Jessen F, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10(6):844–52. https://doi.org/10.1016/j.jalz.2014.01.001.
Article
PubMed
PubMed Central
Google Scholar
van Harten AC, et al. Subjective cognitive decline and risk of MCI: The Mayo Clinic Study of Aging. Neurology. 2018;91(4):e300–12. https://doi.org/10.1212/WNL.0000000000005863.
Article
PubMed
PubMed Central
Google Scholar
Verfaillie SCJ, et al. Amyloid-beta load is related to worries, but not to severity of cognitive complaints in individuals with subjective cognitive decline: the SCIENCe Project. Front Aging Neurosci. 2019;11:7. https://doi.org/10.3389/fnagi.2019.00007.
Article
PubMed
PubMed Central
Google Scholar
Buckley RF, et al. Region-specific association of subjective cognitive decline with tauopathy independent of global beta-amyloid burden. JAMA Neurol. 2017;74(12):1455–63. https://doi.org/10.1001/jamaneurol.2017.2216.
Article
PubMed
PubMed Central
Google Scholar
Hu X, et al. Smaller medial temporal lobe volumes in individuals with subjective cognitive decline and biomarker evidence of Alzheimer;s disease-data from three memory clinic studies. Alzheimers Dement. 2019;15(2):185–93. https://doi.org/10.1016/j.jalz.2018.09.002.
Article
PubMed
Google Scholar
Verfaillie SC, et al. Thinner temporal and parietal cortex is related to incident clinical progression to dementia in patients with subjective cognitive decline. Alzheimers Dement. 2016;5:43–52. https://doi.org/10.1016/j.dadm.2016.10.007.
Article
Google Scholar
Scheef L, et al. Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment. Neurology. 2012;79(13):1332–9. https://doi.org/10.1212/WNL.0b013e31826c1a8d.
Article
CAS
PubMed
Google Scholar
Dong QY, et al. Glucose metabolism in the right middle temporal gyrus could be a potential biomarker for subjective cognitive decline: a study of a Han population. Alzheimers Res Ther. 2021;13(1):74. https://doi.org/10.1186/s13195-021-00811-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabin LA, Smart CM, Amariglio RE. subjective cognitive decline in preclinical Alzheimer’s disease. Annu Rev Clin Psychol. 2017;13:369–96. https://doi.org/10.1146/annurev-clinpsy-032816-045136.
Article
PubMed
Google Scholar
Smith SM, et al. Functional connectomics from resting-state fMRI. Trends Cogn Sci. 2013;17(12):666–82. https://doi.org/10.1016/j.tics.2013.09.016.
Article
PubMed
PubMed Central
Google Scholar
Dong C, et al. Altered functional connectivity strength in informant-reported subjective cognitive decline: a resting-state functional magnetic resonance imaging study. Alzheimers Dement. 2018;10(1):688–97. https://doi.org/10.1016/j.dadm.2018.08.011.
Article
Google Scholar
Viviano RP, et al. Aberrant memory system connectivity and working memory performance in subjective cognitive decline. Neuroimage. 2019;185:556–64. https://doi.org/10.1016/j.neuroimage.2018.10.015.
Article
PubMed
Google Scholar
Dillen KNH, et al. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer’s disease. Neurobiol Aging. 2016;44:114–26. https://doi.org/10.1016/j.neurobiolaging.2016.04.010.
Article
PubMed
Google Scholar
Kawagoe T, Onoda K, Yamaguchi S. Subjective memory complaints are associated with altered resting-state functional connectivity but not structural atrophy. Neuroimage Clin. 2019;21:101675. https://doi.org/10.1016/j.nicl.2019.101675.
Article
PubMed
PubMed Central
Google Scholar
Dillen KNH, et al. Functional disintegration of the default mode network in prodromal Alzheimer’s disease. J Alzheimers Dis. 2017;59(1):169–87. https://doi.org/10.3233/JAD-161120.
Article
PubMed
Google Scholar
Vidaurre D, Smith SM, Woolrich MW. Brain network dynamics are hierarchically organized in time. Proc Natl Acad Sci U S A. 2017;114(48):12827–32. https://doi.org/10.1073/pnas.1705120114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindquist MA, et al. Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach. Neuroimage. 2014;101:531–46. https://doi.org/10.1016/j.neuroimage.2014.06.052.
Article
PubMed
Google Scholar
Chen Q, et al. Alterations in dynamic functional connectivity in individuals with subjective cognitive decline. Front Aging Neurosci. 2021;13:646017. https://doi.org/10.3389/fnagi.2021.646017.
Article
PubMed
PubMed Central
Google Scholar
Liang L, et al. Recurrent and concurrent patterns of regional BOLD dynamics and functional connectivity dynamics in cognitive decline. Alzheimers Res Ther. 2021;13(1):28. https://doi.org/10.1186/s13195-020-00764-6.
