World Alzheimer Report 2019: Attitudes to dementia. London: Alzheimer’s Disease International; 2019. (Alzheimer’s Disease International.).
2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 2018 Mar 1;14(3):367–429.
Roe CM, Ances BM, Head D, Babulal GM, Stout SH, Grant EA, et al. Incident cognitive impairment: longitudinal changes in molecular, structural and cognitive biomarkers. Brain. 2018;141(11):3233–48. https://doi.org/10.1093/brain/awy244.
Article
PubMed
PubMed Central
Google Scholar
2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 2020;16(3):391–460.
Hill J, Fillit H, Thomas SK, Chang S. Functional impairment, healthcare costs and the prevalence of institutionalisation in patients with Alzheimer’s disease and other dementias. Pharmacoeconomics. 2006;24(3):265–80. https://doi.org/10.2165/00019053-200624030-00006.
Article
PubMed
Google Scholar
Deb A, Sambamoorthi U, Thornton JD, Schreurs B, Innes K. Direct medical expenditures associated with Alzheimer’s and related dementias (ADRD) in a nationally representative sample of older adults – an excess cost approach. Aging Mental Health. 2018;22(5):619–24. https://doi.org/10.1080/13607863.2017.1286454.
Article
PubMed
Google Scholar
Angelucci F, Cechova K, Valis M, Kuca K, Zhang B, Hort J. MicroRNAs in Alzheimer’s disease: diagnostic markers or therapeutic agents? Front Pharmacol. 2019;10. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2019.00665/full. [cited 2021 Mar 24]
Fish PV, Steadman D, Bayle ED, Whiting P. New approaches for the treatment of Alzheimer’s disease. Bioorganic Med Chem Lett. 2019;29(2):125–33. https://doi.org/10.1016/j.bmcl.2018.11.034.
Article
CAS
Google Scholar
O’Bryant SE, Mielke MM, Rissman RA, Lista S, Vanderstichele H, Zetterberg H, et al. Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimer’s Dementia. 2017;13(1):45–58. https://doi.org/10.1016/j.jalz.2016.09.014.
Article
PubMed
Google Scholar
Handels RLH, Wimo A, Dodel R, Kramberger MG, Visser PJ, Molinuevo JL, et al. Cost-utility of using Alzheimer’s disease biomarkers in cerebrospinal fluid to predict progression from mild cognitive impairment to dementia. J Alzheimer’s Disease. 2017;60(4):1477–87. https://doi.org/10.3233/JAD-170324.
Article
Google Scholar
Sperling RA, Karlawish J, Johnson KA. Preclinical Alzheimer disease—the challenges ahead. Nat Rev Neurol. 2013;9(1):54–8. https://doi.org/10.1038/nrneurol.2012.241.
Article
CAS
PubMed
Google Scholar
Bature F, Guinn B, Pang D, Pappas Y. Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016. BMJ Open. 2017;7(8):e015746. https://doi.org/10.1136/bmjopen-2016-015746.
Article
PubMed
PubMed Central
Google Scholar
Coughlan G, Laczó J, Hort J, Minihane A-M, Hornberger M. Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease? Nat Rev Neurol. 2018;14(8):496–506. https://doi.org/10.1038/s41582-018-0031-x.
Article
PubMed
Google Scholar
Allison SL, Fagan AM, Morris JC, Head D. Spatial navigation in preclinical Alzheimer’s disease. J Alzheimers Dis. 2016;52(1):77–90. https://doi.org/10.3233/JAD-150855.
Article
PubMed
PubMed Central
Google Scholar
Hird MA, Egeto P, Fischer CE, Naglie G, Schweizer TA. A systematic review and meta-analysis of on-road simulator and cognitive driving assessment in Alzheimer’s disease and mild cognitive impairment. J Alzheimer’s Disease. 2016;53(2):713–29. https://doi.org/10.3233/JAD-160276.
