Participants and study design
Patients were enrolled at the IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli in Brescia (Italy) as part of the NetCogBS project [25] (ClinicalTrials.gov identifier NCT03422250). Patients underwent a clinical, cognitive, and imaging assessment. Cognitive and imaging variables were collected also in a group of age-matched healthy controls (HC). The study was conducted in accordance with the Declaration of Helsinki principles and approved by the local ethics committee of the IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli in Brescia (Italy). Written informed consent was obtained from all participants.
We included patients with a clinical diagnosis of AD or bvFTD [3, 26]. Inclusion criteria for patients were (i) age between 50 and 85 years, (ii) ability to provide written informed consent, and (iii) availability of a collateral source. We excluded patients with moderate/severe dementia (Mini-Mental State Examination (MMSE) score < 18), any medical condition that could interfere with assessments, and contraindications for MRI (metal implants, pacemakers, prosthetic heart valves, claustrophobia). Inclusion criteria for HC were a normal neuropsychological performance on the cognitive battery, with no personal history of neurological, psychiatric, or cerebrovascular disorders. Exclusion criteria are reported in Pini et al. [25]. For the present study, we included all the patients with available cognitive assessment and MRI examination performed at the baseline. The whole procedure of analysis is depicted in Fig. 1.
MRI acquisition
Rs-fMRI and structural MRI data were acquired on a 3T Philips Achieva system equipped with an 8-channel head coil (University Hospital of Verona, Italy). The following sequences and parameters were used: 2D gradient echo echo-planar imaging (GRE-EPI) sequence for functional connectivity analysis (time repetition; TR/echo time; TE=3000/30ms; flip angle=80°, resolution=3mm isotropic; 48 axial slices; volumes=200) and 3D structural T1-weighted (TR/TE=8/3.7ms; flip angle=8°; resolution=1mm isotropic; 180 sagittal slices). Four fMRI volumes with reversed phase encoding directions were acquired for distortion correction purposes. Subjects were instructed to lie still in the scanner and to keep eyes closed but not to fall asleep while images were collected.
Imaging processing and computation
The first 5 scans were removed for the stability of the signal. Scans were corrected for distortions using the FMRIB’s Software Library (FSL, fmrib.ox.ac.uk/fsl/) topup tool [27]. Imaging preprocessing was performed according to a previously validated approach used by our group [28]. Specifically, we (i) computed motion parameters through a custom preprocessing script; (ii) computed the affine registration matrix between rs-fMRI and the T1 image [29]; (iii) processed the T1 image using FreeSurfer version 6.0 (surfer.nmr.mgh.harvard.edu) to segment gray and white matter, and parcellate the cortex into 114 cortical regions using a subparcellation of the Desikan-Killiany atlas [30]; and (iv) applied the brain parcellation to the rs-fMRI data using the computed affine registration matrix. The BOLD signal was corrected by regressing out effects of motion (six motion parameters) and mean signal in CSF and left-right white matter (from Freesurfer). The signal was additionally band-pass filtered (0.01–0.1 Hz) and scrubbed by removing frames with potential movement artifacts (framewise displacement larger than 0.25 and a DVARS value 1.5×IQR above the third quartile). After this procedure, 1 bvFTD patient was excluded due to excessive motion. Additionally, 1 frame preceding each frame with potential movement artifacts was also removed to accommodate temporal smoothing of the signal. Finally, for each cognitive network from Yeo’s template, we calculated the average connectivity strength, computed as the correlation average of each mean time-course parcel included in the network template according to the following formula:
$$FC\ net=\frac{\sum_{k=1}^m\textrm{corr}(ij)}{m}$$
where corr(ij) represents Pearson’s correlation between each pair of parcels belonging to a specific cognitive network from Yeo’s template (DMN, DAN, FPN, and VAN), and m represents the number of all the pairs belonging to the network.
Finally, hippocampal volume was computed through FreeSurfer. For each subject, left and right hippocampal volumes were first corrected for intracranial volume and then averaged to compute a unique hippocampal metric. This metric was used to investigate the association with cognitive components.
