Weisgraber KH, Innerarity TL, Mahley RW. Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J Biol Chem. 1982;257(5):2518–21.
CAS
PubMed
Google Scholar
Vitali C, Wellington CL, Calabresi L. HDL and cholesterol handling in the brain. Cardiovasc Res. 2014;103(3):405–13.
Article
CAS
PubMed
Google Scholar
Boehm-Cagan A, Bar R, Liraz O, Bielicki JK, Johansson JO, Michaelson DM. ABCA1 agonist reverses the ApoE4-driven cognitive and brain pathologies. J Alzheimers Dis. 2016;54(3):1219–33.
Article
CAS
PubMed
Google Scholar
Heinsinger NM, Gachechiladze MA, Rebeck GW. Apolipoprotein E genotype affects size of ApoE complexes in cerebrospinal fluid. J Neuropathol Exp Neurol. 2016;75(10):918–24.
Article
PubMed
Google Scholar
Yang Y, Keene CD, Peskind ER, Galasko DR, Hu SC, Cudaback E, et al. Cerebrospinal fluid particles in Alzheimer disease and Parkinson disease. J Neuropathol Exp Neurol. 2015;74(7):672–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregg RE, Zech LA, Schaefer EJ, Stark D, Wilson D, Brewer Jr HB. Abnormal in vivo metabolism of apolipoprotein E4 in humans. J Clin Invest. 1986;78(3):815–21. Pubmed Central PMCID: 423680.
Article
CAS
PubMed
PubMed Central
Google Scholar
La L, Hansen HS, Jørgensen MH, Michaelsen KF. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res. 2001;40(1):1–94.
Google Scholar
Cao D, Kevala K, Kim J, Moon HS, Jun SB, Lovinger D, et al. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem. 2009;111(2):510–21. Pubmed Central PMCID: 2773444.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salem Jr N, Moriguchi T, Greiner RS, McBride K, Ahmad A, Catalan JN, et al. Alterations in brain function after loss of docosahexaenoate due to dietary restriction of n-3 fatty acids. J Mol Neurosci. 2001;16(2-3):299–307. discussion 317–21.
Article
CAS
PubMed
Google Scholar
Grimm MO, Kuchenbecker J, Grosgen S, Burg VK, Hundsdorfer B, Rothhaar TL, et al. Docosahexaenoic acid reduces amyloid β production via multiple pleiotropic mechanisms. J Biol Chem. 2011;286(16):14028–39. Pubmed Central PMCID: 3077603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hjorth E, Zhu M, Toro VC, Vedin I, Palmblad J, Cederholm T, et al. Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-β42 by human microglia and decrease inflammatory markers. J Alzheimers Dis. 2013;35(4):697–713.
PubMed
Google Scholar
Hooijmans CR, Rutters F, Dederen PJ, Gambarota G, Veltien A, van Groen T, et al. Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched Typical Western Diet (TWD). Neurobiol Dis. 2007;28(1):16–29.
Article
CAS
PubMed
Google Scholar
Yassine HN, Feng Q, Azizkhanian I, Rawat V, Castor K, Fonteh AN, et al. Association of serum docosahexaenoic acid with cerebral amyloidosis. JAMA Neurol. 2016;73(10):1208–16.
Article
PubMed
Google Scholar
Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI. A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev. 1992;17(3):187–214.
Article
CAS
PubMed
Google Scholar
Lands WEM, Crawford CG. Enzymes of membrane phospholipid metabolism in animals. In: Martonosoi A, editor. The enzymes of biological membranes, Biosynthesis of cell components, vol. 2. New York: Springer; 1976. p. 3–85.
Google Scholar
Chang MC, Arai T, Freed LM, Wakabayashi S, Channing MA, Dunn BB, et al. Brain incorporation of [1-11C]arachidonate in normocapnic and hypercapnic monkeys, measured with positron emission tomography. Brain Res. 1997;755(1):74–83.