Article
Google Scholar
Eby DW, Silverstein NM, Molnar LJ, LeBlanc D, Adler G. Driving behaviors in early stage dementia: a study using in-vehicle technology. Accident Anal Prev. 2012;49:330–7. https://doi.org/10.1016/j.aap.2011.11.021.
Article
Google Scholar
Kostyniuk LP, Molnar LJ. Self-regulatory driving practices among older adults: health, age and sex effects. Accident Anal Prev. 2008;40(4):1576–80. https://doi.org/10.1016/j.aap.2008.04.005.
Article
Google Scholar
Davis JD, Papandonatos GD, Miller LA, Hewitt SD, Festa EK, Heindel WC, et al. Road test and naturalistic driving performance in healthy and cognitively impaired older adults: does environment matter? J Am Geriatr Soc. 2012;60(11):2056–62. https://doi.org/10.1111/j.1532-5415.2012.04206.x.
Article
PubMed
PubMed Central
Google Scholar
Babulal GM, Stout SH, Benzinger TLS, Ott BR, Carr DB, Webb M, et al. A naturalistic study of driving behavior in older adults and preclinical Alzheimer disease: a pilot study. J Appl Gerontol. 2019;38(2):277–89. https://doi.org/10.1177/0733464817690679.
Article
PubMed
Google Scholar
Roe CM, Stout SH, Rajasekar G, Ances BM, Jones JM, Head D, et al. A 2.5-year longitudinal assessment of naturalistic driving in preclinical Alzheimer’s disease. J Alzheimers Dis. 2019;68(4):1625–33. https://doi.org/10.3233/JAD-181242.
Article
PubMed
PubMed Central
Google Scholar
Babulal GM, Johnson A, Fagan AM, Morris JC, Roe CM. Identifying preclinical Alzheimer’s disease using everyday driving behavior: proof of concept. J Alzheimer’s Dis. 2021;79(3):1009–14. https://doi.org/10.3233/JAD-201294.
Article
Google Scholar
Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412. https://doi.org/10.1212/wnl.43.11.2412-a.
Article
CAS
PubMed
Google Scholar
Fagan AM, Mintun MA, Mach RH, Lee S-Y, Dence CS, Shah AR, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol. 2006;59(3):512–9. https://doi.org/10.1002/ana.20730.
Article
CAS
PubMed
Google Scholar
Volluz K, Schindler SE, Rachel LH, Xiong C, Tammie B, Holtzman D, et al. Correspondence of CSF biomarkers measured by Lumipulse assays with amyloid PET. 2021.
Google Scholar
Cruchaga C, Kauwe JSK, Mayo K, Spiegel N, Bertelsen S, Nowotny P, et al. SNPs associated with cerebrospinal fluid phospho-tau levels influence rate of decline in Alzheimer’s disease. Plos Genet. 2010;6(9):e1001101. https://doi.org/10.1371/journal.pgen.1001101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Babulal GM, Stout SH, Head D, Holtzman DM, Fagan AM, Morris JC, et al. Neuropsychiatric symptoms and Alzheimer’s disease biomarkers predict driving decline: brief report. J Alzheimer’s Dis. 2017;58(3):675–80. https://doi.org/10.3233/JAD-170067.
Article
CAS
Google Scholar
Bayat S, Naglie G, Rapoport MJ, Stasiulis E, Widener MJ, Mihailidis A. A GPS-based framework for understanding outdoor mobility patterns of older adults with dementia: an exploratory study. GER. 2021:1–15. https://doi.org/10.1159/000515391.
Bayat S, Ye B, Stasiulis E, Rapoport MJ, Naglie G, Mihailidis A. Towards a novel set of GPS-derived metrics to identify the differences between mobility patterns of cognitively intact older adults and older adults with dementia. In ALZ; 2020. Available from: https://alz.confex.com/alz/20amsterdam/meetingapp.cgi/Paper/39485. [cited 2020 Aug 26]
Gonzalez MC, Hidalgo CA, Barabasi A-L. Understanding individual human mobility patterns. Nature. 2008;453(7196):779–82. https://doi.org/10.1038/nature06958.
