Alzheimer’s Disease International, World Alzheimer Report, 2010: The Global Economic Impact of Dementia. Alzheimer’s Disease International. 2010, [http://www.alz.co.uk/research/files/WorldAlzheimerReport2010.pdf]
Bleiler TW: 2013 Alzheimer’s disease facts and figures. Alzheimers Dement. 2013, 9: 208-245. [http://www.alz.org/downloads/facts_figures_2013.pdf]
Google Scholar
Selkoe DJ: Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid β-protein. J Alzheimers Dis. 2001, 3: 75-80.
CAS
PubMed
Google Scholar
Walsh DM, Selkoe DJ: Aβ oligomers - a decade of discovery. J Neurochem. 2007, 101: 1172-1184. 10.1111/j.1471-4159.2006.04426.x.
CAS
PubMed
Google Scholar
Roychaudhuri R, Yang M, Hoshi MM, Teplow DB: Amyloid β-protein assembly and Alzheimer disease. J Biol Chem. 2009, 284: 4749-4753. 10.1074/jbc.R800036200.
PubMed Central
CAS
PubMed
Google Scholar
Ondrejcak T, Klyubin I, Hu N-W, Barry AE, Cullen WK, Rowan MJ: Alzheimer’s disease amyloid β-protein and synaptic function. Neuromol Med. 2010, 12: 13-26. 10.1007/s12017-009-8091-0.
CAS
Google Scholar
Sakono M, Zako T: Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J. 2010, 277: 1348-1358. 10.1111/j.1742-4658.2010.07568.x.
CAS
PubMed
Google Scholar
Ferreira ST, Klein WL: The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem. 2011, 96: 529-543. 10.1016/j.nlm.2011.08.003.
PubMed Central
CAS
PubMed
Google Scholar
Benilova I, Karran E, De Strooper B: The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012, 15: 349-357. 10.1038/nn.3028.
CAS
PubMed
Google Scholar
Hayden EY, Teplow DB: Amyloid β-protein oligomers and Alzheimer’s disease. Alzheimers Res Ther. 2013, 5: 60-10.1186/alzrt226.
PubMed Central
PubMed
Google Scholar
Wong CW, Quaranta V, Glenner GG: Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proc Natl Acad Sci USA. 1985, 82: 8729-8732. 10.1073/pnas.82.24.8729.
PubMed Central
CAS
PubMed
Google Scholar
Hardy JA, Higgins GA: Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992, 256: 184-185. 10.1126/science.1566067.
CAS
PubMed
Google Scholar
Klein WL, Krafft GA, Finch CE: Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum?. Trends Neurosci. 2001, 24: 219-224. 10.1016/S0166-2236(00)01749-5.
CAS
PubMed
Google Scholar
De Felice FG, Ferreira ST: β-Amyloid production, aggregation, and clearance as targets for therapy in Alzheimer’s disease. Cell Mol Neurobiol. 2002, 22: 545-563. 10.1023/A:1021832302524.
CAS
PubMed
Google Scholar
Citron M: Strategies for disease modification in Alzheimer’s disease. Nat Rev Neurosci. 2004, 5: 677-685. 10.1038/nrn1495.
CAS
PubMed
Google Scholar
Haas C: Initiation and propagation of neurodegeneration. Nat Med. 2010, 16: 1201-1204. 10.1038/nm.2223.
Google Scholar
Broersen K, Rousseau F, Schymkowitz J: The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer’s disease: oligomer size or conformation. Alzheimers Res Ther. 2010, 2: 12-10.1186/alzrt36.
PubMed Central
PubMed
Google Scholar
Wilcox KC, Lacor RN, Pitt J, Klein WL: Aβ oligomer-induced synapse degeneration in Alzheimer’s disease. Cell Mol Neurobiol. 2011, 31: 939-948. 10.1007/s10571-011-9691-4.
PubMed Central
CAS
PubMed
Google Scholar
Moreth J, Kroker KS, Schwanzar D, Schnack C, von Arnim CAF, Hengerer B, Rosenbrock H, Kussmaul L: Globular and protofibrillar Aβ aggregates impair neurotransmission by different mechanism. Biochem. 2013, 52: 1466-1476. 10.1021/bi3016444.
CAS
Google Scholar
Walsh DM, Lamakin A, Benedek GB, Condron MM, Teplow DB: Amyloid β-protein fibrillogenesis: detection of a protofibrillar intermediated. J Biol Chem. 1997, 272: 22364-22372. 10.1074/jbc.272.35.22364.
CAS
PubMed
Google Scholar
Fezoui Y, Hartley DM, Harper JD, Khurana R, Walsh DM, Condron MM, Selkoe DJ, Lansbury PT, Finnk AL, Teplow DB: An improved method of preparing the amyloid β-protein for fibrillogenesis and neurotoxicity experiments. Amyloid. 2000, 7: 166-178. 10.3109/13506120009146831.
CAS
PubMed
Google Scholar
Lee S, Fernandez EJ, Good TA: Role of aggregation conditions in structure, stability, and toxicity of intermediates in the Aβ fibril formation pathway. Protein Sci. 2007, 16: 723-732. 10.1110/ps.062514807.
PubMed Central
CAS
PubMed
Google Scholar
Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R: Seeded growth of β-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci USA. 2009, 106: 7443-7448. 10.1073/pnas.0812033106.
PubMed Central
CAS
PubMed
Google Scholar
Norlin N, Hellberg M, Filippov A, Sousa AA, Gröbner G, Leapman RD, Almqvist N, Antzutkin ON: Aggregation and fibril morphology of the Arctic mutation of Alzheimer’s Aβ peptide by CD, TEM, STEM and in situ AFM. J Struct Biol. 2012, 180: 174-189. 10.1016/j.jsb.2012.06.010.
PubMed Central
CAS
PubMed
Google Scholar
Morgado I, Fändrich M: Assembly of Alzheimer’s Aβ peptide into nanostructured amyloid fibrils. Curr Opin Colloid Interface Sci. 2011, 16: 508-514. 10.1016/j.cocis.2011.06.016.
CAS
Google Scholar
Tekirian TL, Yang AY, Glabe C, Geddes JW: Toxicity of pyroglutaminated amyloid β-peptides 3(pE)-40 and -42 is similar to that of Aβ1-40 and -42. J Neurochem. 1999, 73: 1584-1589.
CAS
PubMed
Google Scholar
Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E, Ball ML: β-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci USA. 1993, 90: 10836-10840. 10.1073/pnas.90.22.10836.
PubMed Central
CAS
PubMed
Google Scholar
Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H: The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowledge Environ. 2006, 2006: re1-
PubMed
Google Scholar
Podlisny MB, Ostaszewski BL, Squazzo SL, Koo EH, Rydell RE, Teplow DB, Selkoe DJ: Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem. 1995, 270: 9564-9570. 10.1074/jbc.270.16.9564.
CAS
PubMed
Google Scholar
Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ: Amyloid-β oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans. 2002, 30: 552-557.
CAS
PubMed
Google Scholar
Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kushowski MA, Selkoe DJ, Ashe KH: Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat Neurosci. 2005, 8: 79-84. 10.1038/nn1372.
CAS
PubMed
Google Scholar
Townsend M, Cleary JP, Mehta T, Hofmeister J, Lesne S, O’Hare E, Walsh DM, Selkoe DJ: Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-β oligomers. Ann Neurol. 2006, 60: 668-676. 10.1002/ana.21051.
CAS
PubMed
Google Scholar
Reed MN, Hofmeister JJ, Jungbauer L, Welzel AT, Yu C, Sherman MA, Lesné S, LaDu MJ, Walsh DM, Ashe KH, Cleary JP: Cognitive effects of cell-derived and synthetically derived Aβ oligomers. Neurobiol Aging. 2011, 32: 1784-1794. 10.1016/j.neurobiolaging.2009.11.007.