Cognitive and clinical assessments
The neuropsychological evaluation included the following tests: Auditory Verbal Learning Test, immediate and delayed recall [31], Rey–Osterrieth Complex Figure recall [32], story recall [33], paired associates learning test (PAL) [34], digit span backward test [35], verbal fluency (phonemic and semantic) tasks [36], Token Test [37], Trail Making Test part A (TMT-A) and part B (TMT-B) [38, 39], Rey–Osterrieth Complex Figure copy [32], Reading the Mind in the Eyes [40], and the 60 Ekman faces tests [41]. Patients’ score at each test was z-transformed based on the performance distribution of the whole sample (patients and age-matched HC). z-scores for reaction times (i.e., PAL, TMT-A, and TMT-B) were inverted for congruency with performance scores of the other tests, i.e., higher scores representing better performance. Due to the high proportion of missing value in the TMT-B (50% missing data in AD and 34% in bvFTD), this test was excluded from the PCA analysis, to avoid possible biases. The clinical assessment included the Clinical Dementia Rating (CDR) Scale (global and Sum of Boxes (CDR-SOB) scores) [42], the Neuropsychiatric Inventory (NPI) [43], the Frontal Behavior Inventory (only for bvFTD) [44], and the Instrumental Activities of Daily Living scale (IADL) [45]. Whole-population-based cognitive z-scores were then used to compute both PCA and composite scores.
Cognitive component characterization
The subjects × cognitive z-scores matrix was fed into a PCA using the Statistical Package for the Social Sciences (SPSS – Inc., version 23.0. Chicago). We expected the components to be correlated, so an oblique rotation was used, in line with the previous literature [23]. Components had to satisfy two criteria: (i) the eigenvalues had to be > 1; (ii) the percentage of variance accounted for had to be > 5%. We excluded 1 AD and 1 bvFTD patient due to cognitive data missing to avoid possible biases in the PCA computation.
We further compared the cognitive components (referred to as cogPC) with cognitive composite scores. z-scores from each test within a specific domain were averaged to compute 5 different composite scores, according to previously published procedure [25]: memory included the Auditory Verbal Learning Test, immediate and delayed recall, the Rey–Osterrieth Complex Figure recall, the story recall, the digit span backward test, and the paired associates learning test; language included the verbal fluency (phonemic and semantic) tasks and the Token Test; executive functions included the Trail Making Test part A and part B; visuo-constructional abilities included the Rey–Osterrieth Complex Figure copy and the clock test; emotion recognition included the Reading the Mind in the Eyes and the 60 Ekman faces tests. We compared each cogPC with the composite scores by means of a linear regression analysis. Different models were computed, each one having cogPC and composite scores as dependent and independent variables, respectively. We further investigated Spearman’s correlation between each cogPC with clinical outcomes (i.e., IADL, NPI, CDR-SOB, and FBI (only in bvFTD) outcomes). Statistical differences among groups in cogPC scores were assessed with the nonparametric Kruskal–Wallis test (AD vs bvFTD vs HC). Finally, to further characterize cogPC scores, we investigated the (Spearman’s) relationship between each component and hippocampal volume.
Relationship between cognitive components and cognitive networks
Baseline sociodemographic and cognitive profile of patients and controls were assessed with the Kruskal–Wallis or chi-squared tests as appropriate. A Mann–Whitney test was performed to investigate FC network differences between each patient group and HC (AD vs HC; bvFTD vs HC). We investigated both convergent and divergent associations between cogPC scores and network FC in the whole cohort. Statistical analyses and figures were done with Python v.3.
Univariate analysis
Convergence between FC and cognition in the whole cohort was investigated by means of a bootstrapping approach for Spearman’s correlations with 5000 samples, aimed at investigating the association between network FC and cognitive components in the whole dataset. Specifically, this analysis was performed between the four cognitive networks from Yeo’s atlas (DMN, FPN, DAN, and VAN) with each cogPC score. Moreover, we implemented a stepwise-removal-of-data analysis to confirm the bootstrapping results (see the supplementary material for the details of this analysis).
Divergent cognitive-connectivity coupling was assessed through a general linear model (GLM), assessing the diagnosis*network interaction for each cogPC. For the interaction analysis, we considered AD, bvFTD, and HC as diagnostic factors. For each analysis, we excluded network data points above or below the 1.5 interquartile range. Finally, the same GLM model was repeated only for the patient cohort (AD and bvFTD).
Multivariate analysis
To confirm the relationship between cognitive scores and cognitive networks, we applied a canonical correlation analysis (CCA). This approach quantifies the multivariate association between patterns of network connectivity measures and cognitive scores, seeking the maximal correlation between linear combinations of variables in two different sets, i.e., FC and cognitive performance. Cognitive networks showing robust convergent univariate associations (i.e., the convergent correlation-wise analysis) were included as the network dataset. In addition, the visual and sensorimotor networks were included as control networks, as we did not expect a significant association within a low-dimensional cognitive space in this cohort, as one would expect for different brain disorders, such as stroke [23, 46]. Before CCA, network FC values were z-scored according to the network distribution values of the whole cohort. The five cognitive z-scored composite scores were included as the cognitive dataset (see the “Cognitive component characterization” section). CCA modes exhibiting a significant correlation between variates from the whole group were compared between groups through analysis of variance (ANOVA), testing both main effects and interactions.