Morley JE, Vellas B, Abellan van Kan G, Anker SD, Bauer JM, Bernabei R, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14(6):392–7.
Article
PubMed
PubMed Central
Google Scholar
Romero-Ortuno R, O’Shea D. Fitness and frailty: opposite ends of a challenging continuum! Will the end of age discrimination make frailty assessments an imperative? Age Ageing. 2013;42:279–80.
Article
PubMed
Google Scholar
Armstrong JJ, Mitnitski A, Andrew MK, Launer LJ, White LR, Rockwood K. Cumulative impact of health deficits, social vulnerabilities, and protective factors on cognitive dynamics in late life: a multistate modeling approach. Alzheimers Res Ther. 2015;7(38):1–9.
Google Scholar
Thibeau S, McDermott K, McFall GP, Rockwood K, Dixon RA. Frailty effects on non-demented cognitive trajectories are moderated by sex and Alzheimer’s genetic risk. Alzheimers Res Ther. 2019;11(55):1–15.
CAS
Google Scholar
Song X, Mitnitski A, Rockwood K. Age-related deficit accumulation and the risk of late-life dementia. Alzheimers Res Ther. 2014;6(54):1–13.
Google Scholar
Clegg A, Young J, Iliffe S, Olde Rikkert MGM, Rockwood K. Frailty in older people. Lancet. 2013;381(9868):752–62.
Article
PubMed
Google Scholar
Lim W-S, Canevelli M, Cesari M. Editorial: dementia, frailty and aging. Front Med. 2018;5(168):1–3.
Google Scholar
Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56A(3):M146–56.
Article
Google Scholar
Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. Sci World. 2001;1:323–36.
Article
CAS
Google Scholar
Nylund-Gibson K, Young Choi A. Ten frequently asked questions about latent class analysis. Transl Issues Psychol Sci. 2018;4(4):440–61.
Article
Google Scholar
Muthén BO, Muthén LK. Integrating person-centered and variable-centered analyses: growth mixture modeling with latent trajectory classes. Alcohol Clin Exp Res. 2000;24(6):882–91.
Article
PubMed
Google Scholar
Walston J, Hadley EC, Ferrucci L, Guralnik JM, Newman AB, Studenski SA, et al. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging research conference on frailty in older adults. J Am Geriatr Soc. 2006;54:991–1001.
Article
PubMed
Google Scholar
Bergman H, Ferrucci L, Guralnik J, Hogan DB, Hummel S, Karunananthan S, et al. Frailty: an emerging research and clinical paradigm—issues and controversies. J Gerontol A Biol Sci Med Sci. 2007;62(7):731–7.
Article
PubMed
PubMed Central
Google Scholar
Sadiq F, Kronzer VL, Wildes TS, McKinnon SL, Sharma A, Helsten DL, et al. Frailty phenotypes and relations with surgical outcomes. Anesth Analg. 2018;127(4):1017–27.
Article
PubMed
PubMed Central
Google Scholar
Looman WM, Fabbricotti IN, Blom JW, Jansen APD, Lutomski JE, Metzelthin SF, et al. The frail older person does not exist: development of frailty profiles with latent class analysis. BMC Geriatr. 2018;18(84):1–11.
Google Scholar
Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment—a review of the evidence and causal mechanisms. Ageing Res Rev. 2013;12:840–51.
Article
PubMed
Google Scholar
Searle SD, Rockwood K. Frailty and the risk of cognitive impairment. Alzheimers Res Ther. 2015;7(54):1–6.
Google Scholar
Canevelli M, Cesari M, Van Kan GA. Frailty and cognitive decline: how do they relate? Curr Opin Clin Nutr Metab Care. 2015;18:43–50.
Article
PubMed
Google Scholar
Rolfson DB, Wilcock G, Mitnitski A, King E, De Jager CA, Rockwood K, et al. An assessment of neurocognitive speed in relation to frailty. Age Ageing. 2013;42(2):191–6.
Article
PubMed
Google Scholar
Boyle P, Buchman AS, Wilson RS, Leurgans SE, Bennett DA. Physical frailty is associated with incident mild cognitive impairment in community-based older persons. J Am Geriatr Soc. 2010;58(2):248–55.
Article
PubMed
PubMed Central
Google Scholar
Bunce D, Batterham PJ, Mackinnon AJ. Long-term associations between physical frailty and performance in specific cognitive domains. J Gerontol B Psychol Sci Soc Sci. 2018;00(00):1–8.