PubMed Central
CAS
PubMed
Google Scholar
Freir DB, Fedriani R, Scully D, Smith IM, Selkoe DJ, Walsh DM, Regan CM: Aβ oligomers inhibit synapse remodeling necessary for memory consolidation. Neurobiol Aging. 2011, 32: 2211-2218. 10.1016/j.neurobiolaging.2010.01.001.
PubMed Central
CAS
PubMed
Google Scholar
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ: Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008, 14: 837-842. 10.1038/nm1782.
PubMed Central
CAS
PubMed
Google Scholar
Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ: Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol. 2006, 572: 477-492. 10.1113/jphysiol.2005.103754.
PubMed Central
CAS
PubMed
Google Scholar
Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH: A specific amyloid-β protein assembly in the brain impairs memory. Nature. 2006, 440: 352-357. 10.1038/nature04533.
PubMed
Google Scholar
Chen Y-R, Clabe CG: Distinct early folding and aggregation properties of Alzheimer amyloid-β peptides Aβ40 and Aβ42. J Biol Chem. 2006, 281: 24414-24422. 10.1074/jbc.M602363200.
CAS
PubMed
Google Scholar
Bitan G, Vollers SS, Teplow DB: Elucidation of primary structure elements controlling early amyloid β-protein oligomerization. J Biol Chem. 2003, 278: 34882-34889. 10.1074/jbc.M300825200.
CAS
PubMed
Google Scholar
Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, Bahr M, Schmidt M, Bitner RS, Harlan J, Barlow E, Ebert U, Hillen H: Globular amyloid β-peptide1-42 oligomer - a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem. 2005, 95: 834-847. 10.1111/j.1471-4159.2005.03407.x.
CAS
PubMed
Google Scholar
Larson ME, Lesné SE: Soluble Aβ oligomer production and toxicity. J Neurochem. 2012, 120 (Suppl 1): 125-139.
PubMed Central
CAS
PubMed
Google Scholar
Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL: Diffusible, non-fibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA. 1998, 95: 6448-6453. 10.1073/pnas.95.11.6448.
PubMed Central
CAS
PubMed
Google Scholar
Stine WB, Dahlgren KN, Krafft GA, LaDu MJ:In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J Mol Biol. 2003, 278: 11612-11622.
CAS
Google Scholar
Hepler RW, Grimm KM, Nahas DD, Breese R, Dodson EC, Acton P, Keller PM, Yeager M, Wang H, Shughrue P, Kinney G, Joyce JG: Solution state characterization of amyloid β-derived diffusible ligands. Biochem. 2006, 45: 15157-15167. 10.1021/bi061850f.
CAS
Google Scholar
Deshpande A, Mina E, Glabe C, Busciglio J: Different conformations of amyloid β induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci. 2006, 26: 6011-6018. 10.1523/JNEUROSCI.1189-06.2006.
CAS
PubMed
Google Scholar
Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL, Rasool S, Gurlo T, Butler P, Glabe CG: Fibril specific, conformation depended antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegen. 2007, 2: 18-10.1186/1750-1326-2-18.
Google Scholar
Rangachari V, Moore BD, Reed DK, Sonoda LK, Bridges AW, Conboy E, Hartigan D, Rosenberry TL: Amyloid-β(1-42) rapidly forms protofibrils and oligomers by distinct pathways in low concentrations of sodium dodecylsulfate. Biochem. 2007, 46: 12451-12462. 10.1021/bi701213s.
CAS
Google Scholar
Gellermann GP, Byrnes H, Striebinger A, Ullrich K, Mueller R, Hillen H, Barghorn S: Aβ-globulomers are formed independently of the fibril pathway. Neurobiol Dis. 2008, 30: 212-220. 10.1016/j.nbd.2008.01.010.
CAS
PubMed
Google Scholar
Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C: Amyloid β oligomers (Aβ1-42 globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci. 2008, 28: 788-797. 10.1523/JNEUROSCI.4771-07.2008.
CAS
PubMed
Google Scholar
Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG: Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem. 2005, 280: 17294-17300. 10.1074/jbc.M500997200.
CAS
PubMed
Google Scholar
Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K: Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci USA. 2003, 100: 6370-6575. 10.1073/pnas.1237107100.
PubMed Central
CAS
PubMed
Google Scholar
Noguchi A, Matsumura S, Dezawa M, Tada M, Yanazawa M, Ito A, Akioka M, Kikuchi S, Sato M, Ideno S, Noda M, Fukunari A, Muramatsu S-i, Itokazu Y, Sato K, Takahashi H, Teplow DB, Nabeshima Y-i, Kakita A, Imahori K, Hoshi M: Isolation and characterization of patient-derived, toxic, high mass amyloid β-protein (Aβ) assembly from Alzheimer disease brains. J Biol Chem. 2009, 284: 32895-32905. 10.1074/jbc.M109.000208.
PubMed Central
CAS
PubMed
Google Scholar
Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin AL, Benedek GB, Selkoe DJ, Teplow DB: Amyloid β-protein fibrillogenesis: structure and biological activity of protofibrillar intermediates. J Biol Chem. 1999, 274: 25945-25952. 10.1074/jbc.274.36.25945.
CAS
PubMed
Google Scholar
Harper JD, Wong SS, Lieber CM, Lansbury PT: Assembly of Aβ amyloid protofibrils: an in vitro model for a possible early event in Alzheimer’s disease. Biochem. 1999, 38: 8972-8980. 10.1021/bi9904149.
CAS
Google Scholar
Lashuel HA, Hartley DM, Petre BM, Wall JS, Simon MN, Walz T, Lansbury PT: Mixtures of wild-type and a pathogenic (E22G) form of Aβ40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol. 2003, 332: 795-808. 10.1016/S0022-2836(03)00927-6.
CAS
PubMed
Google Scholar
Lasagna-Reeves CA, Glabe CG, Kayed R: Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain. J Biol Chem. 2011, 286: 22122-22130. 10.1074/jbc.M111.236257.
PubMed Central
CAS
PubMed
Google Scholar
Mehta PD, Pirttilä T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM: Plasma and cerebrospinal fluid levels of amyloid β proteins 1-40 and 1-42 in Alzheimer disease. Arch Neurol. 2000, 57: 100-105. 10.1001/archneur.57.1.100.
CAS
PubMed
Google Scholar
Delacourte A, Sergeant N, Champain D, Wattez A, Maurage C-A, Lebert F, Pasquier F, David J-P: Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer’s disease. Neurology. 2002, 59: 398-407. 10.1212/WNL.59.3.398.
CAS
PubMed
Google Scholar
Fukumoto H, Tokuda T, Kasai T, Ishigami N, Hidaka H, Kondo M, Allsop D, Nakagawa M: High-molecular-weight β-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J. 2010, 24: 2716-2726. 10.1096/fj.09-150359.
CAS
PubMed
Google Scholar
Karran E, Mercken M, De Stropper B: The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Disc. 2011, 10: 698-712. 10.1038/nrd3505.
CAS
Google Scholar
Wolfe A, McCampbell A, Hatcher N, Tugusheva K, Haugabook S, Maxwell J, Wu G, Howell B, Renger J, Shughrue P, Savage M: A quantitative assay selective for amyloid oligomer species differentiates cerebrospinal fluid from Alzheimer’s disease and age-matched normal. Alzheimers Dementia. 2012, 8 (Supplement): P278-
Google Scholar
Hölttä M, Hansson O, Andreasson U, Hertze J, Minthon L, Nägga K, Andreasen N, Zetterberg H, Blennow K: Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer’s disease. PLoS One. 2013, 8: e66381-10.1371/journal.pone.0066381.
PubMed Central
PubMed
Google Scholar
Lue L-F, Kuo Y-M, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J: Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999, 155: 853-862. 10.1016/S0002-9440(10)65184-X.
