Jagust WJ. Considerations and code for partial volume correcting [18F]-AV-1451 tau PET data. Data Brief. 2017;15:648–57.
Article
Google Scholar
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl). 1991;82(4):239–59.
Article
CAS
Google Scholar
Papp KV, Rentz DM, Orlovsky I, Sperling RA, Mormino EC. Optimizing the preclinical Alzheimer’s cognitive composite with semantic processing: the PACC5. Alzheimers Dement N Y N. 2017;3(4):668–77.
Article
Google Scholar
Proust-Lima C, Dartigues JF, Jacqmin-Gadda H. Misuse of the linear mixed model when evaluating risk factors of cognitive decline. Am J Epidemiol. 2011;174(9):1077–88.
Article
Google Scholar
Proust-Lima C, Philipps V, Liquet B. Estimation of extended mixed models using latent classes and latent processes: the R package lcmm. J Stat Softw. 2017;78(1, 1):–56 Available from: https://www.jstatsoft.org/index.php/jss/article/view/v078i02. [cited 2021 Jan 21].
Uhlén M, Björling E, Agaton C, Szigyarto CAK, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics MCP. 2005;4(12):1920–32.
Article
Google Scholar
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
Article
Google Scholar
Uhlen M, Karlsson MJ, Zhong W, Tebani A, Pou C, Mikes J, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. 2019;366(6472):eaax9198.
Article
CAS
Google Scholar
Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020;367(6482):eaay5947.
Article
Google Scholar
Karlsson M, Zhang C, Méar L, Zhong W, Digre A, Katona B, et al. A single-cell type transcriptomics map of human tissues. Sci Adv. 2021;7(31):eabh2169.
Article
CAS
Google Scholar
Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539–47.
Article
CAS
Google Scholar
Mollenhauer B, Steinacker P, Bahn E, Bibl M, Brechlin P, Schlossmacher MG, et al. Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: marker candidates for dementia with Lewy bodies. Neurodegener Dis. 2007;4(5):366–75.
Article
CAS
Google Scholar
Teunissen CE, Veerhuis R, De Vente J, Verhey FRJ, Vreeling F, van Boxtel MPJ, et al. Brain-specific fatty acid-binding protein is elevated in serum of patients with dementia-related diseases. Eur J Neurol. 2011;18(6):865–71.
Article
CAS
Google Scholar
Wada-Isoe K, Imamura K, Kitamaya M, Kowa H, Nakashima K. Serum heart-fatty acid binding protein levels in patients with Lewy body disease. J Neurol Sci. 2008;266(1–2):20–4.
Article
CAS
Google Scholar
Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care. 2014;17(2):124–9.
Article
CAS
Google Scholar
Gangishetti U, Christina Howell J, Perrin RJ, Louneva N, Watts KD, Kollhoff A, et al. Non-beta-amyloid/tau cerebrospinal fluid markers inform staging and progression in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):98.
Article
Google Scholar
Chiasserini D, Biscetti L, Eusebi P, Salvadori N, Frattini G, Simoni S, et al. Differential role of CSF fatty acid binding protein 3, α-synuclein, and Alzheimer’s disease core biomarkers in Lewy body disorders and Alzheimer’s dementia. Alzheimers Res Ther. 2017;9(1):52.
Article
Google Scholar
Rankin EB, Giaccia AJ. The receptor tyrosine kinase AXL in cancer progression. Cancers. 2016;8(11):103 Available from: https://www.mdpi.com/2072-6694/8/11/103. [cited 2021 Mar 24].
Article
Google Scholar
Smirne C, Rigamonti C, De Benedittis C, Sainaghi PP, Bellan M, Burlone ME, et al. Gas6/TAM signaling components as novel biomarkers of liver fibrosis. Dis Markers. 2019;2019:2304931.
Article
Google Scholar
Pagani S, Bellan M, Mauro D, Castello LM, Avanzi GC, Lewis MJ, et al. New insights into the role of Tyro3, Axl, and Mer receptors in rheumatoid arthritis. Dis Markers. 2020;2020:1614627.