Article
CAS
PubMed
Google Scholar
Contreras MA, Greiner RS, Chang MC, Myers CS, Salem Jr N, Rapoport SI. Nutritional deprivation of α-linolenic acid decreases but does not abolish turnover and availability of unacylated docosahexaenoic acid and docosahexaenoyl-CoA in rat brain. J Neurochem. 2000;75(6):2392–400.
Article
CAS
PubMed
Google Scholar
Chen CT, Kitson AP, Hopperton KE, Domenichiello AF, Trepanier MO, Lin LE, et al. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain. Sci Rep. 2015;5:15791. Pubmed Central PMCID: PMC4625162.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chouinard-Watkins R, Rioux-Perreault C, Fortier M, Tremblay-Mercier J, Zhang Y, Lawrence P, et al. Disturbance in uniformly 13C-labelled DHA metabolism in elderly human subjects carrying the apoE ε4 allele. Br J Nutr. 2013;110(10):1751–9.
Article
CAS
PubMed
Google Scholar
Vandal M, Alata W, Tremblay C, Rioux-Perreault C, Salem Jr N, Calon F, et al. Reduction in DHA transport to the brain of mice expressing human APOE4 compared to APOE2. J Neurochem. 2014;129(3):516–26.
Article
CAS
PubMed
Google Scholar
Yassine HN, Rawat V, Mack WJ, Quinn JF, Yurko-Mauro K, Bailey-Hall E, et al. The effect of APOE genotype on the delivery of DHA to cerebrospinal fluid in Alzheimer’s disease. Alzheimers Res Ther. 2016;8:25. Pubmed Central PMCID: 4928349.
Article
PubMed
PubMed Central
Google Scholar
Umhau JC, Zhou W, Thada S, Demar J, Hussein N, Bhattacharjee AK, et al. Brain docosahexaenoic acid [DHA] incorporation and blood flow are increased in chronic alcoholics: a positron emission tomography study corrected for cerebral atrophy. PLoS One. 2013;8(10):e75333. Pubmed Central PMCID: 3788756.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subar AF, Ziegler RG, Thompson FE, Johnson CC, Weissfeld JL, Reding D, et al. Is shorter always better? Relative importance of questionnaire length and cognitive ease on response rates and data quality for two dietary questionnaires. Am J Epidemiol. 2001;153(4):404–9.
Article
CAS
PubMed
Google Scholar
Umhau JC, Zhou W, Carson RE, Rapoport SI, Polozova A, Demar J, et al. Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J Lipid Res. 2009;50(7):1259–68. Pubmed Central PMCID: 2694326.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koska J, Yassine H, Trenchevska O, Sinari S, Schwenke DC, Yen FT, et al. Disialylated apolipoprotein C-III proteoform is associated with improved lipids in prediabetes and type 2 diabetes. J Lipid Res. 2016;57(5):894–905.
Article
CAS
PubMed
Google Scholar
Cheon Y, Kim HW, Igarashi M, Modi HR, Chang L, Ma K, et al. Disturbed brain phospholipid and docosahexaenoic acid metabolism in calcium-independent phospholipase A2-VIA (iPLA2β)-knockout mice. Biochim Biophys Acta. 2012;1821(9):1278–86. Pubmed Central PMCID: PMC3393806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basselin M, Rosa AO, Ramadan E, Cheon Y, Chang L, Chen M, et al. Imaging decreased brain docosahexaenoic acid metabolism and signaling in iPLA2β (VIA)-deficient mice. J Lipid Res. 2010;51(11):3166–73. Pubmed Central PMCID: PMC2952557.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ouellet M, Emond V, Chen CT, Julien C, Bourasset F, Oddo S, et al. Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood-brain barrier: an in situ cerebral perfusion study. Neurochem Int. 2009;55(7):476–82.
Article
CAS
PubMed
Google Scholar
Giovacchini G, Lerner A, Toczek MT, Fraser C, Ma K, DeMar JC, et al. Brain incorporation of 11C-arachidonic acid, blood volume, and blood flow in healthy aging: a study with partial-volume correction. J Nucl Med. 2004;45(9):1471–9.
