Fleming N. How artificial intelligence is changing drug discovery. Nature. 2018; 557(7706):55.
Article
Google Scholar
Rossi RL, Grifantini RM. Big data: challenge and opportunity for translational and industrial research in healthcare. Front Digit Humanit. 2018; 5:13.
Article
Google Scholar
Luo J, Wu M, Gopukumar D, Zhao Y. Big data application in biomedical research and health care: a literature review. Biomed Inform Insights. 2016; 8:31559.
Article
Google Scholar
Van Der Maaten L, Postma E, Van den Herik J. Dimensionality reduction: a comparative. J Mach Learn Res. 2009; 10(66-71):13.
Google Scholar
Ramlee R, Muda AK, Ahmad SSS. PCA and LDA as dimension reduction for individuality of handwriting in writer verification. In: 2013 13th International Conference on Intellient Systems Design and Applications. IEEE: 2013. p. 104–8. https://doi.org/10.1109/isda.2013.6920716.
Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006; 313(5786):504–7.
Article
Google Scholar
Sorzano COS, Vargas J, Montano AP. A survey of dimensionality reduction techniques. 2014. arXiv preprint arXiv:1403.2877.
Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011; 12(1):56–68.
Article
Google Scholar
Hase T, Niimura Y. Protein-protein interaction networks: structures, evolution, and application to drug design. Protein-Protein Interactions–Computational and Exp Tools. 2012:405–26. https://doi.org/10.5772/36665.
Hase T, Tanaka H, Suzuki Y, Nakagawa S, Kitano H. Structure of protein interaction networks and their implications on drug design. PLoS Comput Biol. 2009; 5(10):1000550.
Article
Google Scholar
Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov. 2011; 10(8):579–90.
Article
Google Scholar
Shim JS, Liu JO. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci. 2014; 10(7):654.
Article
Google Scholar
Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci. 2010; 107(33):14621–6.
Article
Google Scholar
Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012; 8(5):1002503.
Article
Google Scholar
Hase T, Ghosh S, Palaniappan SK, Kitano H. Cancer network medicine. Netw Med. 2017:294–323.
Hase T, Kikuchi K, Ghosh S, Kitano H, Tanaka H. Identification of drug-target modules in the human protein–protein interaction network. Artif Life Robot. 2014; 19(4):406–13.
Article
Google Scholar
Cui P, Wang X, Pei J, Zhu W. A survey on network embedding. IEEE Trans Knowl Data Eng. 2018; 31(5):833–52.
Article
Google Scholar
Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: methods and applications. 2017. arXiv preprint arXiv:1709.05584.
Ou M, Cui P, Pei J, Zhang Z, Zhu W. Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: 2016. p. 1105–14. https://doi.org/10.1145/2939672.2939751.
Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S. Community preserving network embedding. In: Thirty-first AAAI Conference on Artificial Intelligence.2017. https://ojs.aaai.org/index.php/AAAI/article/view/10488.
Wang D, Cui P, Zhu W. Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: 2016. p. 1225–34. https://doi.org/10.1145/2939672.2939753.
Cao S, Lu W, Xu Q. Deep neural networks for learning graph representations. In: Thirtieth AAAI Conference on Artificial Intelligence.2016. https://ojs.aaai.org/index.php/AAAI/article/view/10179.
Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J, Assmus HE, Andrade-Navarro MA, Wanker EE. A directed protein interaction network for investigating intracellular signal transduction. Sci Signal. 2011; 4(189):8.
Article
Google Scholar
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic Acids Res. 2018; 46(D1):1074–82.
Article
Google Scholar
DrugBank. Detailed drug and drug target information. https://go.drugbank.com/. Accessed 8 Nov 2020.
Dahl GE, Sainath TN, Hinton GE. Improving deep neural networks for LVCSR using rectified linear units and dropout. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE: 2013. p. 8609–13. https://doi.org/10.1109/icassp.2013.6639346.
Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. arXiv preprint arXiv:1412.6980.
Chollet F, et al. Keras. 2015. https://keras.io. Accessed 23 Apr 2021.
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al. Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16): 2016. p. 265–283.
Human Genome Center. Supercomputer. https://supcom.hgc.jp/english/. Accessed 8 Nov 2020.
Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. 1998. https://doi.org/10.1016/s0169-7552(98)00110-x.
Watts DJ, Strogatz SH. Collective dynamics of ’small-world’ networks. Nature. 1998; 393(6684):440–2.
Article
Google Scholar
Newman ME. Assortative mixing in networks. Phys Rev Lett. 2002; 89(20):208701.
Article
Google Scholar
Yang R, Zhuhadar L, Nasraoui O. Bow-tie decomposition in directed graphs. In: 14th International Conference on Information Fusion. IEEE: 2011. p. 1–5. https://ieeexplore.ieee.org/document/5977625.
Vinayagam A, Gibson TE, Lee H-J, Yilmazel B, Roesel C, Hu Y, Kwon Y, Sharma A, Liu Y-Y, Perrimon N, et al. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proc Natl Acad Sci. 2016; 113(18):4976–81.
Article
Google Scholar
Liu Y-Y, Slotine J-J, Barabási A-L. Controllability of complex networks. Nature. 2011; 473(7346):167–73.
Article
Google Scholar
Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. http://infolab.stanford.edu/extasciitildebackrub/google.html. Accessed 8 Nov 2020.
Hopcroft JE, Karp RM. An nˆ5/2 algorithm for maximum matchings in bipartite graphs. SIAM J Comput. 1973; 2(4):225–31.
