Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Heller M, Later W, Heymsfield SB, Müller MJ. Evaluation of specific metabolic rates of major organs and tissues: comparison between men and women. Am J Hum Biol. 2011;23(3):333–8. https://doi.org/10.1002/ajhb.21137 (Epub 2010 Dec 22. PMID: 21484913; PMCID: PMC3139779).
Article
PubMed
Google Scholar
Thibaudeau TA, Anderson RT, Smith DM. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun. 2018;9(1):1097. https://doi.org/10.1038/s41467-018-03509-0. PMID:29545515;PMCID:PMC5854577
Article
PubMed
PubMed Central
Google Scholar
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457–70. https://doi.org/10.1038/nrneurol.2015.119 (Epub 2015 Jul 21. Erratum in: Nat Rev Neurol. 2016 Apr;12(4):248. PMID: 26195256; PMCID: PMC4694579).
Article
CAS
PubMed
PubMed Central
Google Scholar
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. https://doi.org/10.1126/scitranslmed.3003748 (PMID: 22896675; PMCID: PMC3551275).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM, Simon MJ, Pike MM, Plá V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, Xiao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife. 2018;18(7):e40070. https://doi.org/10.7554/eLife.40070 (PMID:30561329;PMCID:PMC6307855).
Article
Google Scholar
Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–61. https://doi.org/10.1002/ana.24271 (Epub 2014 Sep 26. PMID: 25204284; PMCID: PMC4245362).
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, Regan S, Kasper T, Peng S, Ding F, Benveniste H, Nedergaard M, Deane R. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016;93:215–25. https://doi.org/10.1016/j.nbd.2016.05.015 (Epub 2016 May 24. PMID: 27234656; PMCID: PMC4980916).
Article
CAS
PubMed
PubMed Central
Google Scholar
Roher AE, Kuo YM, Esh C, Knebel C, Weiss N, Kalback W, Luehrs DC, Childress JL, Beach TG, Weller RO, Kokjohn TA. Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol Med. 2003;9(3–4):112–22 (PMID: 12865947; PMCID: PMC1430731).
Article
Google Scholar
Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, Cai Z, Wu T, Hu G, Xiao M. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol Neurodegener. 2015;2(10):58. https://doi.org/10.1186/s13024-015-0056-1. PMID:26526066;PMCID:PMC4631089
Article
Google Scholar
Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, Grafe MR, Woltjer RL, Kaye J, Iliff JJ. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 2017;74(1):91–9. https://doi.org/10.1001/jamaneurol.2016.4370 (PMID: 27893874).
Article
PubMed
Google Scholar
Sabbatini M, Barili P, Bronzetti E, Zaccheo D, Amenta F. Age-related changes of glial fibrillary acidic protein immunoreactive astrocytes in the rat cerebellar cortex. Mech Ageing Dev. 1999;108(2):165–72. https://doi.org/10.1016/s0047-6374(99)00008-1 (PMID: 10400309).
Article
CAS
PubMed
Google Scholar
Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert MO, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P, Cummings JL. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29. https://doi.org/10.1016/S1474-4422(14)70090-0 (Erratum.In:LancetNeurol.2014Aug;13(8):757 PMID: 24849862).
Article
PubMed
Google Scholar
Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EG, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77. https://doi.org/10.1093/brain/awr179 (Epub 2011 Aug 2. PMID: 21810890; PMCID: PMC3170532).
Article
PubMed
PubMed Central
Google Scholar
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8. https://doi.org/10.1001/archneur.56.3.303 (Erratum.In:ArchNeurol1999Jun;56(6):760 PMID: 10190820).
Article
CAS
PubMed
Google Scholar
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: Author; 2013.
Book
Google Scholar
Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R, Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62. https://doi.org/10.1016/j.jalz.2018.02.018 (PMID: 29653606; PMCID: PMC5958625).
Article
PubMed
PubMed Central
Google Scholar
Sacchi L, Carandini T, Fumagalli GG, Pietroboni AM, Contarino VE, Siggillino S, Arcaro M, Fenoglio C, Zito F, Marotta G, Castellani M, Triulzi F, Galimberti D, Scarpini E, Arighi A. Unravelling the association between amyloid-PET and cerebrospinal fluid biomarkers in the Alzheimer’s disease spectrum: who really deserves an A+? J Alzheimers Dis. 2022;85(3):1009–20. https://doi.org/10.3233/JAD-210593 (PMID: 34897084).