CAS
PubMed
Google Scholar
Giovacchini G, Chang MC, Channing MA, Toczek M, Mason A, Bokde AL, et al. Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J Cereb Blood Flow Metab. 2002;22(12):1453–62.
Article
CAS
PubMed
Google Scholar
Pottala JV, Yaffe K, Robinson JG, Espeland MA, Wallace R, Harris WS. Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI study. Neurology. 2014;82(5):435–42. Pubmed Central PMCID: PMC3917688.
Article
PubMed
PubMed Central
Google Scholar
Bailey HR, Zacks JM, Hambrick DZ, Zacks RT, Head D, Kurby CA, et al. Medial temporal lobe volume predicts elders’ everyday memory. Psychol Sci. 2013;24(7):1113–22. Pubmed Central PMCID: PMC3936320.
Article
PubMed
PubMed Central
Google Scholar
Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, et al. Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc Natl Acad Sci U S A. 2009;106(17):7209–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dennis NA, Browndyke JN, Stokes J, Need A, Burke JR, Welsh-Bohmer KA, et al. Temporal lobe functional activity and connectivity in young adult APOE ɛ4 carriers. Alzheimers Dement. 2010;6(4):303–11.
Article
PubMed
Google Scholar
Rusted J, Evans S, King S, Dowell N, Tabet N, Tofts P. APOE ɛ4 polymorphism in young adults is associated with improved attention and indexed by distinct neural signatures. Neuroimage. 2013;65:364–73.
Article
CAS
PubMed
Google Scholar
Dean 3rd DC, Jerskey BA, Chen K, Protas H, Thiyyagura P, Roontiva A, et al. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. JAMA Neurol. 2014;71(1):11–22. Pubmed Central PMCID: PMC4056558.
Article
PubMed
PubMed Central
Google Scholar
Tuminello ER, Han SD. The apolipoprotein e antagonistic pleiotropy hypothesis: review and recommendations. Int J Alzheimers Dis. 2011;2011:726197. Pubmed Central PMCID: 3056453.
PubMed
PubMed Central
Google Scholar
Yu YWY, Lin CH, Chen SP, Hong CJ, Tsai SJ. Intelligence and event-related potentials for young female human volunteer apolipoprotein E ε4 and non-ε4 carriers. Neurosci Lett. 2000;294(3):179–81.
Article
CAS
PubMed
Google Scholar
Hubacek JA, Pitha J, Škodová Z, Adamkova V, Lánská V, Poledne R. A possible role of apolipoprotein E polymorphism in predisposition to higher education. Neuropsychobiology. 2001;43(3):200–3.
Article
CAS
PubMed
Google Scholar
Kitamura HW, Hamanaka H, Watanabe M, Wada K, Yamazaki C, Fujita SC, et al. Age-dependent enhancement of hippocampal long-term potentiation in knock-in mice expressing human apolipoprotein E4 instead of mouse apolipoprotein E. Neurosci Lett. 2004;369(3):173–8.
Article
CAS
PubMed
Google Scholar
Mondadori CR, Dominique JF, Buchmann A, Mustovic H, Wollmer MA, Schmidt CF, et al. Better memory and neural efficiency in young apolipoprotein E ε4 carriers. Cereb Cortex. 2007;17(8):1934–47.
Article
PubMed
Google Scholar
Han SD, Bondi MW. Revision of the apolipoprotein E compensatory mechanism recruitment hypothesis. Alzheimers Dement. 2008;4(4):251–4.
Article
CAS
PubMed
Google Scholar
Yassine HN, Braskie MN, Mack WJ, Castor KJ, Fonteh AN, Schneider LS, et al. Association of docosahexaenoic acid supplementation with Alzheimer disease stage in apolipoprotein E ε4 carriers: a review. JAMA Neurol. 2017;74(3):339–47.
Article
PubMed
Google Scholar