Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. 2016;78:661–71. https://doi.org/10.1007/s00280-016-3152-1.
Article
CAS
PubMed
Google Scholar
Altmann A, Tian L, Henderson VW, Greicius MD, Alzheimer's Disease Neuroimaging Initiative I. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75:563–73. https://doi.org/10.1002/ana.24135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arranz L, De Castro NM, Baeza I, Gimenez-Llort L, De la Fuente M. Effect of environmental enrichment on the immunoendocrine aging of male and female triple-transgenic 3xTg-AD mice for Alzheimer’s disease. J Alzheimers Dis. 2011;25:727–37. https://doi.org/10.3233/JAD-2011-110236.
Article
CAS
PubMed
Google Scholar
Arsenault D, Dal-Pan A, Tremblay C, Bennett DA, Guitton MJ, De Koninck Y, Tonegawa S, Calon F. PAK inactivation impairs social recognition in 3xTg-AD mice without increasing brain deposition of tau and Abeta. J Neurosci. 2013;33:10729–40. https://doi.org/10.1523/JNEUROSCI.1501-13.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Association As. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement. 2019;15:321–87. https://doi.org/10.1016/j.jalz.2019.01.010.
Article
Google Scholar
Bakeman R. Recommended effect size statistics for repeated measures designs. Behav Res Methods. 2005;37:379–84. https://doi.org/10.3758/bf03192707.
Article
PubMed
Google Scholar
Balcombe JP, Barnard ND, Sandusky C. Laboratory routines cause animal stress. J Am Assoc Lab Anim Sci. 2004;43:42–51.
CAS
Google Scholar
Bartos A, Fialova L, Svarcova J. Lower serum antibodies against tau protein and heavy neurofilament in Alzheimer’s disease. J Alzheimers Dis. 2018;64:751–60. https://doi.org/10.3233/jad-180039.
Article
CAS
PubMed
Google Scholar
Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, Tsitsou-Kampeli A, Sarel A, Cahalon L, Schwartz M. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun. 2015;6:7967. https://doi.org/10.1038/ncomms8967.
Article
CAS
PubMed
Google Scholar
Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, Oddo S. Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell. 2019;18:e12873. https://doi.org/10.1111/acel.12873.
Article
CAS
PubMed
Google Scholar
Berti V, Mosconi L, Glodzik L, Li Y, Murray J, De Santi S, Pupi A, Tsui W, De Leon MJ. Structural brain changes in normal individuals with a maternal history of Alzheimer’s. Neurobiol Aging. 2011;32:2325 e2317–26. https://doi.org/10.1016/j.neurobiolaging.2011.01.001.
Article
Google Scholar
Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther. 2014;142:244–57. https://doi.org/10.1016/j.pharmthera.2013.12.009.
Article
CAS
PubMed
Google Scholar
Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM. Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron. 2005;45:675–88. https://doi.org/10.1016/j.neuron.2005.01.040.
Article
CAS
PubMed
Google Scholar
Blazquez G, Canete T, Tobena A, Gimenez-Llort L, Fernandez-Teruel A. Cognitive and emotional profiles of aged Alzheimer’s disease (3xTgAD) mice: effects of environmental enrichment and sexual dimorphism. Behav Brain Res. 2014;268:185–201. https://doi.org/10.1016/j.bbr.2014.04.008.
Article
PubMed
Google Scholar
Bories C, Guitton MJ, Julien C, Tremblay C, Vandal M, Msaid M, De Koninck Y, Calon F. Sex-dependent alterations in social behaviour and cortical synaptic activity coincide at different ages in a model of Alzheimer’s disease. PLoS One. 2012;7:e46111. https://doi.org/10.1371/journal.pone.0046111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brodsky RA. High-dose cyclophosphamide for autoimmunity and alloimmunity. Immunol Res. 2010;47:179–84. https://doi.org/10.1007/s12026-009-8149-y.
Article
CAS
PubMed
Google Scholar
Bryniarski K, Szczepanik M, Ptak M, Zemelka M, Ptak W. Influence of cyclophosphamide and its metabolic products on the activity of peritoneal macrophages in mice. Pharmacol Rep. 2009;61:550–7. https://doi.org/10.1016/s1734-1140(09)70098-2.
