Mitchell AJ, Beaumont H, Ferguson D, Yadegarfar M, Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr Scand. 2014;130(6):439–51. https://doi.org/10.1111/acps.12336.
Article
CAS
PubMed
Google Scholar
Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers 565 Dement 2016;12(3):292–323. doi: https://doi.org/10.1016/j.jalz.2016.02.002
Bokde AL, Ewers M, Hampel H. Assessing neuronal networks: understanding Alzheimer’s disease. Prog Neurobiol. 2009;89(2):125–33. https://doi.org/10.1016/j.pneurobio.2009.06.004.
Article
PubMed
Google Scholar
Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp. 2013;34(9):2154–77. https://doi.org/10.1002/hbm.22058.
Article
PubMed
Google Scholar
Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 2014;24(3):663–676. doi: https://doi.org/10.1093/cercor/bhs352
Vidaurre D, Smith SM, Woolrich MW. Brain network dynamics are hierarchically organized in time. Proc Natl Acad Sci U S A. 2017;114(48):12827–32. https://doi.org/10.1073/pnas.1705120114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansen EC, Battaglia D, Spiegler A, Deco G, Jirsa VK. Functional connectivity dynamics: modeling the switching behavior of the resting state. Neuroimage. 2015;105:525–35. https://doi.org/10.1016/j.neuroimage.2014.11.001.
Article
PubMed
Google Scholar
Cohen JR. The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. Neuroimage 2018;180(Pt B):515–525. doi: https://doi.org/10.1016/j.neuroimage.2017.09.036
Fu Z, Caprihan A, Chen J, Du Y, Adair JC, Sui J, et al. Altered static and dynamic functional network connectivity in Alzheimer’s disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum Brain Mapp. 2019;40(11):3203–21. https://doi.org/10.1002/hbm.24591.
Article
PubMed
PubMed Central
Google Scholar
Niu H, Zhu Z, Wang M, Li X, Yuan Z, Sun Y, et al. Abnormal dynamic functional connectivity and brain states in Alzheimer’s diseases: functional near-infrared spectroscopy study. Neurophotonics. 2019;6(2):025010. https://doi.org/10.1117/1.NPh.6.2.025010.
Article
PubMed
PubMed Central
Google Scholar
Chiesa PA, Cavedo E, Vergallo A, Lista S, Potier MC, Habert MO, et al. Differential default mode network trajectories in asymptomatic individuals at risk for Alzheimer’s disease. Alzheimers Dement. 2019;15(7):940–50. https://doi.org/10.1016/j.jalz.2019.03.006.
Article
PubMed
Google Scholar
Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11. https://doi.org/10.1038/nrn2201.
Article
CAS
PubMed
Google Scholar
Lei X, Yang T, Wu T. Functional neuroimaging of extraversion-introversion. Neurosci Bull. 2015;31(6):663–75. https://doi.org/10.1007/s12264-015-1565-1.
Article
PubMed
PubMed Central
Google Scholar
Zhang XD, Jiang XL, Cheng Z, Zhou Y, Xu Q, Zhang ZQ, et al. Decreased coupling between functional connectivity density and amplitude of low frequency fluctuation in non-neuropsychiatric systemic lupus Erythematosus: a resting-stage functional MRI study. Mol Neurobiol. 2017;54(7):5225–35. https://doi.org/10.1007/s12035-016-0050-9.
Article
CAS
PubMed
Google Scholar
Zhang Z, Xu Q, Liao W, Wang Z, Li Q, Yang F, et al. Pathological uncoupling between amplitude and connectivity of brain fluctuations in epilepsy. Hum Brain Mapp. 2015;36(7):2756–66. https://doi.org/10.1002/hbm.22805.
Article
PubMed
PubMed Central
Google Scholar
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. https://doi.org/10.1016/0022-3956(75)90026-6.
Article
CAS
PubMed
Google Scholar
Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.
Article
PubMed
Google Scholar
Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566–72. https://doi.org/10.1192/bjp.140.6.566.
Article
CAS
PubMed
Google Scholar
Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49. https://doi.org/10.1016/0022-3956(82)90033-4.
Article
PubMed
Google Scholar
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9. https://doi.org/10.1016/j.jalz.2011.03.008.