Google Scholar
Wu YH, Liu LK, Chen WT, Lee WJ, Peng LN, Wang PN, et al. Cognitive function in individuals with physical frailty but without dementia or cognitive complaints: results from the I-Lan Longitudinal Aging Study. J Am Med Dir Assoc. 2015;16:899.e9–899.e16.
Article
Google Scholar
Dixon RA, de Frias CM. The Victoria Longitudinal Study: from characterizing cognitive aging to illustrating changes in memory compensation. Aging Neuropsychol Cogn. 2004;11(2):346–76.
Article
Google Scholar
Kamaruzzaman S, Ploubidis GB, Fletcher A, Ebrahim S. A reliable measure of frailty for a community dwelling older population. Health Qual Life Outcomes 2010;8(123):1–14.
Lafortune L, Béland F, Bergman H, Ankri J. Health status transitions in community-living elderly with complex care needs: a latent class approach. BMC Geriatr. 2009;9(6):1–14.
Google Scholar
Gifford KA, Bell SP, Liu D, Neal JE, Turchan M, Shah AS, et al. Frailty is related to subjective cognitive decline in older women without dementia. J Am Geriatr Soc. 2019;67(9):1803–11.
Article
PubMed
PubMed Central
Google Scholar
Tierney MC, Curtis AF, Chertkow H, Rylett RJ. Integrating sex and gender into neurodegeneration research: a six-component strategy. Alzheimer’s Dement Transl Res Clin Interv. 2017;3:660–7.
Article
Google Scholar
McFall GP, McDermott KL, Dixon RA. Modifiable risk factors discriminate memory trajectories in non-demented aging: precision factors and targets for promoting healthier brain aging and preventing dementia. J Alzheimers Dis. 2019;70(s1):S101–18.
Article
PubMed
PubMed Central
Google Scholar
Little TD. Longitudinal structural equation modeling. New York: NY: Guilford Press; 2013.
Google Scholar
Galbraith S, Bowden J, Mander A. Accelerated longitudinal designs: an overview of modelling, power, costs and handling missing data. Stat Methods Med Res. 2017;26(1):374–98.
Article
PubMed
Google Scholar
Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8(24):1–10.
Google Scholar
Bohn L, McFall GP, Wiebe SA, Dixon RA. Body mass index predicts cognitive aging trajectories selectively for females: evidence from the Victoria Longitudinal Study. Neuropsychology. 2020;34(4):388–403.
Article
PubMed
Google Scholar
Muthén LK, Muthén BO. Mplus user’s guide. 8 Edition. Los Angeles: Muthén & Muthén; 1998-2007.
Costello AB, Osborne JW. Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. Pract Assessment, Res Eval. 2005;10(7):1–9.
Google Scholar
Muthén LK, Muthén BO. Mplus short courses topic 1: exploratory factor analysis, confirmatory factor analysis, and structural equation modeling for continuous outcomes http://www.statmodel.com/course_materials.shtml. Accessed 9 Aug 2019.
Masyn KE. Latent class analysis and finite mixture modeling. In: Little TD, editor. The oxford handbook of quantitative methods. 2nd ed. Oxford: Oxford University Press; 2012. p. 551–611.
Google Scholar
Chen F, Bollen KA, Paxton P, Curran PJ, Kirby JB. Improper solutions in structural equation models. Sociol Methods Res. 2001;29(4):468–508.
Article
Google Scholar
Asparouhov T, Muthén BO. Auxiliary variables in mixture modeling: using the BCH method in Mplus to estimate a distal outcome model and an arbitrary second model. Mplus Web Notes. 2014;21:1–22.
Google Scholar
Vermunt JK. Latent class modeling with covariates: two improved three-step approaches. Polit Anal. 2010;18:450–69.
Article
Google Scholar
Asparouhov T, Muthén B. Auxiliary variables in mixture modeling: three-step approaches using Mplus. Struct Equ Model A Multidiscip J. 2014;21(3):329–41.
Article
Google Scholar
Gonzalez-Colaço Harmand M, Meillon C, Bergua V, Tabue Teguo M, Dartigues JF, Avila-Funes JA, et al. Comparing the predictive value of three definitions of frailty: results from the Three-City study. Arch Gerontol Geriatr. 2017;72:153–63.