Article
CAS
PubMed
Google Scholar
Lopez OL, Kuller LH. Epidemiology of aging and associated cognitive disorders: prevalence and incidence of Alzheimer’s disease and other dementias. Handb Clin Neurol. 2019;167:139–48. https://doi.org/10.1016/B978-0-12-804766-8.00009-1 (PMID: 31753130).
Article
PubMed
Google Scholar
Rocca WA, Petersen RC, Knopman DS, Hebert LE, Evans DA, Hall KS, Gao S, Unverzagt FW, Langa KM, Larson EB, White LR. Trends in the incidence and prevalence of Alzheimer’s disease, dementia, and cognitive impairment in the United States. Alzheimers Dement. 2011;7(1):80–93. https://doi.org/10.1016/j.jalz.2010.11.002. PMID:21255746;PMCID:PMC3026476
Article
PubMed
PubMed Central
Google Scholar
Coyle-Gilchrist IT, Dick KM, Patterson K, Vázquez Rodríquez P, Wehmann E, Wilcox A, Lansdall CJ, Dawson KE, Wiggins J, Mead S, Brayne C, Rowe JB. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology. 2016;86(18):1736–43. https://doi.org/10.1212/WNL.0000000000002638 (Epub 2016 Apr 1. PMID: 27037234; PMCID: PMC4854589).
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison IF, Ismail O, Machhada A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. 2020;143(8):2576–93. https://doi.org/10.1093/brain/awaa179.
Article
PubMed
PubMed Central
Google Scholar
Bergström S, Remnestål J, Yousef J, et al. Multi-cohort profiling reveals elevated CSF levels of brain-enriched proteins in Alzheimer’s disease. Ann Clin Transl Neurol. 2021;8(7):1456–70. https://doi.org/10.1002/acn3.51402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arighi A, Di Cristofori A, Fenoglio C, Borsa S, D’Anca M, Fumagalli GG, Locatelli M, Carrabba G, Pietroboni AM, Ghezzi L, Carandini T, Colombi A, Scarioni M, De Riz MA, Serpente M, Rampini PM, Scarpini E, Galimberti D. Cerebrospinal fluid level of aquaporin4: a new window on glymphatic system involvement in neurodegenerative disease? J Alzheimers Dis. 2019;69(3):663–9. https://doi.org/10.3233/JAD-190119 (PMID: 31156164).
Article
CAS
PubMed
Google Scholar
Hiraldo-González L, Trillo-Contreras JL, García-Miranda P, Pineda-Sánchez R, Ramírez-Lorca R, Rodrigo-Herrero S, Blanco MO, Oliver M, Bernal M, Franco-Macías E, Villadiego J, Echevarría M. Evaluation of aquaporins in the cerebrospinal fluid in patients with idiopathic normal pressure hydrocephalus. PLoS ONE. 2021;16(10):e0258165. https://doi.org/10.1371/journal.pone.0258165. PMID:34597351;PMCID:PMC8486078
Article
PubMed
PubMed Central
Google Scholar
Iliff JJ, Chen MJ, Plog BA, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):16180–93. https://doi.org/10.1523/JNEUROSCI.3020-14.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci. 2015;16(5):249–63. https://doi.org/10.1038/nrn3898 (published correction appears in Nat Rev Neurosci. 2015 Jun;16(6):372).
Article
CAS
PubMed
PubMed Central
Google Scholar
Blennow K, Zetterberg H. Fluid biomarker-based molecular phenotyping of Alzheimer’s disease patients in research and clinical settings. Prog Mol Biol Transl Sci. 2019;168:3–23. https://doi.org/10.1016/bs.pmbts.2019.07.006 (Epub 2019 Jul 24 PMID: 31699324).