PubMed Central
CAS
PubMed
Google Scholar
McDonald JM, Cairns NJ, Taylor-Reinwald L, Holtzman D, Walsh DM: The levels of water-soluble and triton-soluble Aβ are increased in Alzheimer’s disease brain. Brain Res. 2012, 1450: 138-147.
CAS
PubMed
Google Scholar
Savage MJ, Kalinina J, Wolfe A, Tugusheva K, Korn R, Cash-Mason T, Maxwell JW, Hatcher NG, Haugabook SJ, Wu G, Howell BJ, Renger JJ, Shughrue PJ, McCampbell A: A sensitive Aβ oligomer assay discriminates Alzheimer’s and aged control cerebrospinal fluid. J Neurosci. 2014, 34: 2884-2897. 10.1523/JNEUROSCI.1675-13.2014.
CAS
PubMed
Google Scholar
Johnson RD, Schauerte JA, Wisser KC, Gafni A, Steel DG: Direct observation of single amyloid-β(1-40) oligomers on live cells: binding and growth at physiological concentrations. PLoS One. 2011, 6: e23970-10.1371/journal.pone.0023970.
PubMed Central
CAS
PubMed
Google Scholar
Johnson RD, Schauerte JA, Chang C-C, Wisser KC, Althaus JC, Carruthers CJL, Sutton MA, Steel DG, Gafni A: Single-molecule imaging reveals Aβ42:Aβ40 ratio-dependent oligomer growth on neuronal processes. Biophys J. 2013, 104: 894-903. 10.1016/j.bpj.2012.12.051.
PubMed Central
CAS
PubMed
Google Scholar
Lansbury PT: Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci USA. 1999, 96: 3342-3344. 10.1073/pnas.96.7.3342.
PubMed Central
CAS
PubMed
Google Scholar
Serpell LC: Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta. 2000, 1502: 16-30. 10.1016/S0925-4439(00)00029-6.
CAS
PubMed
Google Scholar
Blackley HK, Sanders GH, Davies MC, Roberts CJ, Tendler SJ, Wilkinson MJ: In-situ atomic force microscopy study of β-amyloid fibrillization. J Mol Biol. 2000, 298: 833-840. 10.1006/jmbi.2000.3711.
CAS
PubMed
Google Scholar
Kirkitadze MD, Condron MM, Teplow DB: Identification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis. J Mol Biol. 2001, 312: 1103-1119. 10.1006/jmbi.2001.4970.
CAS
PubMed
Google Scholar
Caughey B, Lansbury PT: Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci. 2003, 26: 267-298. 10.1146/annurev.neuro.26.010302.081142.
CAS
PubMed
Google Scholar
Cohen SI, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M, Dobson CM, Knowles TP: Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci USA. 2013, 110: 9758-9763. 10.1073/pnas.1218402110.
PubMed Central
CAS
PubMed
Google Scholar
Jeong JS, Ansaloni A, Mezzenga R, Lashuel HA, Dietler G: Novel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation. J Mol Biol. 2013, 425: 1765-1781. 10.1016/j.jmb.2013.02.005.
CAS
PubMed
Google Scholar
Stefani M: Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. FEBS J. 2010, 277: 4602-4613. 10.1111/j.1742-4658.2010.07889.x.
CAS
PubMed
Google Scholar
Lanz TA, Himes CS, Pallante G, Adams L, Yamazaki S, Amore B, Merchant KM:The γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces Aβ levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther. 2003, 305: 864-871. 10.1124/jpet.102.048280.
CAS
PubMed
Google Scholar
Barten DM, Guss VL, Corsa JA, Loo A, Hansel SB, Zheng M, Munoz B, Srinivasan K, Wang B, Robertson BJ, Polson CT, Wang J, Roberts SB, Hendrick JP, Anderson JJ, Loy JK, Denton R, Verdoorn TA, Smith DW, Felsenstein KM: Dynamics of β-amyloid reductions in brain, cerebrospinal fluid, and plasma of β-amyloid precursor protein transgenic mice treated with a γ-secretase inhibitor. J Pharmacol Exp Ther. 2005, 312: 635-643.
CAS
PubMed
Google Scholar
Abramowski D, Wiederhold K-H, Furrer U, Jaton A-L, Neuenschwander A, Runser M-J, Danner S, Reichwald J, Ammaturo D, Staab D, Stoeckli M, Rueeger H, Neumann U, Staufenbiel M: Dynamics of Aβ turnover and deposition in different β-amyloid precursor protein transgenic mouse models following γ-secretase inhibition. J Pharmacol Exp Ther. 2008, 327: 411-424. 10.1124/jpet.108.140327.
CAS
PubMed
Google Scholar
Garcia-Alloza M, Subramanian M, Thyssen D, Borrelli LA, Fauq A, Das P, Golde TE, Hyman BT, Bacskai BJ: Existing plaques and neuritic abnormalities in APP:PS1 mice are not affected by administration of the gamma-secretase inhibitor LY-411575. Mol Neurodegen. 2009, 4: 19-10.1186/1750-1326-4-19.
Google Scholar
Jankowsky JL, Slunt HH, Gonzales V, Savonenko AV, Wen JC, Jenkins NA, Copeland NG, Younkin LH, Lester HA, Younkin SG, Borchelt DR: Persistent amyloidosis following suppression of Aβ production in a transgenic model of Alzheimer disease. PLoS Med. 2005, 2: e355-10.1371/journal.pmed.0020355.
PubMed Central
PubMed
Google Scholar
Melnikova T, Fromholt S, Kim HS, Lee D, Xu G, Price A, Moore BD, Golde TE, Felsenstein KM, Savonenko A, Borchelt DR: Reversible pathologic and cognitive phenotypes in an inducible model of Alzheimer-amyloidosis. J Neurosci. 2013, 33: 3765-3779. 10.1523/JNEUROSCI.4251-12.2013.
PubMed Central
CAS
PubMed
Google Scholar
Das P, Murphy MP, Younkin LA, Younkin SG, Golde TE: Reduced effectiveness of Aβ1-42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol Aging. 2001, 22: 721-727. 10.1016/S0197-4580(01)00245-7.
CAS
PubMed
Google Scholar
Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N, Puoliväli J, Lesné S, Ashe KH, Muchowski PJ, Mucke L: Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem. 2007, 282: 23818-23828. 10.1074/jbc.M701078200.
CAS
PubMed
Google Scholar
Lesné S, Kotilinek L, Ashe KH: Plaque-bearing mice with reduced levels of oligomeric amyloid-β assemblies have intact memory function. Neurosci. 2008, 151: 745-749. 10.1016/j.neuroscience.2007.10.054.
Google Scholar
Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, DeMattos RB, Holtzman DM:In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J Neurosci. 2003, 23: 8844-8853.
CAS
PubMed
Google Scholar
Hong S, Quintero-Monzon O, Ostaszewski BL, Podlisny DR, Cavanaugh WT, Yang T, Holtzman DM, Cirrito JR, Selkoe DJ: Dynamic analysis of amyloid β-protein in behaving mice reveals opposing changes in ISF vs. parenchymal Aβ during age-related plaque formation. J Neurosci. 2011, 31: 15861-15869. 10.1523/JNEUROSCI.3272-11.2011.
PubMed Central
CAS
PubMed
Google Scholar
Takeda S, Hashimoto T, Roe AD, Hori Y, Spires-Jones TL, Hyman BT: Brain interstitial oligomeric amyloid β increases with age and is resistant to clearance from brain in a mouse model of Alzheimer’s disease. FASEB J. 2013, 27: 3239-3248. 10.1096/fj.13-229666.