Article
PubMed
Google Scholar
Liu LK, Guo CY, Lee WJ, Chen LY, Hwang AC, Lin MH, et al. Subtypes of physical frailty: latent class analysis and associations with clinical characteristics and outcomes. Sci Rep. 2017;7(46417):1–9.
Google Scholar
Olaya B, Moneta MV, Caballero FF, Tyrovolas S, Bayes I, Ayuso-Mateos JL, et al. Latent class analysis of multimorbidity patterns and associated outcomes in Spanish older adults: a prospective cohort study. BMC Geriatr. 2017;17:1–10.
Article
Google Scholar
Sarksian CA, Gruenewald TL, Boscardin J, Seeman TE. Preliminary evidence for subdimensions of geriatric frailty: the MacArthur Study of Successful Aging. J Am Geriatr Soc. 2008;56(12):2292–7.
Article
Google Scholar
Sourial N, Bergman H, Karunananthan S, Wolfson C, Guralnik J, Payette H, et al. Contribution of frailty markers in explaining differences among individuals in five samples of older persons. J Gerontol A Biol Sci Med Sci. 2012;67(11):1197–204.
Article
PubMed
PubMed Central
Google Scholar
Chhetri JK, Chan P, Vellas B, Cesari M. Motoric cognitive risk syndrome: predictor of dementia and age-related negative outcomes. Front Med. 2017;4(166):1–8.
Google Scholar
Nguyen QD, Wu C, Odden MC, Kim DH. Multimorbidity patterns, frailty, and survival in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2019;74(8):1265–70.
Article
PubMed
Google Scholar
Lohman M, Dumenci L, Mezuk B. Sex differences in the construct overlap of frailty and depression: evidence from the Health and Retirement Study. J Am Geriatr Soc. 2014;62(3):500–5.
Article
PubMed
PubMed Central
Google Scholar
Segaux L, Oubaya N, Broussier A, Baude M, Canouï-Poitrine F, Naga H, et al. Identification of five frailty profiles in community-dwelling individuals aged 50–75: a latent class analysis of the SUCCEED survey data. Maturitas. 2019;127:1–11.
Article
PubMed
Google Scholar
Bandeen-Roche K, Xue QL, Ferrucci L, Walston J, Guralnik JM, Chaves P, et al. Phenotype of frailty: characterization in the Women’s Health and Aging Studies. J Gerontol A Biol Sci Med Sci. 2006;61A(3):262–6.
Article
Google Scholar
Pikoula M, Quint JK, Nissen F, Hemingway H, Smeeth L, Denaxas S. Identifying clinically important COPD sub-types using data-driven approaches in primary care population based electronic health records. BMC Med Inform Decis Mak. 2019;19(86):1–14.
Google Scholar
Trevisan C, Rizzuto D, Maggi S, Sergi G, Welmer A-K, Vetrano DL. Cross-sectional and longitudinal associations between peak expiratory flow and frailty in older adults. J Clin Med. 2019;8(1901):1–12.
Google Scholar
Sugimoto K, Rakugi H, Kojima T, Ishii S, Akishita M, Tamura Y, et al. Chapter 4 frailty and specific diseases. Geriatr Gerontol Int. 2020;20(S1):25–37.
Article
PubMed
Google Scholar
Rohrmann S. Epidemiology of frailty in older people. Veronese N, editor. Springer International Publishing; 2020 p. 21–7.
Fallah N, Mitnikski A, Searle SD, Gahbauer EA, Gill TM, Rockwood K. Transitions in frailty status in older adults in relation to mobility: a multi-state modeling approach employing a deficit count. J Am Geriatr Soc. 2011;59(3):524–9.
Article
PubMed
PubMed Central
Google Scholar
Doi T, Makizako H, Tsutsumimoto K, Nakakubo S, Kim MJ, Kurita S, et al. Transitional status and modifiable risk of frailty in Japanese older adults: a prospective cohort study. Geriatr Gerontol Int. 2018;18(11):1562–6.
Article
PubMed
Google Scholar
Pollack LR, Harrison SL, Cawthon PM, Ensrud K, Lane NE, Barrett-Connor E, et al. Patterns and predictors of frailty transitions in older men: the osteoporotic fractures in men study. J Am Geriatr Soc. 2017;65(11):2473–9.
Article
PubMed
PubMed Central
Google Scholar
Vaz Fragoso CA, Enright PL, McAvay G, Van Ness PH, Gill TM. Frailty and respiratory impairment in older persons. Am J Med. 2012;125(1):79–86.
