Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert MO, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P, Cummings JL. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.
Article
Google Scholar
Pillai JA, Bonner-Jackson A, Bekris LM, Safar J, Bena J, Leverenz JB. Highly elevated cerebrospinal fluid Total tau level reflects higher likelihood of non-amnestic subtype of Alzheimer's disease. J Alzheimers Dis. 2019;70:1051–8. https://doi.org/10.3233/JAD-190519.
Article
CAS
PubMed
PubMed Central
Google Scholar
Csukly G, Sirály E, Fodor Z, et al. The differentiation of amnestic type MCI from the non-amnestic types by structural MRI. Front Aging Neurosci. 2016;8:52. https://doi.org/10.3389/fnagi.2016.00052.
Article
PubMed
PubMed Central
Google Scholar
Petersen C, Nolan AL, de Paula França Resende E, et al. Alzheimer’s disease clinical variants show distinct regional patterns of neurofibrillary tangle accumulation. Acta Neuropathol. 2019;138:597–612. https://doi.org/10.1007/s00401-019-02036-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koedam EL, Lauffer V, van der Vlies AE, van der Flier WM, Scheltens P, Pijnenburg YA. Early-versus late-onset Alzheimer’s disease: more than age alone. J Alzheimers Dis. 2010;19:1401–8. https://doi.org/10.3233/JAD-2010-1337.
Article
PubMed
Google Scholar
Mendez MF, Lee AS, Joshi A, Shapira JS. Nonamnestic presentations of early-onset Alzheimer’s disease. Am J Alzheimers Dis Other Dement. 2012;27:413–20. https://doi.org/10.1177/1533317512454711.
Article
Google Scholar
Marra C, et al. Apolipoprotein E epsilon4 allele differently affects the patterns of neuropsychological presentation in early- and late-onset Alzheimer’s disease patients. Dement Geriatr Cogn Disord. 2004;18:125–31.
Article
CAS
Google Scholar
Snowden JS, et al. Cognitive phenotypes in Alzheimer’s disease and genetic risk. Cortex. 2007;43:835–45.
Article
Google Scholar
van der Vlies AE, Pijnenburg YAL, Koene T, Klein M, Kok A, Scheltens P, van der Flier WM. Cognitive impairment in Alzheimer’s disease is modified by APOE genotype. Dement Geriatr Cogn Disord. 2007;24:98–103. https://doi.org/10.1159/000104467.
Article
CAS
PubMed
Google Scholar
Weintraub S, Teylan M, Rader B, Chan KCG, Bollenbeck M, Kukull WA, Coventry C, Rogalski E, Bigio E, Mesulam MM. APOE is a correlate of phenotypic heterogeneity in Alzheimer disease in a national cohort. Neurology. 2020;9:e607–12. https://doi.org/10.1212/WNL.0000000000008666.
Article
Google Scholar
Wolk DA, Dickerson BC, Alzheimer's Disease Neuroimaging Initiative. Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2010;107:10256–61. https://doi.org/10.1073/pnas.1001412107.
Article
PubMed
PubMed Central
Google Scholar
Rahkonen T, Eloniemi-Sulkava U, Rissanen S, Vatanen A, Viramo P, Sulkava R. Dementia with Lewy bodies according to the consensus criteria in a general population aged 75 years or older. J Neurol Neurosurg Psychiatry. 2003;74:720–4. https://doi.org/10.1136/jnnp.74.6.720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuang D, Leverenz JB, Lopez OL, et al. APOE ϵ4 increases risk for dementia in pure synucleinopathies. JAMA Neurol. 2013;70:223–8. https://doi.org/10.1001/jamaneurol.2013.600.
Article
PubMed
PubMed Central
Google Scholar
Lambon Ralph MA, Powell J, Howard D, Whitworth AB, Garrard P, Hodges JR. Semantic memory is impaired in both dementia with Lewy bodies and dementia of Alzheimer’s type: a comparative neuropsychological study and literature review. J Neurol Neurosurg Psychiatry. 2001;70:149–56. https://doi.org/10.1136/jnnp.70.2.149.