Article
PubMed
PubMed Central
Google Scholar
Guo QH SY, Pei-Min YU, Hong Z. Norm of Auditory Verbal Learning Test in the normal aged in China community. Chinese J Clin Psychol. 2007;15(2):132–41.
Guo QHJL, Hong Z. A specific phenomenon of animal fluency test in Chinese elderly. Chin Ment Health J. 2007;21(9):622–5.
Google Scholar
Cheung RW, Cheung MC, Chan AS. Confrontation naming in Chinese patients with left, right or bilateral brain damage. J Int Neuropsychol Soc. 2004;10(1):46–53. https://doi.org/10.1017/S1355617704101069.
Article
PubMed
Google Scholar
J.C. Lu QHG ZH. Trail Making Test used by Chinese elderly patients with mild cognitive impairment and mild Alzheimer’ dementia. Chinese J Clin Psychol 2006;14(2):118–120.
Edmonds EC, Delano-Wood L, Galasko DR, Salmon DP, Bondi MW. Alzheimer’s disease neuroimaging I. subtle cognitive decline and biomarker staging in preclinical Alzheimer’s disease. J Alzheimers Dis. 2015;47(1):231–42. https://doi.org/10.3233/JAD-150128.
Article
PubMed
PubMed Central
Google Scholar
Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chetelat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10(6):844–52. https://doi.org/10.1016/j.jalz.2014.01.001.
Article
PubMed
PubMed Central
Google Scholar
Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics. 2016;14(3):339–51. https://doi.org/10.1007/s12021-016-9299-4.
Article
PubMed
Google Scholar
Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13. https://doi.org/10.3389/fnsys.2010.00013.
Article
PubMed
PubMed Central
Google Scholar
Ashburner J. SPM: a history. Neuroimage. 2012;62(2):791–800. https://doi.org/10.1016/j.neuroimage.2011.10.025.
Article
PubMed
Google Scholar
Calhoun VD, Wager TD, Krishnan A, Rosch KS, Seymour KE, Nebel MB, et al. The impact of T1 versus EPI spatial normalization templates for fMRI data analyses. Hum Brain Mapp. 2017;38(11):5331–42. https://doi.org/10.1002/hbm.23737.
Article
PubMed
PubMed Central
Google Scholar
Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007.
Article
PubMed
Google Scholar
Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of individual brain maturity using fMRI. Science. 2010;329(5997):1358–61. https://doi.org/10.1126/science.1194144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di X, Biswal BB. Toward task connectomics: examining whole-brain task modulated connectivity in different task domains. Cereb Cortex. 2019;29(4):1572–83. https://doi.org/10.1093/cercor/bhy055.
Article
PubMed
Google Scholar
Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41. https://doi.org/10.1002/mrm.1910340409.
Article
CAS
PubMed
Google Scholar
Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA, et al. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci U S A. 2007;104(46):18265–9. https://doi.org/10.1073/pnas.0705791104.
Article
PubMed
PubMed Central
Google Scholar
Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development. 2007;29(2):83–91. https://doi.org/10.1016/j.braindev.2006.07.002.
Article
PubMed
Google Scholar
Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods. 2008;172(1):137–41. https://doi.org/10.1016/j.jneumeth.2008.04.012.
Article
PubMed
PubMed Central
Google Scholar
Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage. 2013;76:183–201. https://doi.org/10.1016/j.neuroimage.2013.03.004.
Article
PubMed
PubMed Central
Google Scholar
Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1–2):279–84. https://doi.org/10.1016/s0166-4328(01)00297-2.
Article
CAS
PubMed
Google Scholar
Sporns O, Honey CJ. Small worlds inside big brains. Proc Natl Acad Sci U S A. 2006;103(51):19219–20. https://doi.org/10.1073/pnas.0609523103.
Article
CAS
PubMed
PubMed Central
Google Scholar
van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci. 2013;17(12):683–96. https://doi.org/10.1016/j.tics.2013.09.012.
Article
PubMed
Google Scholar
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82. https://doi.org/10.1073/pnas.98.2.676.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage. 2013;80:360–78. https://doi.org/10.1016/j.neuroimage.2013.05.079.
Article
PubMed
Google Scholar
Prvulovic D, Bokde AL, Faltraco F, Hampel H. Functional magnetic resonance imaging as a dynamic candidate biomarker for Alzheimer’s disease. Prog Neurobiol. 2011;95(4):557–69. https://doi.org/10.1016/j.pneurobio.2011.05.008.
