Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62 Available from: https://doi.org/10.1016/j.jalz.2018.02.018.
PubMed
PubMed Central
Google Scholar
Schreiber S, Landau SM, Fero A, Schreiber F, Jagust WJ. Comparison of visual and quantitative florbetapir F 18 positron emission tomography analysis in predicting mild cognitive impairment outcomes. JAMA Neurol. 2015;72(10):1183 Available from: https://doi.org/10.1001/jamaneurol.2015.1633.
Article
PubMed
Google Scholar
Grimmer T, Wutz C, Alexopoulos P, Drzezga A, Forster S, Forstl H, et al. Visual versus fully automated analyses of 18F-FDG and amyloid PET for prediction of dementia due to Alzheimer disease in mild cognitive impairment. J Nucl Med. 2016;57(2):204–7.
Article
CAS
PubMed
Google Scholar
Frings L, Hellwig S, Bormann T, Spehl TS, Buchert R, Meyer PT. Amyloid load but not regional glucose metabolism predicts conversion to Alzheimer’s dementia in a memory clinic population. Eur J Nucl Med Mol Imaging. 2018; Available from: http://www.ncbi.nlm.nih.gov/pubmed/29546632%0A; http://link.springer.com/10.1007/s00259-018-3983-6.
Trzepacz PT, Yu P, Sun J, Schuh K, Case M, Witte MM, et al. Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer’s dementia. Neurobiol Aging. 2014;35(1):143–51 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0197458013002790.
Article
PubMed
Google Scholar
Blazhenets G, Ma Y, Sörensen A, Schiller F, Rücker G, Eidelberg D, et al. Predictive value of 18 F-florbetapir and 18 F-FDG PET for conversion from mild cognitive impairment to Alzheimer dementia. J Nucl Med. 2019;jnumed.119.230797. Available from: http://jnm.snmjournals.org/lookup/doi/10.2967/jnumed.119.230797.
Sörensen A, Blazhenets G, Rücker G, Schiller F, Meyer PT, Frings L. Prognosis of conversion of mild cognitive impairment to Alzheimer’s dementia by voxel-wise Cox regression based on FDG PET data. NeuroImage Clin. 2018;101,637. [cited 2018 Dec 11]Available from: https://www.sciencedirect.com/science/article/pii/S2213158218303851?via%3Dihub.
Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B, et al. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol. 2001;58(3):373–9. [cited 2020 Jan 16] Available from: http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneur.58.3.373.
Nutu M, Zetterberg H, Londos E, Minthon L, Nägga K, Blennow K, et al. Evaluation of the cerebrospinal fluid amyloid-β1-42/amyloid-β1-40 ratio measured by alpha-LISA to distinguish Alzheimer’s disease from other dementia disorders. Dement Geriatr Cogn Disord. 2013;36(1–2):99–110 [cited 2020 Jan 16]Available from: https://www.karger.com/Article/FullText/353442.
Article
CAS
PubMed
Google Scholar
Lewczuk P, Lelental N, Spitzer P, Maler JM, Kornhuber J. Amyloid-β 42/40 cerebrospinal fluid concentration ratio in the diagnostics of Alzheimer’s disease: validation of two novel assays. J Alzheimer’s Dis. 2014;43(1):183–91. [cited 2020 Jan 16] Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-140771.
Schipke CG, Koglin N, Bullich S, Joachim LK, Haas B, Seibyl J, et al. Correlation of florbetaben PET imaging and the amyloid peptide Aß42 in cerebrospinal fluid. Psychiatry Res Neuroimaging. 2017;265(May 2016):98–101 Available from: https://doi.org/10.1016/j.pscychresns.2016.10.011.
Article
PubMed
Google Scholar
Palmqvist S, Zetterberg H, Mattsson N, Johansson P, Minthon L, Blennow K, et al. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology. 2015;85(14):1240–9 [cited 2020 Feb 7] Available from: http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000001991.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leuzy A, Chiotis K, Hasselbalch SG, Rinne JO, de Mendonça A, Otto M, et al. Pittsburgh compound B imaging and cerebrospinal fluid amyloid-β in a multicentre European memory clinic study. Brain. 2016;139(9):2540–53 Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/aww160.