PubMed Central
CAS
PubMed
Google Scholar
Narayan P, Ganzinger KA, McColl J, Weimann L, Meehan S, Qamar S, Carver JA, Wilson MR, St George-Hyslop P, Dobson CM, Klenerman D: Single molecule characterization of the interactions between amyloid-β peptides and the membranes of hippocampal cells. J Am Chem Soc. 2013, 135: 1491-1498. 10.1021/ja3103567.
PubMed Central
CAS
PubMed
Google Scholar
Gravina SA, Ho L, Eckman CB, Long KE, Otvos L, Younkin LH, Suzuki N, Younkin SG: Amyloid β protein (Aβ) in Alzheimer’s disease brain: biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ40 or Aβ42(43). J Biol Chem. 1995, 270: 7013-1016. 10.1074/jbc.270.13.7013.
CAS
PubMed
Google Scholar
Wetzel R: Kinetics and thermodynamics of amyloid fibril assembly. Acc Chem Res. 2006, 39: 671-679. 10.1021/ar050069h.
CAS
PubMed
Google Scholar
Sánchez L, Madurga S, Pukala T, Vilaseca M, López-Iglesias C, Robinson CV, Giralt E, Carulla N: Aβ40 and Aβ42 amyloid fibrils exhibit distinct molecular recycling properties. J Am Chem Soc. 2011, 133: 6505-6508. 10.1021/ja1117123.
PubMed
Google Scholar
Esler WP, Stimson ER, Jennings JM, Vinters HV, Ghilardi JR, Lee JP, Mantyh PW, Maggio JE: Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism. Biochem. 2000, 39: 6288-6295. 10.1021/bi992933h.
CAS
Google Scholar
Koffie RM, Mayer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, Micheva KD, Smith SJ, Kim ML, Lee VM, Hyman BT, Spires-Jones TL: Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA. 2009, 106: 4012-4017. 10.1073/pnas.0811698106.
PubMed Central
CAS
PubMed
Google Scholar
Atwood CA, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN: Amyloid-β: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-β. Brain Res Rev. 2003, 43: 1-16. 10.1016/S0165-0173(03)00174-7.
CAS
PubMed
Google Scholar
Giuffrida ML, Caraci F, Pagnataro B, Cataldo S, De Bona P, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A, Garozzo D, Nicoletti F, Rizzarelli E, Copani A: β-Amyloid monomers are neuroprotective. J Neurosci. 2009, 29: 10582-10587. 10.1523/JNEUROSCI.1736-09.2009.
CAS
PubMed
Google Scholar
Baglioni S, Casamenti F, Bucciantini M, Luheshi LM, Taddei N, Chiti F, Dobson CM, Stefani M: Prefibrillar amyloid aggregates could be generic toxins in higher organisms. J Neurosci. 2006, 26: 8160-8162. 10.1523/JNEUROSCI.4809-05.2006.
CAS
PubMed
Google Scholar
Treusch S, Cyr DM, Lindquist S: Amyloid deposits: protection against toxic protein species?. Cell Cycle. 2009, 8: 1668-1674. 10.4161/cc.8.11.8503.
PubMed Central
CAS
PubMed
Google Scholar
Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, Morgan TE, Rozovsky I, Stine WB, Snyder SW, Holzman TF, Krafft GA, Finch CE: Clusterin (apoJ) alters the aggregation of amyloid β-peptide (Aβ1-42) and forms slowly sedimenting Aβ complexes that cause oxidative stress. Exp Neurobiol. 1995, 136: 22-31. 10.1006/exnr.1995.1080.
CAS
Google Scholar
Standridge JB: Vicious cycles within the neuropathophysiologic mechanisms of Alzheimer’s disease. Curr Alzheimers Res. 2006, 3: 95-107. 10.2174/156720506776383068.
CAS
Google Scholar
Zemple H, Thies E, Mandelkow E, Mandelkow EM: Abeta oligomers cause localized Ca2+ elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010, 30: 11938-11950. 10.1523/JNEUROSCI.2357-10.2010.
Google Scholar
Klyubin I, Cullen WK, Hu N-W, Rowan MJ: Alzheimer’s disease Aβ assemblies mediating rapid disruption of synaptic plasticity and memory. Molecular Brain. 2012, 5: 25-10.1186/1756-6606-5-25.
PubMed Central
CAS
PubMed
Google Scholar
Kittelberger KA, Piazza F, Tesco G, Reijmers LG: Natural amyloid-beta oligomers acutely impair the formation of a contextual fear memory in mice. PLoS One. 2012, 7: e29940-10.1371/journal.pone.0029940.
PubMed Central
CAS
PubMed
Google Scholar
Puzzo D, Privitera L, Leznik E, Fà M, Staniszewski A, Palmeri A, Arancio O: Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J Neurosci. 2008, 28: 14537-14545. 10.1523/JNEUROSCI.2692-08.2008.
PubMed Central
CAS
PubMed
Google Scholar
Puzzo D, Privitera L, Fà M, Staniszewski A, Hashimoto G, Aziz F, Sakurai M, Ribe EM, Troy CM, Merchen M, Jung SS, Palmeri A, Arancio O: Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann Neurol. 2011, 69: 819-830. 10.1002/ana.22313.
PubMed Central
CAS
PubMed
Google Scholar
Puzzo D, Arancio O: Amyloid-β peptide: Dr. Jekyll or Mr. Hyde?. J Alzheimers Dis. 2013, 33: S111-S120.
PubMed Central
PubMed
Google Scholar
Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL: Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci. 2004, 24: 10191-10200. 10.1523/JNEUROSCI.3432-04.2004.
CAS
PubMed
Google Scholar
Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL: Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007, 27: 796-807. 10.1523/JNEUROSCI.3501-06.2007.
CAS
PubMed
Google Scholar
Shughrue PJ, Acton PJ, Breese RS, Zhao W-Q, Chen-Dodson E, Hepler RW, Wolfe AL, Matthews M, Heidecker GJ, Joyce JG, Villarreal SA, Kinney JJ: Anti-ADDL antibodies differentially block oligomer binding to hippocampal neurons. Neurobiol Aging. 2010, 31: 189-202. 10.1016/j.neurobiolaging.2008.04.003.
CAS
PubMed
Google Scholar
Rammes G, Hasenjager A, Sroka-Saidi K, Deussing JM, Parsons CG: Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology. 2011, 60: 982-990. 10.1016/j.neuropharm.2011.01.051.
CAS
PubMed
Google Scholar
Poling A, Paisley-Morgan K, Panos JJ, Kim E-M, O’Hare E, Cleary JP, Lesné S, Ashe KH, Porritt M, Baker L: Oligomers of the amyloid-beta protein disrupt working memory: confirmation with two behavioral procedures. Behav Brain Res. 2008, 193: 230-234. 10.1016/j.bbr.2008.06.001.
PubMed Central
CAS
PubMed
Google Scholar
De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ, Chen-Dodson E, Kinney GG, Klein WL: Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol Aging. 2008, 29: 1334-1347. 10.1016/j.neurobiolaging.2007.02.029.
PubMed Central
CAS
PubMed
Google Scholar
Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ: Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA. 2011, 108: 5819-5824. 10.1073/pnas.1017033108.
PubMed Central
CAS
PubMed
Google Scholar
Chabrier MA, Blurton-Jones M, Agazaryan AA, Nerhus JL, Martinez-Coria H, LaFerla FM: Soluble Aβ promotes wild-type tau pathology in vivo. J Neurosci. 2012, 32: 17345-17350. 10.1523/JNEUROSCI.0172-12.2012.
PubMed Central
CAS
PubMed
Google Scholar
Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, LaFerla FM: Temporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease: a link between Aβ and tau pathology. J Biol Chem. 2006, 281: 1599-1604. 10.1074/jbc.M507892200.
CAS
PubMed
Google Scholar
Small SA, Duff K: Linking Aβ and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron. 2008, 60: 534-542. 10.1016/j.neuron.2008.11.007.