Article
Google Scholar
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006; Complex Systems:1695.
Google Scholar
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Smote: synthetic minority over-sampling technique. J Artif Intell Res. 2002; 16:321–57.
Article
Google Scholar
Lemaître G, Nogueira F, Aridas CK. Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J Mach Learn Res. 2017; 18(17):1–5.
Google Scholar
Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining.2016. p. 785–794. https://dl.acm.org/doi/abs/10.1145/2939672.2939785.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011; 12:2825–30.
Google Scholar
XGBoost. Python API Reference. https://xgboost.readthedocs.io/en/latest/python. Accessed 8 Nov 2020.
Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. Webgestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017; 45(W1):130–7.
Article
Google Scholar
Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol. 2012; 8(2):1002375.
Article
Google Scholar
Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol. 2015; 16(3):229–36.
Article
Google Scholar
Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, Ahumada J, Lata J, Cubillos P, Henríquez B, et al. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer’s disease mice. Brain. 2017; 140(12):3252–68.
Article
Google Scholar
Wang L, Chiang H-C, Wu W, Liang B, Xie Z, Yao X, Ma W, Du S, Zhong Y. Epidermal growth factor receptor is a preferred target for treating amyloid- β–induced memory loss. Proc Natl Acad Sci. 2012; 109(41):16743–8.
Article
Google Scholar
Wang P-L, Niidome T, Akaike A, Kihara T, Sugimoto H. Rac1 inhibition negatively regulates transcriptional activity of the amyloid precursor protein gene. J Neurosci Res. 2009; 87(9):2105–14.
Article
Google Scholar
Manterola L, Hernando-Rodríguez M, Ruiz A, Apraiz A, Arrizabalaga O, Vellón L, Alberdi E, Cavaliere F, Lacerda HM, Jimenez S, et al. 1–42 β-amyloid peptide requires PDK1/nPKC/Rac 1 pathway to induce neuronal death. Transl Psychiatry. 2013; 3(1):219–219.
Article
Google Scholar
Kikuchi M, Sekiya M, Hara N, Miyashita A, Kuwano R, Ikeuchi T, Iijima KM, Nakaya A. Disruption of a Rac1-centred network is associated with Alzheimer’s disease pathology and causes age-dependent neurodegeneration. Human Mol Genet. 2020; 29(5):817–33.
Article
Google Scholar
Paris D, Ait-Ghezala G, Bachmeier C, Laco G, Beaulieu-Abdelahad D, Lin Y, Jin C, Crawford F, Mullan M. The spleen tyrosine kinase (Syk) regulates Alzheimer amyloid- β production and tau hyperphosphorylation. J Biol Chem. 2014; 289(49):33927–44.
Article
Google Scholar
Schweig JE, Yao H, Beaulieu-Abdelahad D, Ait-Ghezala G, Mouzon B, Crawford F, Mullan M, Paris D. Alzheimer’s disease pathological lesions activate the spleen tyrosine kinase. Acta Neuropathol Commun. 2017; 5(1):1–25.
Article
Google Scholar
Schweig JE, Yao H, Coppola K, Jin C, Crawford F, Mullan M, Paris D. Spleen tyrosine kinase (Syk) blocks autophagic tau degradation in vitro and in vivo. J Biol Chem. 2019; 294(36):13378–95.
Article
Google Scholar
Salazar SV, Cox TO, Lee S, Brody AH, Chyung AS, Haas LT, Strittmatter SM. Alzheimer’s disease risk factor Pyk2 mediates amyloid- β-induced synaptic dysfunction and loss. J Neurosci. 2019; 39(4):758–72.
Article
Google Scholar
Baker BJ, Akhtar LN, Benveniste EN. SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol. 2009; 30(8):392–400.
Article
Google Scholar
Naj AC, Schellenberg GD, (ADGC) ADGC. Genomic variants, genes, and pathways of Alzheimer’s disease: an overview. Am J Med Genet Part B Neuropsychiatr Genet. 2017; 174(1):5–26.
Article
Google Scholar
Tsai AP, Lin PB-C, Dong C, Moutinho M, Casali BT, Liu Y, Lamb BT, Landreth GE, Oblak AL, Nho K. INPP5D expression is associated with risk for Alzheimer’s disease and induced by plaque-associated microglia. Neurobiol Dis. 2021:105303. https://doi.org/10.1016/j.nbd.2021.105303.
Wise PM. Estrogen therapy: does it help or hurt the adult and aging brain? Insights derived from animal models. Neuroscience. 2006; 138(3):831–5.
Article
Google Scholar
Sun L-M, Chen H-J, Liang J-A, Kao C-H. Long-term use of tamoxifen reduces the risk of dementia: a nationwide population-based cohort study. QJM Int J Med. 2015; 109(2):103–9.
Article
Google Scholar
Lonskaya I, Hebron M, Selby S, Turner R, Moussa C-H. Nilotinib and bosutinib modulate pre-plaque alterations of blood immune markers and neuro-inflammation in Alzheimer’s disease models. Neuroscience. 2015; 304:316–27.
Article
Google Scholar
Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, Abdelmohsen K, Bohr VA, Sen JM, Gorospe M, et al. Senolytic therapy alleviates a β-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci. 2019; 22(5):719–28.
Article
Google Scholar
Curtis A. Targeting senescence within the Alzheimer’s plaque. Sci Transl Med. 2019; 11(488):4869.
Article
Google Scholar
Github. AI based computational framework for drug development. https://github.com/tsjshg/ai-drug-dev. Accessed 8 Nov 2020.