Article
CAS
PubMed
Google Scholar
Qin S-M, Verkasalo H, Mohtaschemi M, Hartonen T, Alava M. Patterns, entropy, and predictability of human mobility and life. Plos One. 2012;7(12). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530566/. [cited 2020 Apr 29]
Bagdadi O, Várhelyi A. Development of a method for detecting jerks in safety critical events. Accid Analy Prev. 2013;50:83–91. https://doi.org/10.1016/j.aap.2012.03.032.
Article
Google Scholar
Qi Y. Random Forest for Bioinformatics. In: Zhang C, Ma Y, editors. Ensemble machine learning: methods and applications Boston: Springer US; 2012. p. 307–323. doi:https://doi.org/10.1007/978-1-4419-9326-7_11, [cited 2021 Mar 25] 2012
Touw WG, Bayjanov JR, Overmars L, Backus L, Boekhorst J, Wels M, et al. Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle? Brief Bioinformatics. 2013;14(3):315–26. https://doi.org/10.1093/bib/bbs034.
Article
PubMed
Google Scholar
Schindler SE, Bollinger JG, Ovod V, Mawuenyega KG, Li Y, Gordon BA, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019;93(17):e1647.
CAS
PubMed
PubMed Central
Google Scholar
Gaetani L, Höglund K, Parnetti L, Pujol-Calderon F, Becker B, Eusebi P, et al. A new enzyme-linked immunosorbent assay for neurofilament light in cerebrospinal fluid: analytical validation and clinical evaluation. Alzheimers Res Ther. 2018;10(1):8. https://doi.org/10.1186/s13195-018-0339-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saddiki H, Fayosse A, Cognat E, Sabia S, Engelborghs S, Wallon D, et al. Age and the association between apolipoprotein E genotype and Alzheimer disease: a cerebrospinal fluid biomarker–based case–control study. Plos Med. 2020;17(8):e1003289. https://doi.org/10.1371/journal.pmed.1003289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dayon L, Wojcik J, Núñez Galindo A, Corthésy J, Cominetti O, Oikonomidi A, et al. Plasma proteomic profiles of cerebrospinal fluid-defined Alzheimer’s disease pathology in older adults. J Alzheimer’s Dis. 2017;60(4):1641–52. https://doi.org/10.3233/JAD-170426.
Article
CAS
Google Scholar
Pérez-Grijalba V, Arbizu J, Romero J, Prieto E, Pesini P, Sarasa L, et al. Plasma Aβ42/40 ratio alone or combined with FDG-PET can accurately predict amyloid-PET positivity: a cross-sectional analysis from the AB255 Study. Alz Res Ther. 2019;11(1):96. https://doi.org/10.1186/s13195-019-0549-1.
Article
CAS
Google Scholar
23andMe. DNA genetic testing & analysis - 23andMe Canada. Available from: https://www.23andme.com/en-ca/. [cited 2021 Mar 26]
Feng F, Bao S, Sayer JR, Flannagan C, Manser M, Wunderlich R. Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data. Accid Anal Prev. 2017;104:125–36. https://doi.org/10.1016/j.aap.2017.04.012.
Article
PubMed
Google Scholar
Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–28. https://doi.org/10.1016/S1474-4422(09)70299-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zetterberg H, Blennow K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol Neurodegeneration. 2021;16(1):10. https://doi.org/10.1186/s13024-021-00430-x.
Article
CAS
Google Scholar
Vaughn MG, Define RS, DeLisi M, Perron BE, Beaver KM, Fu Q, et al. Sociodemographic, behavioral, and substance use correlates of reckless driving in the United States: findings from a national sample. J Psychiatr Res. 2011;45(3):347–53. https://doi.org/10.1016/j.jpsychires.2010.06.016.
Article
PubMed
Google Scholar