PubMed Central
CAS
PubMed
Google Scholar
Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Kandelkow E-M: Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J. 2013, 32: 2920-2937. 10.1038/emboj.2013.207.
PubMed Central
CAS
PubMed
Google Scholar
Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, Ball MJ, Roher AE: Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer’s disease brains. J Biol Chem. 1996, 271: 4077-4081. 10.1074/jbc.271.8.4077.
CAS
PubMed
Google Scholar
Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL: Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA. 2003, 100: 10417-10422. 10.1073/pnas.1834302100.
PubMed Central
CAS
PubMed
Google Scholar
Sehlin D, Englund H, Simu B, Karlsson M, Ingelsson M, Nikolajeff F, Lannfelt L, Pettersson FE: Large aggregates are the major soluble Aβ species in AD brain fractionated with density gradient ultracentrifugation. PLoS One. 2012, 7: e32014-10.1371/journal.pone.0032014.
PubMed Central
CAS
PubMed
Google Scholar
Georganopoulou DG, Chang L, Nam J-M, Thaxton SC, Mufson EJ, Klein WL, Mirkin CA: Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA. 2005, 102: 2273-2276. 10.1073/pnas.0409336102.
PubMed Central
CAS
PubMed
Google Scholar
Gao CM, Yam AY, Wang X, Magdangal E, Salisbury C, Peretz D, Zuckermann RN, Connolly MD, Hansson O, Minthon L, Zetterberg H, Blennow K, Fedynyshyn JP, Allauzen S: Aβ40 oligomers identified as a potential biomarker for the diagnosis of Alzheimer’s disease. PLoS One. 2010, 5: e15725-10.1371/journal.pone.0015725.
PubMed Central
CAS
PubMed
Google Scholar
Santos AN, Ewers M, Minthon L, Simm A, Silber R-E, Blennow K, Prvulovic D, Hansson O, Hampel H: Amyloid-β oligomers in cerebrospinal fluid are associated with cognitive decline in patients with Alzheimer’s disease. J Alzheimer’s Dis. 2012, 29: 171-176.
CAS
Google Scholar
Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, Brody DL: Amyloid-beta oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol. 2013, 73: 104-119. 10.1002/ana.23748.
PubMed Central
CAS
PubMed
Google Scholar
Herskovits AZ, Locascio JJ, Peskind ER, Li G, Hyman BT: A luminex assay detects amyloid β oligomers in Alzheimer’s disease cerebrospinal fluid. PLoS One. 2013, 8: e67898-10.1371/journal.pone.0067898.
PubMed Central
CAS
PubMed
Google Scholar
Glabe CG: Structural classification of toxic amyloid oligomers. J Biol Chem. 2008, 283: 29639-29643. 10.1074/jbc.R800016200.
PubMed Central
CAS
PubMed
Google Scholar
Rahimi F, Shanmugam A, Bitan G: Structure-function relationships of pre-fibrillar protein assemblies in Alzheimer’s disease and related disorders. Curr Alzheimer Res. 2008, 5: 319-341. 10.2174/156720508784533358.
PubMed Central
CAS
PubMed
Google Scholar
Fändrich M: Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J Mol Biol. 2012, 421: 427-440. 10.1016/j.jmb.2012.01.006.
PubMed
Google Scholar
Roher AE, Chaney MO, Kuo Y-M, Webster SD, Stine WB, Haverkamp LJ, Woods AS, Cotter RJ, Tuohy JM, Krafft GA, Bonnell BS, Emmerling MR: Morphology and toxicity of Aβ-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem. 1996, 271: 20631-20635. 10.1074/jbc.271.34.20631.
CAS
PubMed
Google Scholar
Hu N-W, Smith IM, Walsh DM, Rowan MJ: Soluble amyloid-β peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain. 2008, 131: 2414-2424. 10.1093/brain/awn174.
PubMed
Google Scholar
Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ: Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci. 1999, 19: 8876-8884.
CAS
PubMed
Google Scholar
Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, Mount HT, Mufson EJ, Salehi A, Fahnestock M: Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci. 2009, 29: 9321-9329. 10.1523/JNEUROSCI.4736-08.2009.
PubMed Central
CAS
PubMed
Google Scholar
Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P, Finch CE, Krafft GA, Klein WL: Self-assembly of Aβ1-42 into globular neurotoxins. Biochem. 2003, 42: 12749-12760. 10.1021/bi030029q.
CAS
Google Scholar
Ono K, Condron MM, Teplow DB: Structure-neurotoxicity relationships of amyloid β-protein oligomers. Proc Natl Acad Sci USA. 2009, 106: 14745-14750. 10.1073/pnas.0905127106.
PubMed Central
CAS
PubMed
Google Scholar
Rönicke R, Klemm A, Meinhardt J, Schröder UH, Fändrich M, Reymann KG: Aβ mediated diminution of MMT reduction - an artefact of single cell culture?. PLoS One. 2008, 3: e3236-10.1371/journal.pone.0003236.
PubMed Central
PubMed
Google Scholar
Podlisny MB, Walsh DM, Amarante P, Ostaszewski BL, Stimson ER, Maggio JE, Teplow DB, Selkoe DJ: Oligomerization of endogenous and synthetic amyloid β-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry. 1998, 37: 3602-3611. 10.1021/bi972029u.
CAS
PubMed
Google Scholar
Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ: Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002, 416: 535-539. 10.1038/416535a.
CAS
PubMed
Google Scholar
Walsh DM, Townsend M, Podlisny MB, Shankar GM, Fadeeva JV, Agnaf OE, Hartley DM, Selkoe DJ: Certain inhibitors of synthetic amyloid β-peptide (Aβ) fibrillogenesis block oligomerization of natural Aβ and thereby rescue long-term potentiation. J Neurosci. 2005, 25: 2455-2462. 10.1523/JNEUROSCI.4391-04.2005.
CAS
PubMed
Google Scholar
Bitan G, Fradinger EA, Spring SM, Teplow DB: Neurotoxic protein oligomers - what you see is not always what you get. Amyloid. 2005, 12: 88-95. 10.1080/13506120500106958.
PubMed
Google Scholar
Kimura R, MacTavish D, Yang J, Westaway D, Jhamandas JH: Beta amyloid-induced depression of hippocampal long-term potentiation is mediated through the amylin receptor. J Neurosci. 2012, 32: 17401-17406. 10.1523/JNEUROSCI.3028-12.2012.
CAS
PubMed
Google Scholar
Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL: Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci. 2007, 27: 2866-2875. 10.1523/JNEUROSCI.4970-06.2007.
CAS
PubMed
Google Scholar
Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D: Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009, 62: 788-801. 10.1016/j.neuron.2009.05.012.
PubMed Central
CAS
PubMed
Google Scholar
Wei W, Nguyen LN, Kessels HW, Hagiwara H, Sisodia S, Malinow R: Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat Neurosci. 2010, 13: 190-196. 10.1038/nn.2476.
PubMed Central
CAS
PubMed
Google Scholar
Tamburri A, Dudilot A, Licea S, Bourgeois C, Boehm J: NMDA-receptor activation but not ion flux is required for amyloid-beta induced synaptic depression. PLoS One. 2013, 8: e65350-10.1371/journal.pone.0065350.
PubMed Central
CAS
PubMed
Google Scholar
Malinow R: New developments on the role of NMDA receptors in Alzheimer’s disease. Curr Opin Neurobiol. 2012, 22: 559-563. 10.1016/j.conb.2011.09.001.
PubMed Central
CAS
PubMed
Google Scholar
Takamura A, Sato Y, Watabe D, Okamoto Y, Nakata T, Kawarabayashi T, Oddo S, Laferla FM, Shoji M, Matsubara E: Sortilin is required for toxic action of Aβ oligomers (AβOs): extracellular AβOs trigger apoptosis, and intraneuronal AβOs impair degradation pathways. Life Sci. 2012, 91: 1177-1186. 10.1016/j.lfs.2012.04.038.
