Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278:1349–56.
Article
CAS
PubMed
Google Scholar
Martins CA, Oulhaj A, de Jager CA, et al. APOE alleles predict the rate of cognitive decline in Alzheimer disease: a nonlinear model. Neurology. 2005;65:1888–93.
Article
CAS
PubMed
Google Scholar
Zhong N, Weisgraber KH. Understanding the association of apolipoprotein E4 with Alzheimer disease: clues from its structure. J Biol Chem. 2009;284:6027–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y. Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer’s disease. Trends Mol Med. 2010;16:287–94.
Article
CAS
PubMed
Google Scholar
Bales KR, Liu F, Wu S, et al. Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci. 2009;29:6771–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanekiyo T, Xu H, Bu G. ApoE and Abeta in Alzheimer’s disease: accidental encounters or partners? Neuron. 2014;81:740–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hedden T, Van Dijk KR, Becker JA, et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci. 2009;29:12686–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron. 2003;38:547–54.
Article
CAS
PubMed
Google Scholar
Damoiseaux JS, Prater KE, Miller BL, et al. Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol Aging. 2012;33:828 e19–30.
Article
Google Scholar
Trachtenberg AJ, Filippini N, Ebmeier KP, et al. The effects of APOE on the functional architecture of the resting brain. Neuroimage. 2012;59:565–72.
Article
CAS
PubMed
Google Scholar
Machulda MM, Jones DT, Vemuri P, et al. Effect of APOE epsilon4 status on intrinsic network connectivity in cognitively normal elderly subjects. Arch Neurol. 2011;68:1131–6.
Article
PubMed
PubMed Central
Google Scholar
Westlye ET, Lundervold A, Rootwelt H, et al. Increased hippocampal default mode synchronization during rest in middle-aged and elderly APOE epsilon4 carriers: relationships with memory performance. J Neurosci. 2011;31:7775–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang N, Lan D, Gerbod-Giannone M, et al. ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem. 2003;278:42906–12.
Article
CAS
PubMed
Google Scholar
Rosenthal SL, Kamboh MI. Late-onset Alzheimer’s disease genes and the potentially implicated pathways. Curr Genet Med Rep. 2014;2:85–101.
Article
PubMed
PubMed Central
Google Scholar
Sakae N, Liu CC, Shinohara M, et al. ABCA7 deficiency accelerates amyloid-beta generation and Alzheimer’s neuronal pathology. J Neurosci. 2016;36:3848–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shulman JM, Chen K, Keenan BT, et al. Genetic susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurol. 2013;70:1150–7.
Article
PubMed
PubMed Central
Google Scholar
Vasquez JB, Fardo DW, Estus S. ABCA7 expression is associated with Alzheimer’s disease polymorphism and disease status. Neurosci Lett. 2013;556:58–62.
Article
CAS
PubMed
Google Scholar
Drzezga A, Grimmer T, Henriksen G, et al. Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology. 2009;72:1487–94.
Article
CAS
PubMed
Google Scholar
Kline A. Apolipoprotein E, amyloid-ss clearance and therapeutic opportunities in Alzheimer’s disease. Alzheimers Res Ther. 2012;4:32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engelman CD, Koscik RL, Jonaitis EM, et al. Interaction between two cholesterol metabolism genes influences memory: findings from the Wisconsin Registry for Alzheimer’s Prevention. J Alzheimers Dis. 2013;36:749–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Margulies DS, Vincent JL, Kelly C, et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci U S A. 2009;106:20069–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones DT, Machulda MM, Vemuri P, et al. Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology. 2011;77:1524–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews-Hanna JR, Reidler JS, Sepulcre J, et al. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010;65:550–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones DT, Knopman DS, Gunter JL, et al. Cascading network failure across the Alzheimer’s disease spectrum. Brain. 2016;139:547–62.
Article
PubMed
Google Scholar
Montembeault M, Rouleau I, Provost JS, et al. Altered gray matter structural covariance networks in early stages of Alzheimer’s disease. Cereb Cortex. 2016;26:2650–62.
Article
PubMed
Google Scholar
Whitfield-Gabrieli S, Moran JM, Nieto-Castanon A, et al. Associations and dissociations between default and self-reference networks in the human brain. Neuroimage. 2011;55:225–32.
Article
PubMed
Google Scholar
Chang YT, Huang CW, Chang YH, et al. Amyloid burden in the hippocampus and default mode network: relationships with gray matter volume and cognitive performance in mild stage Alzheimer disease. Medicine. 2015;94:e763.
Article
PubMed
PubMed Central
Google Scholar
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.
Article
PubMed
PubMed Central
Google Scholar
Rosen WG, Terry RD, Fuld PA, et al. Pathological verification of ischemic score in differentiation of dementias. Ann Neurol. 1980;7:486–8.
Article
CAS
PubMed
Google Scholar
Chang YT, Huang CW, Chen NC, et al. Hippocampal amyloid burden with downstream fusiform gyrus atrophy correlate with face matching task scores in early stage Alzheimer’s disease. Front Aging Neurosci. 2016;8:145.