Article
PubMed
PubMed Central
Google Scholar
Maurer AP, Nadel L. The continuity of context: a role for the hippocampus. Trends Cogn Sci. 2021;25(3):187–99. https://doi.org/10.1016/j.tics.2020.12.007.
Article
PubMed
Google Scholar
Serrano-Pozo A, et al. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189. https://doi.org/10.1101/cshperspect.a006189.
Article
CAS
PubMed
PubMed Central
Google Scholar
West MJ, et al. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet. 1994;344(8925):769–72. https://doi.org/10.1016/s0140-6736(94)92338-8.
Article
CAS
PubMed
Google Scholar
Ayhan F, et al. Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron. 2021;109(13):2091–2105 e6. https://doi.org/10.1016/j.neuron.2021.05.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Therriault J, et al. Rostral-caudal hippocampal functional convergence is reduced across the Alzheimer’s disease spectrum. Mol Neurobiol. 2019;56(12):8336–44. https://doi.org/10.1007/s12035-019-01671-0.
Article
CAS
PubMed
Google Scholar
Jessen F, et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020;19(3):271–8. https://doi.org/10.1016/S1474-4422(19)30368-0.
Article
PubMed
PubMed Central
Google Scholar
Desai R, et al. Affective symptoms and risk of progression to mild cognitive impairment or dementia in subjective cognitive decline: a systematic review and meta-analysis. Ageing Res Rev. 2021;71:101419. https://doi.org/10.1016/j.arr.2021.101419.
Article
PubMed
Google Scholar
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94. https://doi.org/10.1111/j.1365-2796.2004.01388.x.
Article
CAS
PubMed
Google Scholar
Hachinski VC, et al. Cerebral blood flow in dementia. Arch Neurol. 1975;32(9):632–7. https://doi.org/10.1001/archneur.1975.00490510088009.
Article
CAS
PubMed
Google Scholar
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. https://doi.org/10.1016/0022-3956(75)90026-6.
Article
CAS
PubMed
Google Scholar
Guo QH, et al. Memory and Executive Screening (MES): a brief cognitive test for detecting mild cognitive impairment. BMC Neurol. 2012;12:119. https://doi.org/10.1186/1471-2377-12-119.
Article
PubMed
PubMed Central
Google Scholar
Zhao Q, et al. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment. PLoS One. 2012;7(12):e51157. https://doi.org/10.1371/journal.pone.0051157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, et al. Trail making test used by Chinese elderly patients with mild cognitive impairment and mild Alzheimer'dementia. Chinese J Clin Psychol. 2006;14(2):118.
Google Scholar
Nutter-Upham KE, et al. Verbal fluency performance in amnestic MCI and older adults with cognitive complaints. Arch Clin Neuropsychol. 2008;23(3):229–41. https://doi.org/10.1016/j.acn.2008.01.005.
Article
PubMed
Google Scholar
Sheridan LK, et al. Normative Symbol Digit Modalities Test performance in a community-based sample. Arch Clin Neuropsychol. 2006;21(1):23–8. https://doi.org/10.1016/j.acn.2005.07.003.
Article
PubMed
Google Scholar
Guo Q, Chuanzhen L, Hong Z. Application of Rey-Osterrieth complex figure test in Chinese normal old people Chinese. J Clin Psychol. 2000;04:205–7. https://doi.org/10.16128/j.cnki.1005-3611.2000.04.003.
Yesavage JA, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49. https://doi.org/10.1016/0022-3956(82)90033-4.
Article
PubMed
Google Scholar
Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for “Pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13. https://doi.org/10.3389/fnsys.2010.00013.
Article
PubMed
PubMed Central
Google Scholar
Yan CG, et al. DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics. 2016;14(3):339–51. https://doi.org/10.1007/s12021-016-9299-4.
Article
PubMed
Google Scholar
Soares JM, et al. A Hitchhike’'s guide to functional magnetic resonance imaging. Front Neurosci. 2016;10:515. https://doi.org/10.3389/fnins.2016.00515.
Article
PubMed
PubMed Central
Google Scholar
Fan L, et al. The Human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cereb Cortex. 2016;26(8):3508–26. https://doi.org/10.1093/cercor/bhw157.
Article
PubMed
PubMed Central
Google Scholar
Fiorenzato E, et al. Dynamic functional connectivity changes associated with dementia in Parkinson’s disease. Brain. 2019;142(9):2860–72. https://doi.org/10.1093/brain/awz192.
Article
PubMed
PubMed Central
Google Scholar
Nunez P, et al. Abnormal meta-state activation of dynamic brain networks across the Alzheimer spectrum. Neuroimage. 2021;232:117898. https://doi.org/10.1016/j.neuroimage.2021.117898.
Article
PubMed
Google Scholar
Hahn A, et al. Association between earliest amyloid uptake and functional connectivity in cognitively unimpaired elderly. Cereb Cortex. 2019;29(5):2173–82. https://doi.org/10.1093/cercor/bhz020.