Article
CAS
PubMed
Google Scholar
Noe E, Marder K, Bell KL, Jacobs DM, Manly JJ, Stern Y. Comparison of dementia with Lewy bodies to Alzheimer’s disease and Parkinson’s disease with dementia. Mov Disord. 2004;19:60–7. https://doi.org/10.1002/mds.10633.
Article
PubMed
Google Scholar
Hamilton JM, Salmon DP, Galasko D, et al. A comparison of episodic memory deficits in neuropathologically-confirmed dementia with Lewy bodies and Alzheimer’s disease. J Int Neuropsychol Soc. 2004;10:689–97. https://doi.org/10.1017/S1355617704105043.
Article
PubMed
Google Scholar
Braak H, Rüb U, Jansen Steur EN, Del Tredici K, de Vos RA. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology. 2005;64(8):1404–10.
Article
CAS
Google Scholar
Marui W, Iseki E, Nakai T, et al. Progression and staging of Lewy pathology in brains from patients with dementia with Lewy bodies. J Neurol Sci. 2002;195(2):153–9.
Article
Google Scholar
Beekly DL, Ramos EM, Lee WW, et al. The National Alzheimer’s Coordinating Center (NACC) database: the uniform data set. Alzheimer Dis Assoc Disord. 2007;21:249–58.
Article
Google Scholar
Montine TJ, Monsell SE, Beach TG, et al. Multisite assessment of NIA-AA guidelines for the neuropathologic evaluation of Alzheimer’s disease. Alzheimers Dement. 2016;12:164–9. https://doi.org/10.1016/j.jalz.2015.07.49.
Article
PubMed
Google Scholar
Hachinski VC, Iliff LD, Zilhka E, et al. Cerebral blood flow in dementia. Arch Neurol. 1975;32:632–7.
Article
CAS
Google Scholar
Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4.
Article
CAS
Google Scholar
Weintraub S, Salmon D, Mercaldo, et al. The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): the neuropsychologic test battery. Alz Dis Assoc Disord. 2009;23:91–101.
Article
Google Scholar
Wechsler D. The Wechsler Adult Intelligence Scale – Revised. San Antonio: The Psychological Corporation; 1981.
Google Scholar
Army Individual Test Battery. Department of Health and Human Services. Washington, DC: War Department, Adjutant General’s Office; 1944.
Google Scholar
Kaplan E, Goodglass H, Weintraub S. Boston Naming Test. Philadelphia: Lea & Febiger; 1983.
Google Scholar
Strauss E, Sherman EMS, Spreen O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. 3rd ed. New York: Oxford University Press; 2006.
Google Scholar
Wechsler D. Wechsler Memory Scale—Revised. San Antonio: The Psychological Corporation; 1987.
Google Scholar
Bookheimer S, Burggren A. APOE-4 genotype and neurophysiological vulnerability to Alzheimer’s and cognitive aging. Annu Rev Clin Psychol. 2009;5:343–62. https://doi.org/10.1146/annurev.clinpsy.032408.153625.
Article
PubMed
PubMed Central
Google Scholar
Bales KR, Verina T, Dodel RC, et al. Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet. 1997;17:263–4. https://doi.org/10.1038/ng1197-263.
Article
CAS
PubMed
Google Scholar
Schmechel DE, Saunders AM, Strittmatter WJ, et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:9649–53. https://doi.org/10.1073/pnas.90.20.9649.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews-Zwilling Y, Bien-Ly N, Xu Q, et al. Apolipoprotein E4 causes age- and tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci. 2010;30:13707–17. https://doi.org/10.1523/JNEUROSCI.4040-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arold S, Sullivan P, Bilousova T, Teng E, Miller CA, Poon WW, Vinters HV, Cornwell LB, Saing T, GMC, et al. Apolipoprotein E level and cholesterol are associated with reduced synaptic amyloid beta in Alzheimer’s disease and apoE TR mouse cortex. Acta Neuropathol. 2012;123:39–52.
