Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: reviewing progress toward improved AD clinical trials. Alzheimers Dement. 2017;13(4):e1–85.
Article
PubMed
PubMed Central
Google Scholar
Adaikkan C, Tsai L-H. Gamma entrainment: impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci. 2020;43(1):24–41.
Article
CAS
PubMed
Google Scholar
Singer AC, Martorell AJ, Douglas JM, Abdurrob F, Attokaren MK, Tipton J, et al. Noninvasive 40-Hz light flicker to recruit microglia and reduce amyloid beta load. Nat Protoc. 2018;13(8):1850–68.
Article
CAS
PubMed
Google Scholar
Adaikkan C, Middleton SJ, Marco A, Pao PC, Mathys H, Kim DNW, et al. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron. 2019;102(5):929-43.e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540(7632):230–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martorell AJ, Paulson AL, Suk HJ, Abdurrob F, Drummond GT, Guan W, et al. Multi-sensory gamma stimulation ameliorates Alzheimer-associated pathology and improves cognition. Cell. 2019;177(2):256-71.e22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prvulovic D, Hubl D, Sack A, Melillo L, Maurer K, Frölich L, et al. Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage. 2002;17(3):1403–14.
Article
CAS
PubMed
Google Scholar
Vannini P, Almkvist O, Dierks T, Lehmann C, Wahlund L-O. Reduced neuronal efficacy in progressive mild cognitive impairment: a prospective fMRI study on visuospatial processing. Psychiatry Res. 2007;156(1):43–57.
Article
PubMed
Google Scholar
Brewer AA, Barton B. Visual cortex in aging and Alzheimer’s disease: changes in visual field maps and population receptive fields. Front Psychol. 2014;5:74.
Article
PubMed
PubMed Central
Google Scholar
Baillet S. Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci. 2017;20(3):327.
Article
CAS
PubMed
Google Scholar
Başar E, Basar-Eroglu C, Karakas S, Schurmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 2001;39(2–3):241–8.
Article
PubMed
Google Scholar
Wiesman AI, O’Neill J, Mills MS, Robertson KR, Fox HS, Swindells S, et al. Aberrant occipital dynamics differentiate HIV-infected patients with and without cognitive impairment. Brain. 2018;141(6):1678–90.
Article
PubMed
PubMed Central
Google Scholar
Oswal A, Brown P, Litvak V. Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Curr Opin Neurol. 2013;26(6):662–70.
Article
PubMed
Google Scholar
Wiesman AI, Heinrichs-Graham E, Proskovec AL, McDermott TJ, Wilson TW. Oscillations during observations: dynamic oscillatory networks serving visuospatial attention. Hum Brain Mapp. 2017;38(10):5128–40.
Article
PubMed
PubMed Central
Google Scholar
Wiesman AI, Mills MS, McDermott TJ, Spooner RK, Coolidge NM, Wilson TW. Polarity-dependent modulation of multi-spectral neuronal activity by transcranial direct current stimulation. Cortex. 2018;108:222–33.
Article
PubMed
PubMed Central
Google Scholar
Wiesman AI, Wilson TW. The impact of age and sex on the oscillatory dynamics of visuospatial processing. Neuroimage. 2019;185:513–20.
Article
PubMed
Google Scholar
Kelly SP, Lalor EC, Reilly RB, Foxe JJ. Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol. 2006;95(6):3844–51.
Article
PubMed
Google Scholar
Worden MS, Foxe JJ, Wang N, Simpson GV. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci. 2000;20(6):RC63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doesburg SM, Roggeveen AB, Kitajo K, Ward LM. Large-scale gamma-band phase synchronization and selective attention. Cereb Cortex. 2008;18(2):386–96.
Article
PubMed
Google Scholar
Killanin AD, Wiesman AI, Heinrichs-Graham E, Groff BR, Frenzel MR, Eastman JA, et al. Development and sex modulate visuospatial oscillatory dynamics in typically-developing children and adolescents. NeuroImage. 2020;221:117192.
Article
PubMed
Google Scholar
VerMaas JR, Lew BJ, Trevarrow MP, Wilson TW, Kurz MJ. Children with cerebral palsy have altered occipital cortical oscillations during a visuospatial attention task. Cereb Cortex. 2021;31(7):3353–62.
Article
PubMed
PubMed Central
Google Scholar
Gould IC, Rushworth MF, Nobre AC. Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. J Neurophysiol. 2011;105(3):1318–26.