Article
CAS
PubMed
Google Scholar
Milà-Alomà M, Salvadó G, Gispert JD, Vilor-Tejedor N, Grau-Rivera O, Sala-Vila A, Sánchez-Benavides G, Arenaza-Urquijo EM, Crous-Bou M, González-de-Echávarri JM, Minguillon C, Fauria K, Simon M, Kollmorgen G, Zetterberg H, Blennow K, Suárez-Calvet M, Molinuevo JL, ALFA study. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Dement. 2020;16(10):1358–71. https://doi.org/10.1002/alz.12131 (Epub 2020 Jun 23. PMID: 32573951; PMCID: PMC7586814).
Article
PubMed
PubMed Central
Google Scholar
Olney NT, Spina S, Miller BL. Frontotemporal dementia. Neurol Clin. 2017;35(2):339–74. https://doi.org/10.1016/j.ncl.2017.01.008.
Article
PubMed
PubMed Central
Google Scholar
Marazuela P, Bonaterra-Pastra A, Faura J, Penalba A, Pizarro J, Pancorbo O, Rodríguez-Luna D, Vert C, Rovira A, Pujadas F, Freijo MM, Tur S, Martínez-Zabaleta M, Cardona Portela P, Vera R, Lebrato-Hernández L, Arenillas JF, Pérez-Sánchez S, Montaner J, Delgado P, Hernández-Guillamon M. Circulating AQP4 levels in patients with cerebral amyloid angiopathy-associated intracerebral hemorrhage. J Clin Med. 2021;10(5):989. https://doi.org/10.3390/jcm10050989 (PMID:33801197;PMCID:PMC7957864).
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, Joutel A, Nedergaard M, Smith KJ, Zlokovic BV, Wardlaw JM. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res. 2018;114(11):1462–73. https://doi.org/10.1093/cvr/cvy113 (PMID:29726891;PMCID:PMC6455920).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS. 2022;19(1):9. https://doi.org/10.1186/s12987-021-00282-z (PMID:35115036;PMCID:PMC8815211).
Article
PubMed
PubMed Central
Google Scholar
Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife. 2017;21(6):e27679. https://doi.org/10.7554/eLife.27679. PMID:28826498;PMCID:PMC5578736
Article
Google Scholar
De Sousa RAL. Reactive gliosis in Alzheimer’s disease: a crucial role for cognitive impairment and memory loss. Metab Brain Dis. 2022;37(4):851–7. https://doi.org/10.1007/s11011-022-00953-2 (Epub 2022 Mar 14. PMID: 35286534).
Article
CAS
PubMed
Google Scholar
Gratwicke J, Jahanshahi M, Foltynie T. Parkinson’s disease dementia: a neural networks perspective. Brain. 2015;138(Pt 6):1454–76. https://doi.org/10.1093/brain/awv104 (Epub 2015 Apr 16. PMID: 25888551; PMCID: PMC4614131).
Article
PubMed
PubMed Central
Google Scholar
Graham NS, Sharp DJ. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry. 2019;90(11):1221–33. https://doi.org/10.1136/jnnp-2017-317557 (Epub 2019 Sep 21. PMID: 31542723; PMCID: PMC6860906).
Article
PubMed
Google Scholar
Shaw LM, Arias J, Blennow K, Galasko D, Molinuevo JL, Salloway S, Schindler S, Carrillo MC, Hendrix JA, Ross A, Illes J, Ramus C, Fifer S. Appropriate use criteria for lumbar puncture and cerebrospinal fluid testing in the diagnosis of Alzheimer’s disease. Alzheimers Dement. 2018;14(11):1505–21. https://doi.org/10.1016/j.jalz.2018.07.220 (Epub 2018 Oct 10 PMID: 30316776).
Article
PubMed
Google Scholar
Baker KG. Evaluation of DSM-5 and IWG-2 criteria for the diagnosis of Alzheimer’s disease and dementia with Lewy bodies. Diagnosis (Berl). 2016;3(1):9–12. https://doi.org/10.1515/dx-2015-0031 (PMID: 29540044).
Article
Google Scholar
Falzarano R, Viggiani V, Michienzi S, Colaprisca B, Longo F, Frati L, Anastasi E. CLEIA CA125 evidences: good analytical performance avoiding “Hook effect.” Tumour Biol. 2013;34(1):387–93. https://doi.org/10.1007/s13277-012-0561-6 (Epub 2012 Nov 1 PMID: 23111756).
Article
CAS
PubMed
Google Scholar