Article
PubMed
PubMed Central
Google Scholar
Anstey KJ, Dixon RA. Applying a cumulative deficit model of frailty to dementia: progress and future challenges. Alzheimers Res Ther. 2014;6(84):1–3.
Google Scholar
Inzitari M, Newman AB, Yaffe K, Boudreau R, De Rekeneire N, Shorr R, et al. Gait speed predicts decline in attention and psychomotor speed in older adults: the Health Aging and Body Composition study. Neuroepidemiology. 2007;29:156–62.
Article
PubMed
PubMed Central
Google Scholar
Hooghiemstra AM, Ramakers IHGB, Sistermans N, Pijnenburg YAL, Aalten P, Hamel REG, et al. Gait speed and grip strength reflect cognitive impairment and are modestly related to incident cognitive decline in memory clinic patients with subjective cognitive decline and mild cognitive impairment: findings from the 4C study. J Gerontol A Biol Sci Med Sci. 2017;72(6):846–54.
Article
PubMed
Google Scholar
Duggan EC, Graham RB, Piccinin AM, Jenkins ND, Clouston S, Muniz-Terrera G, et al. Systematic review of pulmonary function and cognition in aging. J Gerontol B Psychol Sci Soc Sci. 2018;XX (XX):1–16.
Dodd JW. Lung disease as a determinant of cognitive decline and dementia. Alzheimers Res Ther. 2015;7(32):1–8.
Google Scholar
Canevelli M, Bruno G, Remiddi F, Vico C, Lacorte E, Vanacore N, et al. Spontaneous reversion of clinical conditions measuring the risk profile of the individual: from frailty to mild cognitive impairment. Front Med. 2017;4(184):1–6.
Google Scholar
Borges MK, Canevelli M, Cesari M, Aprahamian I. Frailty as a predictor of cognitive disorders: A systematic review and meta-analysis. Front Med. 2019;6(FEB):1–8.
Panza F, Solfrizzi V, Barulli MR, Santamato A, Seripa D, Pilotto A, et al. Cognitive frailty: a systematic review of epidemiological and neurobiological evidence of an age-related clinical condition. Rejuvenation Res. 2015;18(5):389–412.
Article
PubMed
Google Scholar
Buchman AS, Yu L, Wilson RS, Schneider JA, Bennett DA. Association of brain pathology with the progression of frailty in older adults. Neurology. 2013;80(22):2055–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchman AS, Schneider JA, Leurgans S, Bennett DA. Physical frailty in older persons is associated with Alzheimer disease pathology. Neurology. 2008;71(7):499–504.
Article
PubMed
PubMed Central
Google Scholar
Wolf DS, Gearing M, Snowdon DA, Mori H, Markesbery WR, Mirra SS. Progression of regional neuropathology in Alzheimer disease and normal elderly: findings from the Nun study. Alzheimer Dis Assoc Disord. 1999;13(4):226–31.
Article
CAS
PubMed
Google Scholar
Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33.
Article
CAS
PubMed
Google Scholar
Eckert MA, Keren NI, Roberts DR, Calhoun VD, Harris KC. Age-related changes in processing speed: unique contributions of cerebellar and prefrontal cortex. Front Hum Neurosci. 2010;4:1–14.
Google Scholar
Papp KV, Kaplan RF, Springate B, Moscufo N, Wakefield DB, Guttmann CRG, et al. Processing speed in normal aging: effects of white matter hyperintensities and hippocampal volume loss. Neuropsychol Dev Cogn Sect B, Aging, Neuropsychol Cogn. 2014;21(2):197–213.
Article
Google Scholar
Sachdev PS, Anstey KJ, Parslow RA, Wen W, Maller J, Kumar R, et al. Pulmonary function, cognitive impairment and brain atrophy in a middle-aged community sample. Dement Geriatr Cogn Disord. 2006;21:300–8.
Article
CAS
PubMed
Google Scholar
Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to measuring frailty in elderly people. J Gerontol Ser A Biol Sci Med Sci. 2007;62A(7):738–43.
Article
Google Scholar
Apóstolo J, Cooke R, Bobrowicz-Campos E, Santana S, Marcucci M, Cano A, et al. Effectiveness of interventions to prevent pre-frailty and frailty progression in older adults: a systematic review. JBI Database Syst Rev Implement Reports. 2018;16(1):140–232.
Article
Google Scholar