Article
CAS
PubMed
Google Scholar
Bygrave AE, Rose KL, Cortes-Hernandez J, Warren J, Rigby RJ, Cook HT, Walport MJ, Vyse TJ, Botto M. Spontaneous autoimmunity in 129 and C57BL/6 mice-implications for autoimmunity described in gene-targeted mice. Plos Biol. 2004;2:E243. https://doi.org/10.1371/journal.pbio.0020243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canete T, Blazquez G, Tobena A, Gimenez-Llort L, Fernandez-Teruel A. Cognitive and emotional alterations in young Alzheimer’s disease (3xTgAD) mice: effects of neonatal handling stimulation and sexual dimorphism. Behav Brain Res. 2015;281:156–71. https://doi.org/10.1016/j.bbr.2014.11.004.
Article
CAS
PubMed
Google Scholar
Carlucci F, Cortes-Hernandez J, Fossati-Jimack L, Bygrave AE, Walport MJ, Vyse TJ, Cook HT, Botto M. Genetic dissection of spontaneous autoimmunity driven by 129-derived chromosome 1 loci when expressed on C57BL/6 mice. J Immunol. 2007;178:2352–60. https://doi.org/10.4049/jimmunol.178.4.2352.
Article
CAS
PubMed
Google Scholar
Carroll JC, Rosario ER, Kreimer S, Villamagna A, Gentzschein E, Stanczyk FZ, Pike CJ. Sex differences in beta-amyloid accumulation in 3xTg-AD mice: role of neonatal sex steroid hormone exposure. Brain Res. 2010;1366:233–45. https://doi.org/10.1016/j.brainres.2010.10.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan EKL, Damoiseaux J, Carballo OG, Conrad K, de Melo CW, Francescantonio PLC, Fritzler MJ, Garcia-De La Torre I, Herold M, Mimori T, et al. Report of the first international consensus on standardized nomenclature of antinuclear antibody HEp-2 cell patterns 2014-2015. Front Immunol. 2015;6:412. https://doi.org/10.3389/fimmu.2015.00412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, Herrera DG, Toth M, Yang C, BS ME, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314:140–3. https://doi.org/10.1126/science.1129663.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chene G, Beiser A, Au R, Preis SR, Wolf PA, Dufouil C, Seshadri S. Gender and incidence of dementia in the Framingham Heart Study from mid-adult life. Alzheimer’s Dement. 2015;11:310–20. https://doi.org/10.1016/j.jalz.2013.10.005.
Article
Google Scholar
Cho SM, Lee S, Yang SH, Kim HY, Lee MJ, Kim HV, Kim J, Baek S, Yun J, Kim D, et al. Age-dependent inverse correlations in CSF and plasma amyloid-beta(1-42) concentrations prior to amyloid plaque deposition in the brain of 3xTg-AD mice. Sci Rep. 2016;6:20185. https://doi.org/10.1038/srep20185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clinton LK, Billings LM, Green KN, Caccamo A, Ngo J, Oddo S, McGaugh JL, LaFerla FM. Age-dependent sexual dimorphism in cognition and stress response in the 3xTg-AD mice. Neurobiol Dis. 2007;28:76–82. https://doi.org/10.1016/j.nbd.2007.06.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen J. Statistical power analysis for the behavioral sciences. City: Academic press; 2013.
Book
Google Scholar
Denenberg VH, Mobraaten LE, Sherman GF, Morrison L, Schrott LM, Waters NS, Rosen GD, Behan PO, Galaburda AM. Effects of the autoimmune uterine/maternal environment upon cortical ectopias, behavior and autoimmunity. Brain Res. 1991;563:114–22. https://doi.org/10.1016/0006-8993(91)91522-3.
Article
CAS
PubMed
Google Scholar
Di Benedetto G, Burgaletto C, Carta AR, Saccone S, Lempereur L, Mulas G, Loreto C, Bernardini R, Cantarella G. Beneficial effects of curtailing immune susceptibility in an Alzheimer’s disease model. J Neuroinflammation. 2019;16:166. https://doi.org/10.1186/s12974-019-1554-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Meco A, Joshi YB, Lauretti E, Pratico D. Maternal dexamethasone exposure ameliorates cognition and tau pathology in the offspring of triple transgenic AD mice. Mol Psychiatry. 2016;21:403–10. https://doi.org/10.1038/mp.2015.78.