Article
PubMed
PubMed Central
Google Scholar
Morrison C, Rabipour S, Taler V, Sheppard C, Knoefel F. Visual event-related potentials in mild cognitive impairment and Alzheimer’s disease: a literature review. Curr Alzheimer Res. 2019;16(1):67–89.
Article
CAS
PubMed
Google Scholar
Yener GG, Başar E. Sensory evoked and event related oscillations in Alzheimer’s disease: a short review. Cogn Neurodyn. 2010;4(4):263–74.
Article
PubMed
PubMed Central
Google Scholar
Yener GG, Kurt P, Emek-Savaş DD, Güntekin B, Başar E. Reduced visual event-related delta oscillatory responses in amnestic mild cognitive impairment. J Alzheimers Dis. 2013;37(4):759–67.
Article
PubMed
Google Scholar
Tülay EE, Güntekin B, Yener G, Bayram A, Başar-Eroğlu C, Demiralp T. Evoked and induced EEG oscillations to visual targets reveal a differential pattern of change along the spectrum of cognitive decline in Alzheimer’s disease. Int J Psychophysiol. 2020;155:41–8.
Article
PubMed
Google Scholar
Paitel ER, Samii MR, Nielson KA. A systematic review of cognitive event-related potentials in mild cognitive impairment and Alzheimer’s disease. Behav Brain Res. 2020;396:112904.
Article
PubMed
CAS
Google Scholar
Osipova D, Ahveninen J, Jensen O, Ylikoski A, Pekkonen E. Altered generation of spontaneous oscillations in Alzheimer’s disease. Neuroimage. 2005;27(4):835–41.
Article
PubMed
Google Scholar
Wiesman AI, Murman DL, May PE, Schantell M, Losh RA, Johnson HJ, et al. Spatio-spectral relationships between pathological neural dynamics and cognitive impairment along the Alzheimer’s disease spectrum. Alzheimers Dement. 2021;13(1):e12200.
Google Scholar
Van Deursen J, Vuurman E, Verhey F, van Kranen-Mastenbroek V, Riedel W. Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment. J Neural Transm. 2008;115(9):1301–11.
Article
PubMed
Google Scholar
Mandal PK, Joshi J, Saharan S. Visuospatial perception: an emerging biomarker for Alzheimer’s disease. J Alzheimers Dis. 2012;31(s3):S117–35.
Article
PubMed
Google Scholar
Salimi S, Irish M, Foxe D, Hodges JR, Piguet O, Burrell JR. Can visuospatial measures improve the diagnosis of Alzheimer’s disease? Alzheimers Dement. 2018;10:66–74.
Google Scholar
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.
Article
PubMed
PubMed Central
Google Scholar
Wechsler D. Advanced clinical solutions for the WAIS-IV and WMS-IV. San Antonio: The Psychological Corporation; 2009.
Google Scholar
Heaton R, Miller SW, Taylor MJ, Grant I. Revised comprehensive norms for an expanded Halstead-Reitan Battery: demographically adjusted neuropsychological norms for African American and Caucasian adults. Lutz: Psychological Assessment Resources; 2004.
Google Scholar
Benedict RH, Schretlen D, Groninger L, Brandt J. Hopkins Verbal Learning Test–Revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol. 1998;12(1):43–55.
Article
Google Scholar
Wechsler D. Wechsler adult intelligence scale–Fourth Edition (WAIS–IV), vol. 22. San Antonio: NCS Pearson; 2008. p. 1.
Google Scholar
Wechsler D. WMS-IV: Wechsler memory scale. 4th ed. New York: The Psychological Corporation; 2009.
Google Scholar
Brandt J, Benedict RH. Hopkins verbal learning test--revised: professional manual. Lutz: Psychological Assessment Resources; 2001.
Pfeffer RI, Kurosaki TT, Harrah C Jr, Chance JM, Filos S. Measurement of functional activities in older adults in the community. J Gerontol. 1982;37(3):323–9.
Article
CAS
PubMed
Google Scholar
Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.
Article
PubMed
Google Scholar
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.
Article
CAS
PubMed
Google Scholar
Minoshima S, Drzezga AE, Barthel H, Bohnen N, Djekidel M, Lewis DH, et al. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med. 2016;57(8):1316–22.
Article
CAS
PubMed
Google Scholar
Joshi AD, Pontecorvo MJ, Clark CM, Carpenter AP, Jennings DL, Sadowsky CH, et al. Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects. J Nucl Med. 2012;53(3):378–84.
Article
CAS
PubMed
Google Scholar
Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33(1):127–38.