Article
PubMed
Google Scholar
de Vos F, Koini M, Schouten TM, Seiler S, van der Grond J, Lechner A, et al. A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer’s disease. Neuroimage. 2018;167:62–72. https://doi.org/10.1016/j.neuroimage.2017.11.025.
Article
PubMed
Google Scholar
Mak LE, Minuzzi L, MacQueen G, Hall G, Kennedy SH, Milev R. The default mode network in healthy individuals: a systematic review and meta-analysis. Brain Connect. 2017;7(1):25–33. https://doi.org/10.1089/brain.2016.0438.
Article
PubMed
Google Scholar
Badhwar A, Tam A, Dansereau C, Orban P, Hoffstaedter F, Bellec P. Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement (Amst). 2017;8:73–85. https://doi.org/10.1016/j.dadm.2017.03.007.
Article
Google Scholar
Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci. 2009;29(6):1860–73. https://doi.org/10.1523/JNEUROSCI.5062-08.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eyler LT, Elman JA, Hatton SN, Gough S, Mischel AK, Hagler DJ, et al. Resting state abnormalities of the default mode network in mild cognitive impairment: a systematic review and meta-analysis. J Alzheimers Dis. 2019;70(1):107–20. https://doi.org/10.3233/JAD-180847.
Article
PubMed
PubMed Central
Google Scholar
Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25(34):7709–17. https://doi.org/10.1523/JNEUROSCI.2177-05.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazarou I, Nikolopoulos S, Dimitriadis SI, Yiannis Kompatsiaris I, Spilioti M, Tsolaki M. Is brain connectome research the future frontier for subjective cognitive decline? A systematic review. Clin Neurophysiol. 2019;130(10):1762–80. https://doi.org/10.1016/j.clinph.2019.07.004.
Article
PubMed
Google Scholar
Rabin LA, Smart CM, Amariglio RE. Subjective cognitive decline in preclinical Alzheimer’s disease. Annu Rev Clin Psychol. 2017;13:369–96. https://doi.org/10.1146/annurev-clinpsy-032816-045136.
Article
PubMed
Google Scholar
López-Sanz D, Bruña R, Garcés P, Martín-Buro MC, Walter S, Delgado ML, et al. Functional connectivity disruption in subjective cognitive decline and mild cognitive impairment: a common pattern of alterations. Front Aging Neurosci. 2017;9:109. https://doi.org/10.3389/fnagi.2017.00109.
Article
PubMed
PubMed Central
Google Scholar
Jones DT, Knopman DS, Gunter JL, Graff-Radford J, Vemuri P, Boeve BF, et al. Cascading network failure across the Alzheimer’s disease spectrum. Brain. 2016;139(Pt 2):547–62. https://doi.org/10.1093/brain/awv338.
Article
PubMed
Google Scholar
Mormino EC, Smiljic A, Hayenga AO, Onami SH, Greicius MD, Rabinovici GD, et al. Relationships between β-amyloid and functional connectivity in different components of the default mode network in aging. Cereb Cortex. 2011;21(10):2399–407. https://doi.org/10.1093/cercor/bhr025.
Article
PubMed
PubMed Central
Google Scholar
Jones DT, Graff-Radford J, Lowe VJ, Wiste HJ, Gunter JL, Senjem ML, et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex. 2017;97:143–59. https://doi.org/10.1016/j.cortex.2017.09.018.
Article
PubMed
PubMed Central
Google Scholar
Damoiseaux JS, Prater KE, Miller BL, Greicius MD. Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol Aging. 2012;33(4):828 e819–830. https://doi.org/10.1016/j.neurobiolaging.2011.06.024.
Article
PubMed
Google Scholar
Brier MR, Thomas JB, Ances BM. Network dysfunction in Alzheimer’s disease: refining the disconnection hypothesis. Brain Connect. 2014;4(5):299–311. https://doi.org/10.1089/brain.2014.0236.
Article
PubMed
PubMed Central
Google Scholar
Gili T, Cercignani M, Serra L, Perri R, Giove F, Maraviglia B, et al. Regional brain atrophy and functional disconnection across Alzheimer’s disease evolution. J Neurol Neurosurg Psychiatry. 2011;82(1):58–66. https://doi.org/10.1136/jnnp.2009.199935.
Article
CAS
PubMed
Google Scholar