Article
CAS
PubMed
Google Scholar
Ehrlich ME, Gandy S. Chromatin plasticity and the pathogenesis of Huntington disease. Proc Natl Acad Sci U S A. 2011;108:16867–8. https://doi.org/10.1073/pnas.1113321108.
Article
PubMed
PubMed Central
Google Scholar
Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol. 2009;6:638.
Article
CAS
PubMed
Google Scholar
Espana J, Gimenez-Llort L, Valero J, Minano A, Rabano A, Rodriguez-Alvarez J, LaFerla FM, Saura CA. Intraneuronal beta-amyloid accumulation in the amygdala enhances fear and anxiety in Alzheimer’s disease transgenic mice. Biol Psychiatry. 2010;67:513–21. https://doi.org/10.1016/j.biopsych.2009.06.015.
Article
CAS
PubMed
Google Scholar
Fahnestock M. Brain-derived neurotrophic factor: the link between amyloid-β and memory loss. Future Neurol. 2011;6:627–39. https://doi.org/10.2217/fnl.11.44.
Article
CAS
Google Scholar
Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. Soluble amyloid-beta oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Front Cell Neurosci. 2015;9:191. https://doi.org/10.3389/fncel.2015.00191.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferretti MT, Iulita MF, Cavedo E, Chiesa PA, Schumacher Dimech A, Santuccione Chadha A, Baracchi F, Girouard H, Misoch S, Giacobini E, et al. Sex differences in Alzheimer disease — the gateway to precision medicine. Nat Rev Neurol. 2018;14:457–69. https://doi.org/10.1038/s41582-018-0032-9.
Article
PubMed
Google Scholar
Furr RM. Interpreting effect sizes in contrast analysis. Underst Stat. 2004;3:1–25. https://doi.org/10.1207/s15328031us0301_1.
Article
Google Scholar
Garcia-Mesa Y, Lopez-Ramos JC, Gimenez-Llort L, Revilla S, Guerra R, Gruart A, Laferla FM, Cristofol R, Delgado-Garcia JM, Sanfeliu C. Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis. 2011;24:421–54. https://doi.org/10.3233/JAD-2011-101635.
Article
PubMed
Google Scholar
Garzon DJ, Fahnestock M. Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J Neurosci. 2007;27:2628–35. https://doi.org/10.1523/JNEUROSCI.5053-06.2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gimenez-Llort L, Arranz L, Mate I, De la Fuente M. Gender-specific neuroimmunoendocrine aging in a triple-transgenic 3xTg-AD mouse model for Alzheimer’s disease and its relation with longevity. Neuroimmunomodulation. 2008;15:331–43. https://doi.org/10.1159/000156475.
Article
CAS
PubMed
Google Scholar
Gimenez-Llort L, Blazquez G, Canete T, Johansson B, Oddo S, Tobena A, LaFerla FM, Fernandez-Teruel A. Modeling behavioral and neuronal symptoms of Alzheimer’s disease in mice: a role for intraneuronal amyloid. Neurosci Biobehav Rev. 2007;31:125–47. https://doi.org/10.1016/j.neubiorev.2006.07.007.
Article
CAS
PubMed
Google Scholar
Gimenez-Llort L, Garcia Y, Buccieri K, Revilla S, Sunol C, Cristofol R, Sanfeliu C. Gender-specific neuroimmunoendocrine response to treadmill exercise in 3xTg-AD mice. Int J Alzheimers Dis. 2010;2010:128354. https://doi.org/10.4061/2010/128354.
Article
PubMed
PubMed Central
Google Scholar
Gimenez-Llort L, Rivera-Hernandez G, Marin-Argany M, Sanchez-Quesada JL, Villegas S. Early intervention in the 3xTg-AD mice with an amyloid beta-antibody fragment ameliorates first hallmarks of Alzheimer disease. mAbs. 2013;5:665–77. https://doi.org/10.4161/mabs.25424.
Article
PubMed
PubMed Central
Google Scholar
Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368:117–27. https://doi.org/10.1056/NEJMoa1211851.
Article
CAS
PubMed
Google Scholar
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12. https://doi.org/10.1038/nrm2101.