Article
PubMed
Google Scholar
Jack CR Jr, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 2017;13(3):205–16.
Article
PubMed
Google Scholar
Groff BR, Wiesman AI, Rezich MT, O’Neill J, Robertson KR, Fox HS, et al. Age-related visual dynamics in HIV-infected adults with cognitive impairment. Neurol Neuroimmunol Neuroinflamm. 2020;7(3).
Wiesman AI, Groff BR, Wilson TW. Frontoparietal networks mediate the behavioral impact of alpha inhibition in visual cortex. Cereb Cortex. 2019;29(8):3505135–13.
Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 2006;51(7):1759–68.
Article
CAS
PubMed
Google Scholar
Uusitalo MA, Ilmoniemi RJ. Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput. 1997;35(2):135–40.
Article
CAS
PubMed
Google Scholar
Kovach CK, Gander PE. The demodulated band transform. J Neurosci Methods. 2016;261:135–54.
Article
PubMed
Google Scholar
Papp N, Ktonas P. Critical evaluation of complex demodulation techniques for the quantification of bioelectrical activity. Biomed Sci Instrum. 1977;13:135–45.
CAS
PubMed
Google Scholar
Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R. Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci U S A. 2001;98(2):694–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
Google Scholar
Wickham H. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics. 2011;3(2):180–5.
Engels M, van Der Flier W, Stam C, Hillebrand A, Scheltens P, van Straaten E. Alzheimer’s disease: the state of the art in resting-state magnetoencephalography. Clin Neurophysiol. 2017;128(8):1426–37.
Article
CAS
PubMed
Google Scholar
Mandal PK, Banerjee A, Tripathi M, Sharma A. A comprehensive review of magnetoencephalography (MEG) studies for brain functionality in healthy aging and Alzheimer’s disease (AD). Front Comput Neurosci. 2018;12:60.
Article
PubMed
PubMed Central
Google Scholar
Handel BF, Haarmeier T, Jensen O. Alpha oscillations correlate with the successful inhibition of unattended stimuli. J Cogn Neurosci. 2011;23(9):2494–502.
Article
PubMed
Google Scholar
Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 2010;4:186.
Article
PubMed
PubMed Central
Google Scholar
Vodovozov W, Schneider J, Elzoheiry S, Hollnagel J-O, Lewen A, Kann O. Metabolic modulation of neuronal gamma-band oscillations. Pflügers Arch. 2018;470(9):1377–89.
Article
CAS
PubMed
Google Scholar
Bertrand O, Tallon-Baudry C. Oscillatory gamma activity in humans: a possible role for object representation. Int J Psychophysiol. 2000;38(3):211–23.
Article
CAS
PubMed
Google Scholar
Muthukumaraswamy SD, Singh KD. Visual gamma oscillations: the effects of stimulus type, visual field coverage and stimulus motion on MEG and EEG recordings. Neuroimage. 2013;69:223–30.
Article
CAS
PubMed
Google Scholar
Yener GG, Güntekin B, Tülay E, Başar E. A comparative analysis of sensory visual evoked oscillations with visual cognitive event related oscillations in Alzheimer’s disease. Neurosci Lett. 2009;462(3):193–7.
Article
CAS
PubMed
Google Scholar
Demiralp T, Başar E. Theta rhythmicities following expected visual and auditory targets. Int J Psychophysiol. 1992;13(2):147–60.
Article
CAS
PubMed
Google Scholar
Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, et al. Dynamic brain sources of visual evoked responses. Science. 2002;295(5555):690–4.
Article
CAS
PubMed
Google Scholar
Aisen PS, Cummings J, Jack CR, Morris JC, Sperling R, Frölich L, et al. On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimers Res Ther. 2017;9(1):60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ranasinghe KG, Cha J, Iaccarino L, Hinkley LB, Beagle AJ, Pham J, et al. Neurophysiological signatures in Alzheimer’s disease are distinctly associated with TAU, amyloid-β accumulation, and cognitive decline. Sci Transl Med. 2020;12(534):eaaz4069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coomans EM, Schoonhoven DN, Tuncel H, Verfaillie SC, Wolters EE, Boellaard R, et al. In vivo tau pathology is associated with synaptic loss and altered synaptic function. Alzheimers Res Ther. 2021;13(1):1–13.
Article
CAS
Google Scholar
Lehmann C, Koenig T, Jelic V, Prichep L, John RE, Wahlund L-O, et al. Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J Neurosci Methods. 2007;161(2):342–50.
Article
PubMed
Google Scholar