Article
Google Scholar
Tondo G, Perani D, Comi C. TAM receptor pathways at the crossroads of neuroinflammation and neurodegeneration. Dis Markers. 2019;2019:2387614.
Article
Google Scholar
DuBois JC, Ray AK, Davies P, Shafit-Zagardo B. Anti-Axl antibody treatment reduces the severity of experimental autoimmune encephalomyelitis. J Neuroinflammation. 2020;17(1):324.
Article
CAS
Google Scholar
Zhao W, Fan J, Kulic I, Koh C, Clark A, Meuller J, et al. Axl receptor tyrosine kinase is a regulator of apolipoprotein E. Mol Brain. 2020;13(1):66.
Article
CAS
Google Scholar
Shafit-Zagardo B, Gruber RC, DuBois JC. The role of TAM family receptors and ligands in the nervous system: From development to pathobiology. Pharmacol Ther. 2018;188:97–117 Available from: http://www.sciencedirect.com/science/article/pii/S0163725818300421. [cited 2018 Nov 9].
Article
CAS
Google Scholar
Mattsson N, Insel P, Nosheny R, Zetterberg H, Trojanowski JQ, Shaw LM, et al. CSF protein biomarkers predicting longitudinal reduction of CSF β-amyloid42 in cognitively healthy elders. Transl Psychiatry. 2013;3(8):e293.
Article
CAS
Google Scholar
Kang S, Narazaki M, Metwally H, Kishimoto T. Historical overview of the interleukin-6 family cytokine. J Exp Med. 2020;217(5):e20190347.
Article
Google Scholar
Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33(3):127–48.
Article
CAS
Google Scholar
Niculet E, Chioncel V, Elisei AM, Miulescu M, Buzia OD, Nwabudike LC, et al. Multifactorial expression of IL-6 with update on COVID-19 and the therapeutic strategies of its blockade (Review). Exp Ther Med. 2021;21(3) Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851683/. [cited 2021 Mar 24].
Hazen J, Vistnes M, Barca ML, Eldholm RS, Persson K, Brækhus A, et al. The association between circulating inflammatory markers and the progression of Alzheimer disease in Norwegian memory clinic patients with mild cognitive impairment or dementia. Alzheimer Dis Assoc Disord. 2020;34(1):47–53.
Article
CAS
Google Scholar
Cisbani G, Koppel A, Knezevic D, Suridjan I, Mizrahi R, Bazinet RP. Peripheral cytokine and fatty acid associations with neuroinflammation in AD and aMCI patients: an exploratory study. Brain Behav Immun. 2020;87:679–88.
Article
CAS
Google Scholar
Boots EA, Castellanos KJ, Zhan L, Barnes LL, Tussing-Humphreys L, Deoni SCL, et al. Inflammation, cognition, and white matter in older adults: an examination by race. Front Aging Neurosci. 2020;12 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662133/. [cited 2021 Apr 1].
Marsland AL, Gianaros PJ, Kuan DCH, Sheu LK, Krajina K, Manuck SB. Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain Behav Immun. 2015;48:195–204.
Article
CAS
Google Scholar
Jefferson AL, Massaro JM, Wolf PA, Seshadri S, Au R, Vasan RS, et al. Inflammatory biomarkers are associated with total brain volume: the Framingham Heart Study. Neurology. 2007;68(13):1032–8.
Article
CAS
Google Scholar
Schmidt MF, Freeman KB, Windham BG, Griswold ME, Kullo IJ, Turner ST, et al. Associations between serum inflammatory markers and hippocampal volume in a community sample. J Am Geriatr Soc. 2016;64(9):1823–9.
Article
Google Scholar
O’Donovan A, Chao LL, Paulson J, Samuelson KW, Shigenaga JK, Grunfeld C, et al. Altered inflammatory activity associated with reduced hippocampal volume and more severe posttraumatic stress symptoms in Gulf War veterans. Psychoneuroendocrinology. 2015;51:557–66.