Article
CAS
PubMed
Google Scholar
Hirata-Fukae C, Li HF, Hoe HS, Gray AJ, Minami SS, Hamada K, Niikura T, Hua F, Tsukagoshi-Nagai H, Horikoshi-Sakuraba Y, et al. Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model. Brain Res. 2008;1216:92–103. https://doi.org/10.1016/j.brainres.2008.03.079.
Article
CAS
PubMed
Google Scholar
Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43:429–35. https://doi.org/10.1038/ng.803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honea RA, Swerdlow RH, Vidoni ED, Burns JM. Progressive regional atrophy in normal adults with a maternal history of Alzheimer disease. Neurology. 2011;76:822–9. https://doi.org/10.1212/WNL.0b013e31820e7b74.
Article
PubMed
PubMed Central
Google Scholar
Hu Y, Chopra V, Chopra R, Locascio JJ, Liao Z, Ding H, Zheng B, Matson WR, Ferrante RJ, Rosas HD, et al. Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc Natl Acad Sci U S A. 2011;108:17141–6. https://doi.org/10.1073/pnas.1104409108.
Article
PubMed
PubMed Central
Google Scholar
Hutton CP, Lemon JA, Sakic B, Rollo CD, Boreham DR, Fahnestock M, Wojtowicz JM, Becker S. Early intervention with a multi-ingredient dietary supplement improves mood and spatial memory in a triple transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis. 2018;64:835–57. https://doi.org/10.3233/JAD-170921.
Article
CAS
PubMed
Google Scholar
Hyman BT, Smith C, Buldyrev I, Whelan C, Brown H, Tang MX, Mayeux R. Autoantibodies to amyloid-beta and Alzheimer’s disease. Ann Neurol. 2001;49:808–10. https://doi.org/10.1002/ana.1061.
Article
CAS
PubMed
Google Scholar
Inomata K, Aoto T, Binh NT, Okamoto N, Tanimura S, Wakayama T, Iseki S, Hara E, Masunaga T, Shimizu H, et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137:1088–99. https://doi.org/10.1016/j.cell.2009.03.037.
Article
CAS
PubMed
Google Scholar
Isopi E, Granzotto A, Corona C, Bomba M, Ciavardelli D, Curcio M, Canzoniero LM, Navarra R, Lattanzio R, Piantelli M, et al. Pyruvate prevents the development of age-dependent cognitive deficits in a mouse model of Alzheimer’s disease without reducing amyloid and tau pathology. Neurobiol Dis. 2015;81:214–24. https://doi.org/10.1016/j.nbd.2014.11.013.
Article
CAS
PubMed
Google Scholar
Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation. 2005;2:23. https://doi.org/10.1186/1742-2094-2-23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapadia M, Bijelic D, Zhao H, Ma D, Stojanovich L, Milosevic M, Andjus P, Sakic B. Effects of sustained i.c.v. infusion of lupus CSF and autoantibodies on behavioral phenotype and neuronal calcium signaling. Acta neuropathologica communications. 2017;5:70. https://doi.org/10.1186/s40478-017-0473-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapadia M, Mian MF, Michalski B, Azam AB, Ma D, Salwierz P, Christopher A, Rosa E, Zovkic IB, Forsythe P, et al. Sex-dependent differences in spontaneous autoimmunity in adult 3xTg-AD mice. J Alzheimers Dis. 2018;63:1191–205. https://doi.org/10.3233/JAD-170779.
Article
CAS
PubMed
Google Scholar
Kapadia M, Zhao H, Ma D, Hatkar R, Marchese M, Sakic B. Zoopharmacognosy in diseased laboratory mice: conflicting evidence. Plos One. 2014;9:e100684. https://doi.org/10.1371/journal.pone.0100684.
Article
PubMed
PubMed Central
Google Scholar
Kapadia M, Zhao H, Ma D, Sakic B. Sustained immunosuppression alters olfactory function in the MRL model of CNS lupus. J NeuroImmune Pharmacol. 2017;12:555–64. https://doi.org/10.1007/s11481-017-9745-6.
Article
PubMed
Google Scholar
Kawabata D, Venkatesh J, Ramanujam M, Davidson A, Grimaldi CM, Diamond B. Enhanced selection of high affinity DNA-reactive B cells following cyclophosphamide treatment in mice. Plos One. 2010;5:e8418. https://doi.org/10.1371/journal.pone.0008418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25:8843–53. https://doi.org/10.1523/JNEUROSCI.2868-05.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–38. https://doi.org/10.1038/nri.2016.90.