CAS
PubMed
Google Scholar
Zhang Y, McLaughlin R, Goodyer C, LeBlanc A: Selective cytotoxicity of intracellular amyloid β peptide1-42 through p53 and Bax in cultured primary human neurons. J Cell Biol. 2002, 156: 519-529. 10.1083/jcb.200110119.
PubMed Central
CAS
PubMed
Google Scholar
Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M: Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci USA. 2002, 99: 13217-13221. 10.1073/pnas.172504199.
PubMed Central
CAS
PubMed
Google Scholar
Smith DL, Pozueta J, Gong B, Arancio O, Shelanski M: Reversal of long-term dendritic spine alterations in Alzheimer disease models. Proc Natl Acad Sci USA. 2009, 106: 16877-16882. 10.1073/pnas.0908706106.
PubMed Central
CAS
PubMed
Google Scholar
Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R: Block of long-term potentiation by naturally secreted and synthetic amyloid β-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci. 2004, 24: 3370-3378. 10.1523/JNEUROSCI.1633-03.2004.
CAS
PubMed
Google Scholar
Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y, Mizuno H, Spencer B, Rockenstein E, Trejo M, Platoshyn O, Yuan JX-J, Masliah E: Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases. PLoS One. 2008, 3: e3135-10.1371/journal.pone.0003135.
PubMed Central
PubMed
Google Scholar
Cisse M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, Ho K, Yu G-Q, Mucke L: Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature. 2011, 469: 47-52. 10.1038/nature09635.
PubMed Central
CAS
PubMed
Google Scholar
Yu C, Nwabuisi-Heath E, Laxton K, LaDu MJ: Endocytic pathways mediating oligomeric Aβ42 neurotoxicity. Mol Neurodegener. 2010, 5: 19-10.1186/1750-1326-5-19.
PubMed Central
PubMed
Google Scholar
Renner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL, Triller A: Deleterious effects of amyloid β oligomers acting as an extracellular scaffold for mGluR5. Neuron. 2010, 66: 739-754. 10.1016/j.neuron.2010.04.029.
PubMed Central
CAS
PubMed
Google Scholar
Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM: Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer Aβ oligomer bound to cellular prion protein. Neuron. 2013, 79: 887-902. 10.1016/j.neuron.2013.06.036.
PubMed Central
CAS
PubMed
Google Scholar
Paranjape GS, Gouwens LK, Osborn DC, Nishols MR: Isolated amyloid(1-42) protofibrils, but not isolated fibrils, are robust stimulators of microglia. ACS Chem Neurosci. 2012, 3: 302-311. 10.1021/cn2001238.
PubMed Central
CAS
PubMed
Google Scholar
Ostapchenko VG, Beraldo FH, Mohammad AH, Xie Y-F, Hirata PHF, Magalhaes AC, Lamour G, Li H, Maciejewski A, Belrose JC, Teixeira BL, Fahnestock M, Ferreira ST, Cashman NR, Hajj GNM, Jackson MF, Choy W-Y, MacDonald JF, Martins VR, Prado VF, Prado MAM: The prion protein ligand, stress-inducible phosphoprotein 1, regulates amyloid-β oligomer toxicity. J Neurosci. 2013, 33: 16552-16564. 10.1523/JNEUROSCI.3214-13.2013.
CAS
PubMed
Google Scholar
Younan ND, Sarell CJ, Davies P, Brown DR, Viles JH: The cellular prion protein traps Alzheimer’s Aβ in an oligomeric form and disassembles amyloid fibers. FASEB J. 2013, 27: 1847-1858. 10.1096/fj.12-222588.
PubMed Central
CAS
PubMed
Google Scholar
Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC, Strittmatter SM: Alzheimer amyloid-β oligomer bound to post-synaptic prion protein activates Fyn to impair neurons. Nat Neurosci. 2012, 15: 1227-1235. 10.1038/nn.3178.
PubMed Central
CAS
PubMed
Google Scholar
Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA, Aguzzi A, Lesné SE: The complex PrPc-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer’s disease. J Neurosci. 2012, 32: 16857-16871. 10.1523/JNEUROSCI.1858-12.2012.
PubMed Central
CAS
PubMed
Google Scholar
Zhao W-Q, Santini F, Breese R, Ross D, Zhang XD, Stone DJ, Ferrer M, Townsend M, Wolfe AL, Seager MA, Kinney GG, Shughrue PJ, Ray WJ: Inhibition of calcineurin-mediated endocytosis and α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors prevents amyloid β oligomer-induced synaptic disruption. J Biol Chem. 2010, 285: 7619-7632. 10.1074/jbc.M109.057182.
PubMed Central
CAS
PubMed
Google Scholar
Wu H-Y, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, Spires-Jones T, Xie H, Arbel-Ornath M, Grosskreutz CL, Bacskai BJ, Hyman BT: Amyloid β induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci. 2010, 30: 2636-2649. 10.1523/JNEUROSCI.4456-09.2010.
PubMed Central
CAS
PubMed
Google Scholar
Wu H-Y, Hudry E, Hashimoto T, Uemura K, Fan Z-Y, Berezovska O, Grosskreutz CL, Bacskai BJ, Hyman BT: Distinct dendritic spine and nuclear phases of calcineurin activation after exposure to amyloid-β revealed by a novel fluorescence resonance energy transfer assay. J Neurosci. 2012, 32: 5298-5309. 10.1523/JNEUROSCI.0227-12.2012.
PubMed Central
CAS
PubMed
Google Scholar
Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC, Hyman BT, Shatz CJ: Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science. 2013, 341: 1399-1404. 10.1126/science.1242077.
CAS
PubMed
Google Scholar
Townsend M, Mehta T, Selkoe DJ: Soluble Aβ inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem. 2007, 282: 33305-33312. 10.1074/jbc.M610390200.
CAS
PubMed
Google Scholar
Catalano SM, Rishton G, Izzo NJ: International Patent Publication Number, WO 2013/029060 A2. Compositions and methods for treating neurodegenerative disease. 2013
Google Scholar
Benilova I, De Strooper B: Promiscuous Alzheimer’s amyloid: yet another partner. Science. 2013, 341: 1354-1355. 10.1126/science.1244166.
PubMed
Google Scholar
Teblow DB: On the subject of rigor in the study of amyloid β-protein assembly. Alzheimers Res Ther. 2013, 5: 39-10.1186/alzrt203.
Google Scholar
Stine WB, Jungbauer L, Yu C, LaDu MJ: Preparing synthetic Aβ in different aggregation states. Methods Mol Biol. 2011, 670: 13-32.
PubMed Central
CAS
PubMed
Google Scholar
Ryan DA, Narrow WC, Federoff HJ, Bowers WJ: An improved method of generating consistent soluble amyloid-beta oligomer preparations for in vitro neurotoxicity studies. J Neurosci Methods. 2010, 190: 171-179. 10.1016/j.jneumeth.2010.05.001.
PubMed Central
CAS
PubMed
Google Scholar
Zago W, Buttini M, Comery TA, Nishioka C, Gardai SJ, Seubert P, Games D, Bard F, Schenk D, Kinney GG: Neutralization of soluble, synaptotoxic amyloid β species by antibodies is epitope specific. J Neurosci. 2012, 32: 2696-2702. 10.1523/JNEUROSCI.1676-11.2012.
CAS
PubMed
Google Scholar
Yu YJ, Watts RJ: Developing therapeutic antibodies for neurodegenerative disease. Neurotherapeutics. 2013, 10: 459-472. 10.1007/s13311-013-0187-4.
PubMed Central
PubMed
Google Scholar
Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO: Structural conversion of neurotoxic amyloid-β(1-42) oligomers to fibrils. Nat Struct Mol Biol. 2010, 17: 561-567. 10.1038/nsmb.1799.