Article
PubMed
PubMed Central
Google Scholar
Xue C, et al. Disrupted dynamic functional connectivity in distinguishing subjective cognitive decline and amnestic mild cognitive impairment based on the triple-network model. Front Aging Neurosci. 2021;13:711009. https://doi.org/10.3389/fnagi.2021.711009.
Article
PubMed
PubMed Central
Google Scholar
Yang Y, et al. Dynamics and concordance abnormalities among indices of intrinsic brain activity in individuals with subjective cognitive decline: a temporal dynamics resting-state functional magnetic resonance imaging analysis. Front Aging Neurosci. 2020;12:584863. https://doi.org/10.3389/fnagi.2020.584863.
Article
CAS
PubMed
Google Scholar
Kam TE, et al. Deep learning of static and dynamic brain functional networks for early MCI detection. IEEE Trans Med Imaging. 2020;39(2):478–87. https://doi.org/10.1109/TMI.2019.2928790.
Article
PubMed
Google Scholar
Moguilner S, et al. Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: a multicenter study. Neuroimage. 2021;225:117522. https://doi.org/10.1016/j.neuroimage.2020.117522.
Article
PubMed
Google Scholar
Ranganath C, Ritchey M. Two cortical systems for memory-guided behaviour. Nat Rev Neurosci. 2012;13(10):713–26. https://doi.org/10.1038/nrn3338.
Article
CAS
PubMed
Google Scholar
Berron D, et al. Early stages of tau pathology and its associations with functional connectivity, atrophy and memory. Brain. 2021;144(9):2771–83. https://doi.org/10.1093/brain/awab114.
Article
PubMed
PubMed Central
Google Scholar
Palmqvist S, et al. Earliest accumulation of beta-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun. 2017;8(1):1214. https://doi.org/10.1038/s41467-017-01150-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degiorgis L, et al. Brain network remodelling reflects tau-related pathology prior to memory deficits in Thy-Tau22 mice. Brain. 2020;143(12):3748–62. https://doi.org/10.1093/brain/awaa312.
Article
PubMed
Google Scholar
Muller NCJ, et al. Hippocampal-caudate nucleus interactions support exceptional memory performance. Brain Struct Funct. 2018;223(3):1379–89. https://doi.org/10.1007/s00429-017-1556-2.
Article
PubMed
Google Scholar
Verlinden VJA, et al. Trajectories of decline in cognition and daily functioning in preclinical dementia. Alzheimers Dement. 2016;12(2):144–53. https://doi.org/10.1016/j.jalz.2015.08.001.
Article
PubMed
Google Scholar
MacQueen G, Frodl T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry. 2011;16(3):252–64. https://doi.org/10.1038/mp.2010.80.
Article
CAS
PubMed
Google Scholar
Strange BA, et al. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15(10):655–69. https://doi.org/10.1038/nrn3785.
Article
CAS
PubMed
Google Scholar
Chen B, et al. The additive effect of late-life depression and olfactory dysfunction on the risk of dementia was mediated by hypersynchronization of the hippocampus/fusiform gyrus. Transl Psychiatry. 2021;11(1):172. https://doi.org/10.1038/s41398-021-01291-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conejero I, et al. Amyloid burden and depressive symptom trajectories in older adults at risk of developing cognitive decline. J Clin Psychiatry. 2021;82(5). https://doi.org/10.4088/JCP.20m13410.
Schultz SA, et al. Subjective memory complaints, cortical thinning, and cognitive dysfunction in middle-aged adults at risk for AD. Alzheimers Dement. 2015;1(1):33–40. https://doi.org/10.1016/j.dadm.2014.11.010.
Article
Google Scholar
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59. https://doi.org/10.1007/BF00308809.
Article
CAS
PubMed
Google Scholar
Braak H, Braak E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl. 1996;165:3–12. https://doi.org/10.1111/j.1600-0404.1996.tb05866.x.
Article
CAS
PubMed
Google Scholar
Adams JN, et al. Cortical tau deposition follows patterns of entorhinal functional connectivity in aging. Elife. 2019;8. https://doi.org/10.7554/eLife.49132.
Mutlu J, et al. Distinct influence of specific versus global connectivity on the different Alzheimer’s disease biomarkers. Brain. 2017;140(12):3317–28. https://doi.org/10.1093/brain/awx279.
Article
PubMed
Google Scholar
Wang Q, et al. Olfactory dysfunction is already present with subjective cognitive decline and deepens with disease severity in the Alzheimers disease spectrum. J Alzheimers Dis. 2021;79(2):585–95. https://doi.org/10.3233/JAD-201168.
Article
CAS
PubMed
Google Scholar
Tagliazucchi E, et al. The voxel-wise functional connectome can be efficiently derived from co-activations in a sparse spatio-temporal point-process. Front Neurosci. 2016;10:381. https://doi.org/10.3389/fnins.2016.00381.
Article
PubMed
PubMed Central
Google Scholar