Article
CAS
PubMed
Google Scholar
Krestova M, Ricny J, Bartos A. Changes in concentrations of tau-reactive antibodies are dependent on sex in Alzheimer’s disease patients. J Neuroimmunol. 2018;322:1–8. https://doi.org/10.1016/j.jneuroim.2018.05.004.
Article
CAS
PubMed
Google Scholar
Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, et al. Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med. 2016;8:340ra372. https://doi.org/10.1126/scitranslmed.aaf1059.
Article
CAS
Google Scholar
Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41:1094–9. https://doi.org/10.1038/ng.439.
Article
CAS
PubMed
Google Scholar
Laws KR, Irvine K, Gale TM. Sex differences in Alzheimer’s disease. Curr Opin Psychiatry. 2018;31:133–9. https://doi.org/10.1097/YCO.0000000000000401.
Article
PubMed
Google Scholar
Lepack AE, Bagot RC, Pena CJ, Loh YE, Farrelly LA, Lu Y, Powell SK, Lorsch ZS, Issler O, Cates HM, et al. Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior. Proc Natl Acad Sci U S A. 2016;113:12562–7. https://doi.org/10.1073/pnas.1608270113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine S, Saltzman A, Levy E, Ginsberg SD. Systemic pathology in aged mouse models of Down’s syndrome and Alzheimer’s disease. Exp Mol Pathol. 2009;86:18–22. https://doi.org/10.1016/j.yexmp.2008.10.006.
Article
CAS
PubMed
Google Scholar
Mah L, Binns MA, Steffens DC, Alzheimer’s Disease Neuroimaging I. Anxiety symptoms in amnestic mild cognitive impairment are associated with medial temporal atrophy and predict conversion to Alzheimer disease. Am J Geriatr Psychiatry. 2015;23:466–76. https://doi.org/10.1016/j.jagp.2014.10.005.
Article
PubMed
Google Scholar
Marchese M, Cowan D, Head E, Ma D, Karimi K, Ashthorpe V, Kapadia M, Zhao H, Davis P, Sakic B. Autoimmune manifestations in the 3xTg-AD model of Alzheimer’s disease. J Alzheimers Dis. 2014;39:191–210. https://doi.org/10.3233/JAD-131490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maze I, Wenderski W, Noh KM, Bagot RC, Tzavaras N, Purushothaman I, Elsasser SJ, Guo Y, Ionete C, Hurd YL, et al. Critical role of histone turnover in neuronal transcription and plasticity. Neuron. 2015;87:77–94. https://doi.org/10.1016/j.neuron.2015.06.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5:606–16. https://doi.org/10.1038/nri1669.
Article
CAS
PubMed
Google Scholar
Medeiros R, Castello NA, Cheng D, Kitazawa M, Baglietto-Vargas D, Green KN, Esbenshade TA, Bitner RS, Decker MW, LaFerla FM. alpha7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol. 2014;184:520–9. https://doi.org/10.1016/j.ajpath.2013.10.010.
Article
CAS
PubMed
Google Scholar
Mehta S, Jeffrey KL. Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity. Immunol Cell Biol. 2015;93:233–44. https://doi.org/10.1038/icb.2014.101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meijer MK, Spruijt BM, van Zutphen LF, Baumans V. Effect of restraint and injection methods on heart rate and body temperature in mice. Lab Anim. 2006;40:382–91. https://doi.org/10.1258/002367706778476370.
Article
CAS
PubMed
Google Scholar
Michalski B, Corrada MM, Kawas CH, Fahnestock M. Brain-derived neurotrophic factor and TrkB expression in the “oldest-old,” the 90+ Study: correlation with cognitive status and levels of soluble amyloid-beta. Neurobiol Aging. 2015;36:3130–9. https://doi.org/10.1016/j.neurobiolaging.2015.08.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:1602–14. https://doi.org/10.1016/j.jalz.2018.06.3040.