PubMed Central
CAS
PubMed
Google Scholar
Chaney MO, Webster SD, Kuo YM, Foher AF: Molecular modeling of the Aβ1-42 peptide from Alzheimer’s disease. Protein Eng. 1998, 11: 761-767. 10.1093/protein/11.9.761.
CAS
PubMed
Google Scholar
Mastrangelo IA, Ahmed M, Sato T, Liu W, Wang C, Hough P, Smith SO: High-resolution atomic force microscopy of soluble Aβ42 oligomers. J Mol Biol. 2006, 358: 106-119. 10.1016/j.jmb.2006.01.042.
CAS
PubMed
Google Scholar
Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrêne YF, Narayanaswami V, Goormaghtigh E, Ruysschaert J-M, Raussens V: Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem J. 2009, 421: 415-423. 10.1042/BJ20090379.
CAS
PubMed
Google Scholar
Hillen H, Barghorn S, Striebinger A, Labkovsky B, Müller R, Nimmrich V, Nolte MW, Perez-Cruz C, van der Auwera I, van Leuven F, van Gaalen M, Bespalov AY, Schoemaker H, Sullivan JP, Ebert U: Generation and therapeutic efficacy of highly oligomer-specific β-amyloid antibodies. J Neurosci. 2010, 30: 10369-10379. 10.1523/JNEUROSCI.5721-09.2010.
CAS
PubMed
Google Scholar
Krafft GA, Hefti F, Goure WF, Jerecic J, Iverson KS, Walicke P, Dodart J-C: ACU-193: a drug candidate antibody that selectively targets soluble Aβ oligomers. Alzheimers Dement. 2013, 9: P326-
Google Scholar
Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M, Sabbagh M, Honig LS, Doody R, van Dyck CH, Mulnard R, Barakos J, Gregg KM, Liu E, Lieberburg I, Schenk D, Black R, Gundman M: A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurol. 2009, 73: 2061-2070. 10.1212/WNL.0b013e3181c67808.
CAS
Google Scholar
Kerchner GA, Boxer AL: Bapineuzumab. Expert Opin Biol Ther. 2010, 10: 1121-1130. 10.1517/14712598.2010.493872.
PubMed Central
CAS
PubMed
Google Scholar
Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, Mathis CA, Blennow K, Barakos J, Okello AA, Rodriguez Martinez de Liano S, Liu E, Koller M, Gregg KM, Schenk D, Black R, Grundman M:11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 1, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010, 9: 363-372. 10.1016/S1474-4422(10)70043-0.
CAS
PubMed
Google Scholar
Siemers ER, Friedrich S, Dean RA, Gonzales CR, Farlow MR, Paul SM, DeMattos RB: Safety and changes in plasma and cerebrospinal fluid amyloid β after a single administration of an amyloid β monoclonal antibody in subjects with Alzheimer disease. Clin Neuropharm. 2010, 33: 67-73. 10.1097/WNF.0b013e3181cb577a.
CAS
Google Scholar
Lemere CA, Masliah E: Can Alzheimer disease be prevented by amyloid-β immunotherapy?. Nat Rev Neurol. 2010, 6: 108-119. 10.1038/nrneurol.2009.219.
PubMed Central
CAS
PubMed
Google Scholar
Farlow M, Arnold SE, van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, Friedrich S, Dean RA, Gonzales C, Sethuraman G, DeMattos RB, Mohs R, Paul SM, Siemers ER: Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 2012, 8: 261-271. 10.1016/j.jalz.2011.09.224.
CAS
PubMed
Google Scholar
Lobello K, Ryan JM, Liu E, Rippon G, Black R: Targeting beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int J Alzheimers Dis. 2012, 2012: 628070-
PubMed Central
PubMed
Google Scholar
Prins ND, Scheltens P: Treating Alzheimer’s disease with monoclonal antibodies: current status and outlook for the future. Alzheimers Res Ther. 2013, 5: 56-10.1186/alzrt220.
PubMed Central
PubMed
Google Scholar
Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemers E, Liu-Seifert H, Mohs R: Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014, 370: 311-321. 10.1056/NEJMoa1312889.
CAS
PubMed
Google Scholar
Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear RH: Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014, 370: 322-333. 10.1056/NEJMoa1304839.
PubMed Central
CAS
PubMed
Google Scholar
Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP, Holtzman DM, Bales KR, Gitter BD, May PC, Paul SM, DeMattos RB: Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid β. J Neurosci. 2005, 25: 629-636. 10.1523/JNEUROSCI.4337-04.2005.
CAS
PubMed
Google Scholar
Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe D, Lieberbug I, Schenk D: Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature. 1992, 359: 325-327. 10.1038/359325a0.
CAS
PubMed
Google Scholar
DeMattos RB, Bales KR, Cummins DJ, Dodart J-C, Paul SM, Holtzman DM: Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA. 2001, 98: 8850-8855. 10.1073/pnas.151261398.
PubMed Central
CAS
PubMed
Google Scholar
Yamada K, Yabuki C, Seubert P, Schenk D, Hori Y, Ohtsuki S, Terasaki T, Hashimoto T, Iwatsubo T: Aβ immunotherapy: intracerebral sequestration of Aβ by an anti-Aβ monoclonal antibody 266 with high affinity to soluble Aβ. J Neurosci. 2009, 29: 11393-11398. 10.1523/JNEUROSCI.2021-09.2009.
CAS
PubMed
Google Scholar
Basi G, Jacobsen JS: United States Patent Application Publication Number US 2006/0198851 A1. Humanized abeta antibodies for use in improving cognition. 2006
Google Scholar
Toolan D, Tugusheva K, Haugabook S, Feng M, McCampbell A, Hatcher N, Zhao W-Q, Gretzula C-A, Cash-Mason T, Lemaire P, Savage M, Shughrue P, Ray J, Renger J: Characterizing the selectivity of an antibody that targets a rare and unstable conformation of the Aβ peptide in Alzheimer’s disease. 2010, Unpublished internal research report, Merck & Co, [http://www.acumenpharm.com/News/Toolan.pdf]
Google Scholar
Bard F, Barbour R, Cannon C, Carretto R, Fox M, Games D, Guido T, Hoenow K, Hu K, Johnson-Wood K, Khan K, Kholodenko D, Lee C, Lee M, Motter R, Nguyen M, Reed A, Schenk D, Tang P, Vasquez N, Seubert P, Yednock T: Epitope and isotype specificities of antibodies to β-amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci USA. 2003, 100: 2023-2028. 10.1073/pnas.0436286100.
PubMed Central
CAS
PubMed
Google Scholar
Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P: Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999, 400: 173-177. 10.1038/22124.
CAS
PubMed
Google Scholar
Bard F, Cannon C, Barbour R, Burke R-L, Games D, Grajeda H, Guido T, Hu K, Huang J, Kohnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T: Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000, 6: 916-919. 10.1038/78682.
CAS
PubMed
Google Scholar
Basi G, Saldanha J, Yednock T: World Intellectual Property Organization International Publication Number WO 02/46237 A2. Humanized antibodies that recognize beta amyloid peptide. 2002
Google Scholar
Johnson-Wood K, Lee M, Motter R, Hu K, Gordon G, Barbour R, Khan K, Gordon M, Tan H, Games D, Lieberburg I, Schenk D, Seubert P, McConlogue L: Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci USA. 1997, 94: 1550-1555. 10.1073/pnas.94.4.1550.
PubMed Central
CAS
PubMed
Google Scholar
Buttini M, Masliah E, Barbour R, Grajeda H, Motter R, Kohnson-Wood K, Kham K, Seubert P, Freedman S, Schenk D, Games D: β-Amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer’s disease. J Neurosci. 2005, 25: 9096-9101. 10.1523/JNEUROSCI.1697-05.2005.