Article
PubMed
PubMed Central
Google Scholar
Fagan AM, Mintun MA, Mach RH, Lee S-Y, Dence CS, Shah AR, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ 42 in humans. Ann Neurol. 2006;59(3):512–9. [cited 2020 Feb 7] Available from: http://doi.wiley.com/10.1002/ana.20730.
Landau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA, Trojanowski JQ, et al. Comparing positron emission tomography imaging and cerebrospinal fluid measurements of β-amyloid. Ann Neurol. 2013;74(6):826–36 Available from: http://doi.wiley.com/10.1002/ana.23908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansson O, Seibyl J, Stomrud E, Zetterberg H, Trojanowski JQ, Bittner T, et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimer’s Dement. 2018;14(11):1470–81. [cited 2020 Feb 28] Available from: http://doi.wiley.com/10.1016/j.jalz.2018.01.010.
Ramusino MC, Garibotto V, Bacchin R, Altomare D, Dodich A, Assal F, et al. Incremental value of amyloid-PET versus CSF in the diagnosis of Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2020;47(2):270–80 [cited 2020 Feb 7] Available from: http://link.springer.com/10.1007/s00259-019-04466-6.
Article
CAS
PubMed
Google Scholar
Palmqvist S, Mattsson N, Hansson O. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography. Brain. 2016;139(4):1226–36 Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/aww015.
Article
PubMed
PubMed Central
Google Scholar
Mattsson N, Insel PS, Donohue M, Landau S, Jagust WJ, Shaw LM, et al. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer’s disease. Brain. 2015;138(3):772–83 [cited 2020 Feb 7] Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awu367.
Article
PubMed
Google Scholar
Frings L, Hellwig S, Spehl TS, Bormann T, Buchert R, Vach W, et al. Asymmetries of amyloid-β burden and neuronal dysfunction are positively correlated in Alzheimer’s disease. Brain. 2015;138(10):3089–99 Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awv229.
Article
PubMed
Google Scholar
Spetsieris PG, Eidelberg D. Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues. Neuroimage. 2011;54(4):2899–914 [cited 2020 Jan 28]Available from: https://linkinghub.elsevier.com/retrieve/pii/S1053811910013170.
Article
PubMed
Google Scholar
Jack CR, Barrio JR, Kepe V. Cerebral amyloid PET imaging in Alzheimer’s disease. Acta Neuropathol. 2013;126(5):643–57. [cited 2020 Feb 5] Available from: http://link.springer.com/10.1007/s00401-013-1185-7.
Villain N, Chételat G, Grassiot B, Bourgeat P, Jones G, Ellis KA, et al. Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB–PET longitudinal study. Brain. 2012;135(7):2126–39 Available from: https://doi.org/10.1093/brain/aws125.
Article
PubMed
Google Scholar
Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69(1):181–92. Available from: https://doi.org/10.1002/ana.22248.
Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9(4):363–72 Available from: https://doi.org/10.1016/S1474-4422(10)70043-0.
Article
CAS
PubMed
Google Scholar
de Wilde A, Reimand J, Teunissen CE, Zwan M, Windhorst AD, Boellaard R, et al. Discordant amyloid-β PET and CSF biomarkers and its clinical consequences. Alzheimers Res Ther. 2019;11(1):78 Available from: https://pubmed.ncbi.nlm.nih.gov/31511058.
Article
PubMed
PubMed Central
Google Scholar
Reimand J, Collij L, Scheltens P, Bouwman F, Ossenkoppele R. Association of amyloid-β CSF/PET discordance and tau load five years later. Neurology. 2020. https://doi.org/10.1212/WNL.0000000000010739 Available from: http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000010739.
Eidelberg D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 2009/09/16. 2009;32(10):548–57. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782537/.
Spetsieris P, Ma Y, Peng S, Ko JH, Dhawan V, Tang CC, et al. Identification of disease-related spatial covariance patterns using neuroimaging data. J Vis Exp. 2013;(76). [cited 2020 Jan 28] Available from: http://www.jove.com/video/50319/identification-disease-related-spatial-covariance-patterns-using.