PubMed
PubMed Central
Google Scholar
Del Bo R, Comi GP, Bresolin N, et al. The apolipoprotein E epsilon4 allele causes a faster decline of cognitive performances in Down’s syndrome subjects. J Neurol Sci. 1997;145:87–91.
Article
PubMed
Google Scholar
Chang YT, Mori E, Suzuki M, et al. APOE-MS4A genetic interactions are associated with executive dysfunction and network abnormality in clinically mild Alzheimer’s disease. Neuroimage Clin. 2019;21:101621.
Article
PubMed
Google Scholar
Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–41.
Article
PubMed
Google Scholar
Chang CC, Kramer JH, Lin KN, et al. Validating the Chinese version of the Verbal Learning Test for screening Alzheimer’s disease. J Int Neuropsychol Soc. 2010;16:244–51.
Article
PubMed
Google Scholar
Reitan RM. The relation of the trail making test to organic brain damage. J Consult Psychol. 1955;19:393–4.
Article
CAS
PubMed
Google Scholar
Boone KB. The Boston qualitative scoring system for the Rey-Osterrieth complex figure. J Clin Exp Neuropsychol. 2000;22:430–4.
Article
CAS
PubMed
Google Scholar
Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4.
Article
CAS
PubMed
Google Scholar
Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.
Article
PubMed
Google Scholar
Roalf DR, Moberg PJ, Xie SX, et al. Comparative accuracies of two common screening instruments for classification of Alzheimer’s disease, mild cognitive impairment, and healthy aging. Alzheimers Dement. 2013;9:529–37.
Article
PubMed
Google Scholar
Burwell RD, Amaral DG. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol. 1998;398:179–205.
Article
CAS
PubMed
Google Scholar
Agster KL, Burwell RD. Cortical efferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Hippocampus. 2009;19:1159–86.
Article
PubMed
PubMed Central
Google Scholar
Liu X, Jiang W, Yuan Y. Aberrant default mode network underlying the cognitive deficits in the patients with late-onset depression. Front Aging Neurosci. 2018;10:310.
Article
PubMed
PubMed Central
Google Scholar
Riedel BC, Thompson PM, Brinton RD. Age, APOE and sex: triad of risk of Alzheimer’s disease. J Steroid Biochem Mol Biol. 2016;160:134–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnes J, Dickerson BC, Frost C, et al. Alzheimer’s disease first symptoms are age dependent: evidence from the NACC dataset. Alzheimers Dement. 2015;11:1349–57.
Article
PubMed
PubMed Central
Google Scholar
Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem. 2008;104:1145–66.
Article
CAS
PubMed
Google Scholar
Nakajima K, Kohsaka S. Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4:65–84.
Article
CAS
PubMed
Google Scholar
Cope TE, Rittman T, Borchert RJ, et al. Tau burden and the functional connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2018;141:550–67.
Article
PubMed
PubMed Central
Google Scholar
Li H, Karl T, Garner B. Understanding the function of ABCA7 in Alzheimer’s disease. Biochem Soc Trans. 2015;43:920–3.
Article
CAS
PubMed
Google Scholar
Safieh M, Korczyn AD, Michaelson DM. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med. 2019;17:64.
Article
PubMed
PubMed Central
Google Scholar
Boehm-Cagan A, Michaelson DM. Reversal of apoE4-driven brain pathology and behavioral deficits by bexarotene. J Neurosci. 2014;34:7293–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramirez LM, Goukasian N, Porat S, et al. Common variants in ABCA7 and MS4A6A are associated with cortical and hippocampal atrophy. Neurobiol Aging. 2016;39:82–9.
Article
CAS
PubMed
Google Scholar
De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol. 2019;138:201–20.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhou Y, Dougherty JH Jr, Hubner KF, et al. Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer’s disease and mild cognitive impairment. Alzheimers Dement. 2008;4:265–70.
Article
PubMed
Google Scholar
Chang C, Glover GH. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage. 2010;50:81–98.
Article
PubMed
Google Scholar
Ystad M, Eichele T, Lundervold AJ, et al. Subcortical functional connectivity and verbal episodic memory in healthy elderly--a resting state fMRI study. Neuroimage. 2010;52:379–88.
Article
PubMed
Google Scholar
Fleisher AS, Sherzai A, Taylor C, et al. Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage. 2009;47:1678–90.
Article
PubMed
Google Scholar
Dickerson BC, Sperling RA. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia. 2008;46:1624–35.
Article
PubMed
Google Scholar
Ghaem O, Mellet E, Crivello F, et al. Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport. 1997;8:739–44.
Article
CAS
PubMed
Google Scholar
Kim J, Kim YH, Lee JH. Hippocampus-precuneus functional connectivity as an early sign of Alzheimer’s disease: a preliminary study using structural and functional magnetic resonance imaging data. Brain Res. 2013;1495:18–29.
Article
CAS
PubMed
Google Scholar
Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage. 2006;31:496–504.
Article
PubMed
Google Scholar
Blautzik J, Keeser D, Paolini M, et al. Functional connectivity increase in the default-mode network of patients with Alzheimer’s disease after long-term treatment with Galantamine. Eur Neuropsychopharmacol. 2016;26:602–13.
Article
CAS
PubMed
Google Scholar