CAS
PubMed
Google Scholar
Schroeter S, Khan K, Barbour R, Doan M, Chen M, Guido T, Gill D, Basi G, Schenk D, Seubert P, Games D: Immunotherapy reduces vascular amyloid-β in PDAPP mice. J Neurosci. 2008, 28: 6787-6793. 10.1523/JNEUROSCI.2377-07.2008.
CAS
PubMed
Google Scholar
Bard F, Fox M, Friedrich S, Seubert P, Schenk D, Kinney GG, Yednock T: Sustained levels of antibodies against Aβ in amyloid-rich regions of the CNS following intravenous dosing in human APP transgenic mice. Exp Neurology. 2012, 238: 38-43. 10.1016/j.expneurol.2012.07.022.
CAS
Google Scholar
Blennow K, Zetterberg H, Rinne JO, Salloway S, Wei J, Black R, Grundman M, Liu E: Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Nuerol. 2012, 69: 1002-1010. 10.1001/archneurol.2012.90.
Google Scholar
Pfeifer A, Pihlgren M, Muhs A, Watts R: World Intellectual Property Organization International Publication Number WO 2008/156622 A1. Humanized antibodies to amyloid beta. 2008
Google Scholar
Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, Lohmann S, Piorkowska K, Gafner V, Atwal JK, Maloney J, Chen M, Gogineni A, Weimer RM, Mortensen DL, Friesenhahn M, Ho C, Paul R, Pfeifer A, Muhs A, Watts RJ: An effector-reduced anti-β-amyloid (Aβ) antibody with unique Aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J Neurosci. 2012, 32: 9677-9689. 10.1523/JNEUROSCI.4742-11.2012.
CAS
PubMed
Google Scholar
Rosenthal A, Ponns J, Ho W-H, Grimm JM: World Intellectual Property Organization International Publication Number WO 2006/036291 A2. Antibodies directed against amyloid-beta peptide and methods using same. 2006
Google Scholar
Carty NC, Wilcock DM, Rosenthal A, Grimm J, Pons J, Ronan V, Gottschall PE, Gordon MN, Morgan D: Intracranial administration of deglycosyoated C-terminal-specific anti-Aβ antibody efficiently clears amyloid plaques without activating microglia in amyloid-depositing transgenic mice. J Neuroinflammation. 2006, 3: 11-10.1186/1742-2094-3-11.
PubMed Central
PubMed
Google Scholar
La Porte SL, Bollini SS, Lanz TA, Abdiche YN, Rusnak AS, Ho W-H, Kobayashi D, Harrabi O, Pappas D, Mina EW, Milici AJ, Kawbe TT, Bales K, Lin JC, Pons J: Structural basis of C-terminal β-amyloid peptide binding by the antibody ponezumab for treatment of Alzheimer’s disease. J Mol Biol. 2012, 421: 525-536. 10.1016/j.jmb.2011.11.047.
CAS
PubMed
Google Scholar
Nitsch R, Hock C, Esslinger C, Knobloch M, Tissot K: World Intellectual Property Organization International Publication Number WO 2008/081008 A1. Method of providing disease-specific binding molecules and targets. 2008
Google Scholar
Dunstan R, Bussiere T, Rhodes K, Engber T, Maier M, Weinreb P, Grimm J, Nitsch R, Arustu M, Qian F, Li M: Molecular characterization and preclinical efficacy. Alzheimers Dement. 2011, 7: S457-
Google Scholar
Englund H, Sehlin D, Johansson A-S, Nilsson LNG, Gellerfors P, Paulie S, Lannfelt L, Pettersson FE: Sensitive ELISA detection of amyloid-β protofibrils in biological samples. J Neurochem. 2007, 103: 334-345.
CAS
PubMed
Google Scholar
Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Näslund J, Lannfelt L: The ‘Artic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat Neurosci. 2001, 4: 887-893. 10.1038/nn0901-887.
CAS
PubMed
Google Scholar
Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG: Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003, 300: 486-489. 10.1126/science.1079469.
CAS
PubMed
Google Scholar
Lord A, Gumucio A, Englund H, Sehlin D, Sundquist VS, Söderberg L, Möller C, Gellerfors P, Lannfelt L, Pettersson FE, Nilsson LN: An amyloid-β protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2009, 36: 425-434. 10.1016/j.nbd.2009.08.007.
CAS
PubMed
Google Scholar
Gellerfors P, Lannfelt L, Sehlin D, Pettersson FE, Englund H: United States Patent Application Publication Number US 2009/0258009 A1. Protofibril selective antibodies and the use thereof. 2009
Google Scholar
Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F, Messer J, Oroszlan K, Rauchenberger R, Richter WF, Rothe C, Urban M, Bardroff M, Winter M, Nordstedt C, Loetscher H: Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J Alzheimers Dis. 2012, 28: 49-69.
CAS
PubMed
Google Scholar
Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, Klunk WE, Ashford E, Yoo K, Xu Z-X, Loetscher H, Santarelli L: Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol. 2012, 69: 198-207. 10.1001/archneurol.2011.1538.
PubMed
Google Scholar
Schupf N, Tang MX, Fukuyama H, Manly J, Andrews H, Mehta P, Ravetch J, Mayeux R: Peripheral Aβ subspecies as risk biomarkers of Alzheimer’s disease. Proc Natl Acad Sci USA. 2008, 105: 14052-14057. 10.1073/pnas.0805902105.
PubMed Central
CAS
PubMed
Google Scholar
Ravetch J, Fukuyama H: World Intellectual Property Organization, International Publication Number WO 2009/065054 A3. Antibodies specific for the protofibril form of beta-amyloid protein. 2009
Google Scholar
Pradier L, Cohen C, Blanchard V, Debeir T, Barneoud P, Canton T, Menager J, Bohme A, Rooney T, Guillet M-C, Cameron B, Shi Y, Naimi S, Ravetch J, Claudel S, Alam J: SAR228810: an antiprotofibrillar beta-amyloid antibody designed to reduce risk of amyloid-related imaging abnormalities (ARIA). Alzheimers Dement. 2013, 9: P808-P809.
Google Scholar
Baurin N, Blanche F, Cameron B, Duchesne M, Mikol V, Naimi S, Pradier L, Shi Y: United States Patent Application Publication No. US 2012/0177639. Humanized antibodies specific to the protofibrillar form of the beta-amyloid peptide. 2012
Google Scholar
Dodel R, Balakrishnan K, Keyvani K, Deuster O, Neff F, Andrei-Selmer L-C, Röskam S, Stüer C, Al-Abed Y, Noelker C, Balzer-Geldsetzer M, Oertel W, Du Y, Bacher M: Naturally occurring autoantibodies against β-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer’s disease. J Neurosci. 2011, 31: 5847-5854. 10.1523/JNEUROSCI.4401-10.2011.
CAS
PubMed
Google Scholar
Moir RD, Tseitlin KA, Soscia S, Hyman BT, Irizarry MC, Tanzi RE: Autoantibodies to redox-modified oligomeric Aβ are attenuated in the plasma of Alzheimer’s disease patients. J Biol Chem. 2005, 280: 17458-17463. 10.1074/jbc.M414176200.
CAS
PubMed
Google Scholar
Szabo P, Relkin N, Weksler ME: Natural human antibodies to amyloid beta peptide. Autoimmunity Rev. 2008, 7: 415-420. 10.1016/j.autrev.2008.03.007.
CAS
Google Scholar
Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, Khuon D, Gong Y, Bigio EH, Shaw P, De Felice FG, Krafft GA, Klein WL: Monoclonal antibodies that target pathological assemblies of Aβ. J Neurochem. 2007, 100: 23-35. 10.1111/j.1471-4159.2006.04157.x.
CAS
PubMed
Google Scholar