Article
Google Scholar
Monsonego A, Nemirovsky A, Harpaz I. CD4 T cells in immunity and immunotherapy of Alzheimer’s disease. Immunology. 2013;139:438–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mosconi L, Berti V, Swerdlow RH, Pupi A, Duara R, de Leon M. Maternal transmission of Alzheimer’s disease: prodromal metabolic phenotype and the search for genes. Human Genomics. 2010;4:170–93. https://doi.org/10.1186/1479-7364-4-3-170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Myung NH, Zhu X, Kruman CRJ II, Petersen RB, Siedlak SL, Perry G, Smith MA, Lee HG. Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age (Dordrecht). 2008;30:209–15. https://doi.org/10.1007/s11357-008-9050-7.
Article
Google Scholar
Nabar NR, Yuan F, Lin X, Wang L, Bai G, Mayl J, Li Y, Zhou SF, Wang J, Cai J, et al. Cell therapy: a safe and efficacious therapeutic treatment for Alzheimer’s disease in APP+PS1 mice. Plos One. 2012;7:e49468. https://doi.org/10.1371/journal.pone.0049468.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakahara T, Uchi H, Lesokhin AM, Avogadri F, Rizzuto GA, Hirschhorn-Cymerman D, Panageas KS, Merghoub T, Wolchok JD, Houghton AN. Cyclophosphamide enhances immunity by modulating the balance of dendritic cell subsets in lymphoid organs. Blood. 2010;115:4384–92. https://doi.org/10.1182/blood-2009-11-251231.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–21. https://doi.org/10.1016/s0896-6273(03)00434-3.
Article
CAS
PubMed
Google Scholar
Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, LaFerla FM. Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem. 2006;281:1599–604.
Article
CAS
PubMed
Google Scholar
Oddo S, Caccamo A, Tseng B, Cheng D, Vasilevko V, Cribbs DH, LaFerla FM. Blocking Abeta42 accumulation delays the onset and progression of tau pathology via the C terminus of heat shock protein70-interacting protein: a mechanistic link between Abeta and tau pathology. J Neurosci. 2008;28:12163–75. https://doi.org/10.1523/JNEUROSCI.2464-08.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oddo S, Vasilevko V, Caccamo A, Kitazawa M, Cribbs DH, LaFerla FM. Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem. 2006;281:39413–23. https://doi.org/10.1074/jbc.M608485200.
Article
CAS
PubMed
Google Scholar
Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, Mount HT, Mufson EJ, Salehi A, Fahnestock M. Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci. 2009;29:9321–9. https://doi.org/10.1523/JNEUROSCI.4736-08.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng S, Wuu J, Mufson EJ, Fahnestock M. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem. 2005;93:1412–21. https://doi.org/10.1111/j.1471-4159.2005.03135.x.
Article
CAS
PubMed
Google Scholar
Perez SE, He B, Muhammad N, Oh KJ, Fahnestock M, Ikonomovic MD, Mufson EJ. Cholinotrophic basal forebrain system alterations in 3xTg-AD transgenic mice. Neurobiol Dis. 2011;41:338–52. https://doi.org/10.1016/j.nbd.2010.10.002.
Article
CAS
PubMed
Google Scholar
Petry FR, Pelletier J, Bretteville A, Morin F, Calon F, Hebert SS, Whittington RA, Planel E. Specificity of anti-tau antibodies when analyzing mice models of Alzheimer’s disease: problems and solutions. Plos One. 2014;9:e94251. https://doi.org/10.1371/journal.pone.0094251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pietropaolo S, Feldon J, Yee BK. Age-dependent phenotypic characteristics of a triple transgenic mouse model of Alzheimer disease. Behav Neurosci. 2008;122:733–47. https://doi.org/10.1037/a0012520.
Article
PubMed
Google Scholar
Pietropaolo S, Sun Y, Li R, Brana C, Feldon J, Yee BK. Limited impact of social isolation on Alzheimer-like symptoms in a triple transgenic mouse model. Behav Neurosci. 2009;123:181–95. https://doi.org/10.1037/a0013607.
Article
PubMed
Google Scholar
Rae EA, Brown RE. The problem of genotype and sex differences in life expectancy in transgenic AD mice. Neurosci Biobehav Rev. 2015;57:238–51. https://doi.org/10.1016/j.neubiorev.2015.09.002.