Article
CAS
Google Scholar
Hesse R, Hurtado ML, Jackson RJ, et al. Comparative profiling of the synaptic proteome from Alzheimer’s disease patients with focus on the APOE genotype. Acta Neuropathol Commun. 2019;7:214. https://doi.org/10.1186/s40478-019-0847-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30:572–80.
Article
CAS
Google Scholar
Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, Tsai RM, Spina S, Grinberg LT. Rojas JC et al ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549:523–7.
Article
Google Scholar
Reiman EM, Chen K, Alexander GE, et al. Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad Sci U S A. 2005;102:8299–302. https://doi.org/10.1073/pnas.0500579102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baek MS, Cho H, Lee HS, et al. Effect of APOE ε4 genotype on amyloid-β and tau accumulation in Alzheimer’s disease. Alz Res Ther. 2020;12:140. https://doi.org/10.1186/s13195-020-00710-6.
Article
CAS
Google Scholar
Liang WS, Reiman EM, Valla J, et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A. 2008;105:4441–6. https://doi.org/10.1073/pnas.0709259105.
Article
PubMed
PubMed Central
Google Scholar
Jak AJ, Urban S, McCauley A, et al. Profile of hippocampal volumes and stroke risk varies by neuropsychological definition of mild cognitive impairment. J Int Neuropsychol Soc. 2009;15:890–7. https://doi.org/10.1017/S1355617709090638.
Article
PubMed
PubMed Central
Google Scholar
Umfleet L, Butts A, Janecek J, et al. Memory performance and quantitative neuroimaging software in mild cognitive impairment: a concurrent validity study. J Int Neuropsychol Soc. 2020;26:954–62. https://doi.org/10.1017/S1355617720000454.
Article
PubMed
Google Scholar
Kantarci K, Ferman TJ, Boeve BF, et al. Focal atrophy on MRI and neuropathologic classification of dementia with Lewy bodies. Neurology. 2012;79:553–60. https://doi.org/10.1212/WNL.0b013e31826357a5.
Article
PubMed
PubMed Central
Google Scholar
Saeed U, Mirza SS, MacIntosh BJ, et al. APOE-ε4 associates with hippocampal volume, learning, and memory across the spectrum of Alzheimer’s disease and dementia with Lewy bodies. Alzheimers Dement. 2018;14:1137–47. https://doi.org/10.1016/j.jalz.2018.04.005.
Article
PubMed
Google Scholar
Cacciaglia R, Molinuevo JL, Falcón C, et al. Effects of APOE-ε4 allele load on brain morphology in a cohort of middle-aged healthy individuals with enriched genetic risk for Alzheimer’s disease. Alzheimers Dement. 2018;14:902–12. https://doi.org/10.1016/j.jalz.2018.01.016.
Article
PubMed
Google Scholar
Moroney JT, Bagiella E, Desmond DW, et al. Meta-analysis of the Hachinski ischemic score in pathologically verified dementias. Neurology. 1997;49:1096–105. https://doi.org/10.1212/wnl.49.4.1096.
Article
CAS
PubMed
Google Scholar
Kraybill ML, Larson EB, Tsuang DW, et al. Cognitive differences in dementia patients with autopsy-verified AD, Lewy body pathology, or both. Neurology. 2005;64:2069–73.
Article
CAS
Google Scholar
Hamilton RL. Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol. 2000;10:378–84. https://doi.org/10.1111/j.1750-3639.2000.tb00269.x.
Article
CAS
PubMed
Google Scholar
Leverenz JB, Fishel MA, Peskind ER, et al. Lewy body pathology in familial Alzheimer disease: evidence for disease- and mutation-specific pathologic phenotype. Arch Neurol. 2006;63:370–6.
Article
Google Scholar
Leverenz JB, Hamilton R, Tsuang DW, et al. Empiric refinement of the pathologic assessment of Lewy-related pathology in the dementia patient. Brain Pathol. 2008;18:220–4. https://doi.org/10.1111/j.1750-3639.2007.00117.x.
Article
PubMed
PubMed Central
Google Scholar