Article
Google Scholar
Aribisala BS, Wiseman S, Morris Z, Valdés-Hernández MC, Royle NA, Maniega SM, et al. Circulating inflammatory markers are associated with magnetic resonance imaging-visible perivascular spaces but not directly with white matter hyperintensities. Stroke. 2014;45(2):605–7.
Article
CAS
Google Scholar
Kakeda S, Watanabe K, Katsuki A, Sugimoto K, Igata N, Ueda I, et al. Relationship between interleukin (IL)-6 and brain morphology in drug-naïve, first-episode major depressive disorder using surface-based morphometry. Sci Rep. 2018;8(1):10054.
Article
Google Scholar
Satizabal CL, Zhu YC, Mazoyer B, Dufouil C, Tzourio C. Circulating IL-6 and CRP are associated with MRI findings in the elderly: the 3C-Dijon Study. Neurology. 2012;78(10):720–7.
Article
CAS
Google Scholar
Gu Y, Manly JJ, Mayeux RP, Brickman AM. An inflammation-related nutrient pattern is associated with both brain and cognitive measures in a multiethnic elderly population. Curr Alzheimer Res. 2018;15(5):493–501.
Article
CAS
Google Scholar
Gu Y, Vorburger R, Scarmeas N, Luchsinger JA, Manly JJ, Schupf N, et al. Circulating inflammatory biomarkers in relation to brain structural measurements in a non-demented elderly population. Brain Behav Immun. 2017;65:150–60.
Article
CAS
Google Scholar
Satizabal CL, Zhu YC, Dufouil C, Tzourio C. Inflammatory proteins and the severity of dilated Virchow-Robin Spaces in the elderly. J Alzheimers Dis JAD. 2013;33(2):323–8.
Article
CAS
Google Scholar
Ironside M, Admon R, Maddox SA, Mehta M, Douglas S, Olson DP, et al. Inflammation and depressive phenotypes: evidence from medical records from over 12 000 patients and brain morphology. Psychol Med. 2020;50(16):2790–8.
Article
Google Scholar
McCarrey AC, Pacheco J, Carlson OD, Egan JM, Thambisetty M, An Y, et al. Interleukin-6 is linked to longitudinal rates of cortical thinning in aging. Transl Neurosci. 2014;5(1):1–7.
Article
Google Scholar
Walker KA, Gross AL, Moghekar AR, Soldan A, Pettigrew C, Hou X, et al. Association of peripheral inflammatory markers with connectivity in large-scale functional brain networks of non-demented older adults. Brain Behav Immun. 2020;87:388–96.
Article
CAS
Google Scholar
Nusslock R, Brody G, Armstrong C, Carroll A, Sweet LH, Yu T, et al. Higher peripheral inflammatory signaling associated with lower resting state functional brain connectivity in emotion regulation and central executive networks. Biol Psychiatry. 2019;86(2):153–62 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430716/. [cited 2021 Apr 1].
Article
CAS
Google Scholar
Oberlin LE, Erickson KI, Mackey R, Klunk WE, Aizenstein H, Lopresti BJ, et al. Peripheral inflammatory biomarkers predict the deposition and progression of amyloid-β in cognitively unimpaired older adults. Brain Behav Immun. 2021;95:178.
Article
CAS
Google Scholar
Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2006;15(2):194–202.
Article
CAS
Google Scholar
Tong X, Wang D, Liu S, Ma Y, Li Z, Tian P, et al. The YKL-40 protein is a potential biomarker for COPD: a meta-analysis and systematic review. Int J Chron Obstruct Pulmon Dis. 2018;13:409–18.
Article
CAS
Google Scholar
Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501.
Article
CAS
Google Scholar
Muszyński P, Groblewska M, Kulczyńska-Przybik A, Kułakowska A, Mroczko B. YKL-40 as a potential biomarker and a possible target in therapeutic strategies of Alzheimer’s disease. Curr Neuropharmacol. 2017;15(6):906–17.
Article
Google Scholar