Article
PubMed
Google Scholar
Rajamohamedsait H, Rasool S, Rajamohamedsait W, Lin Y, Sigurdsson EM. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xTg mice. Sci Rep. 2017;7:17034. https://doi.org/10.1038/s41598-017-17313-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reed-Geaghan EG, Reed QW, Cramer PE, Landreth GE. Deletion of CD14 attenuates Alzheimer’s disease pathology by influencing the brain’s inflammatory milieu. J Neurosci. 2010;30:15369–73. https://doi.org/10.1523/jneurosci.2637-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richardson JTE. Eta squared and partial eta squared as measures of effect size in educational research. Educ Res Rev. 2011;6:135–47. https://doi.org/10.1016/j.edurev.2010.12.001.
Article
Google Scholar
Roddick KM, Roberts AD, Schellinck HM, Brown RE. Sex and genotype differences in odor detection in the 3xTg-AD and 5XFAD mouse models of Alzheimer’s disease at 6 months of age. Chem Senses. 2016;41:433–40. https://doi.org/10.1093/chemse/bjw018.
Article
CAS
PubMed
Google Scholar
Rosa E, Mahendram S, Ke YD, Ittner LM, Ginsberg SD, Fahnestock M. Tau downregulates BDNF expression in animal and cellular models of Alzheimer’s disease. Neurobiol Aging. 2016;48:135–42. https://doi.org/10.1016/j.neurobiolaging.2016.08.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryabinin AE, Wang YM, Finn DA. Different levels of Fos immunoreactivity after repeated handling and injection stress in two inbred strains of mice. Pharmacol Biochem Behav. 1999;63:143–51. https://doi.org/10.1016/s0091-3057(98)00239-1.
Article
CAS
PubMed
Google Scholar
Sahara N, DeTure M, Ren Y, Ebrahim AS, Kang D, Knight J, Volbracht C, Pedersen JT, Dickson DW, Yen SH, et al. Characteristics of TBS-extractable hyperphosphorylated tau species: aggregation intermediates in rTg4510 mouse brain. J Alzheimers Dis. 2013;33:249–63. https://doi.org/10.3233/JAD-2012-121093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakic B, Cooper MP, Taylor SE, Stojanovic M, Zagorac B, Kapadia M. Behavioral phenotyping of murine disease models with the Integrated Behavioral Station (INBEST). J Vis Exp. 2015. https://doi.org/10.3791/51524.
Sakic B, Denburg JA, Denburg SD, Szechtman H. Blunted sensitivity to sucrose in autoimmune MRL-lpr mice: a curve-shift study. Brain Res Bull. 1996;41:305–11. https://doi.org/10.1016/s0361-9230(96)00190-6.
Article
CAS
PubMed
Google Scholar
Sakic B, Kolb B, Whishaw IQ, Gorny G, Szechtman H, Denburg JA. Immunosuppression prevents neuronal atrophy in lupus-prone mice: evidence for brain damage induced by autoimmune disease? J Neuroimmunol. 2000;111:93–101. https://doi.org/10.1016/s0165-5728(00)00364-7.
Article
CAS
PubMed
Google Scholar
Sakic B, Szechtman H, Denburg SD, Denburg JA. Immunosuppressive treatment prevents behavioral deficit in autoimmune MRL-lpr mice. Physiol Behav. 1995;58:797–802. https://doi.org/10.1016/0031-9384(95)00135-6.
Article
CAS
PubMed
Google Scholar
Sardi F, Fassina L, Venturini L, Inguscio M, Guerriero F, Rolfo E, Ricevuti G. Alzheimer’s disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun Rev. 2011;11:149–53.
Article
CAS
PubMed
Google Scholar
Schwartz M, Baruch K. Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: boosting autoimmunity to fight-off chronic neuroinflammation. J Autoimmun. 2014;54:8–14. https://doi.org/10.1016/j.jaut.2014.08.002.
Article
CAS
PubMed
Google Scholar
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14:837–42. https://doi.org/10.1038/nm1782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol. 2011;33:369–83. https://doi.org/10.1007/s00281-011-0245-0.
Article
CAS
PubMed
Google Scholar
Sterniczuk R, Antle MC, Laferla FM, Dyck RH. Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 2. Behavioral and cognitive changes. Brain Res. 2010;1348:149–55. https://doi.org/10.1016/j.brainres.2010.06.011.
Article
CAS
PubMed
Google Scholar
Stevens LM, Brown RE. Reference and working memory deficits in the 3xTg-AD mouse between 2 and 15-months of age: a cross-sectional study. Behav Brain Res. 2015;278:496–505. https://doi.org/10.1016/j.bbr.2014.10.033.
Article
PubMed
Google Scholar
Stewart C, Campagne O, Davis A, Zhong B, Nair S, Haberman V, Y TP, Janke L, M FR (2019) CNS penetration of cyclophosphamide and metabolites in mice bearing group 3 medulloblastoma and non-tumor bearing mice. J Pharm Pharm Sci 22: 612–629 doi https://doi.org/10.18433/jpps30608.
Storace D, Cammarata S, Borghi R, Sanguineti R, Giliberto L, Piccini A, Pollero V, Novello C, Caltagirone C, Smith MA, et al. Elevation of {beta}-amyloid 1-42 autoantibodies in the blood of amnestic patients with mild cognitive impairment. Arch Neurol. 2010;67:867–72. https://doi.org/10.1001/archneurol.2010.137.
Article
PubMed
Google Scholar
Stover KR, Campbell MA, Van Winssen CM, Brown RE. Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer’s disease. Behav Brain Res. 2015;289:29–38. https://doi.org/10.1016/j.bbr.2015.04.012.
Article
CAS
PubMed
Google Scholar
Strober S, Cheng L, Zeng D, Palathumpat R, Dejbakhsh-Jones S, Huie P, Sibley R. Double negative (CD4-CD8- alpha beta+) T cells which promote tolerance induction and regulate autoimmunity. Immunol Rev. 1996;149:217–30. https://doi.org/10.1111/j.1600-065x.1996.tb00906.x.
Article
CAS
PubMed
Google Scholar
Sy M, Kitazawa M, Medeiros R, Whitman L, Cheng D, Lane TE, Laferla FM. Inflammation induced by infection potentiates tau pathological features in transgenic mice. Am J Pathol. 2011;178:2811–22. https://doi.org/10.1016/j.ajpath.2011.02.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomson CW, Lee BP, Zhang L. Double-negative regulatory T cells: non-conventional regulators. Immunol Res. 2006;35:163–78. https://doi.org/10.1385/IR:35:1:163.
Article
CAS
PubMed
Google Scholar
Torres-Lista V, Gimenez-Llort L. Early postnatal handling and environmental enrichment improve the behavioral responses of 17-month-old 3xTg-AD and non-transgenic mice in the Forced Swim Test in a gender-dependent manner. Behav Process. 2015;120:120–7. https://doi.org/10.1016/j.beproc.2015.09.011.
Article
Google Scholar
Torres-Lista V, Gimenez-Llort L. Impairment of nesting behaviour in 3xTg-AD mice. Behav Brain Res. 2013;247:153–7. https://doi.org/10.1016/j.bbr.2013.03.021.
Article
PubMed
Google Scholar
Trinath J, Bayry J. Current trends with FOXP3+ regulatory T cell immunotherapy to contest autoimmunity and inflammation. Immunotherapy. 2019;11:755–8. https://doi.org/10.2217/imt-2019-0069.
Article
CAS
PubMed
Google Scholar
Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM. Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging. 2008;29:1607–18. https://doi.org/10.1016/j.neurobiolaging.2007.04.014.
Article
CAS
PubMed
Google Scholar
Ungar L, Altmann A, Greicius MD. Apolipoprotein E, gender, and Alzheimer’s disease: an overlooked, but potent and promising interaction. Brain Imaging Behav. 2014;8:262–73. https://doi.org/10.1007/s11682-013-9272-x.
Article
PubMed
PubMed Central
Google Scholar
Van der Jeugd A, Parra-Damas A, Baeta-Corral R, Soto-Faguas CM, Ahmed T, LaFerla FM, Gimenez-Llort L, D'Hooge R, Saura CA. Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice. Sci Rep. 2018;8:6431. https://doi.org/10.1038/s41598-018-24741-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Gu BJ, Masters CL, Wang Y-J. A systemic view of Alzheimer disease — insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol. 2017;13:612–23. https://doi.org/10.1038/nrneurol.2017.111.
Article
CAS
PubMed
Google Scholar
Zovkic IB, Paulukaitis BS, Day JJ, Etikala DM, Sweatt JD. Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature. 2014;515:582–6. https://doi.org/10.1038/nature13707.
Article
CAS
PubMed
PubMed Central
Google Scholar