- Research
- Open access
- Published:
Correlations between plasma and PET beta-amyloid levels in individuals with subjective cognitive decline: the FundaciĆ³ ACE Healthy Brain Initiative (FACEHBI)
Alzheimer's Research & Therapy volumeĀ 10, ArticleĀ number:Ā 119 (2018)
Abstract
Background
Peripheral biomarkers that identify individuals at risk of developing Alzheimerās disease (AD) or predicting high amyloid beta (AĪ²) brain burden would be highly valuable. To facilitate clinical trials of disease-modifying therapies, plasma concentrations of AĪ² species are good candidates for peripheral AD biomarkers, but studies to date have generated conflicting results.
Methods
The FundaciĆ³ ACE Healthy Brain Initiative (FACEHBI) study uses a convenience sample of 200 individuals diagnosed with subjective cognitive decline (SCD) at the FundaciĆ³ ACE (Barcelona, Spain) who underwent amyloid florbetaben(18F) (FBB) positron emission tomography (PET) brain imaging. Baseline plasma samples from FACEHBI subjects (aged 65.9āĀ±ā7.2 years) were analyzed using the ABtest (Araclon Biotech). This test directly determines the free plasma (FP) and total plasma (TP) levels of AĪ²40 and AĪ²42 peptides. The association between AĪ²40 and AĪ²42 plasma levels and FBB-PET global standardized uptake value ratio (SUVR) was determined using correlations and linear regression-based methods. The effect of the APOE genotype on plasma AĪ² levels and FBB-PET was also assessed. Finally, various models including different combinations of demographics, genetics, and AĪ² plasma levels were constructed using logistic regression and area under the receiver operating characteristic curve (AUROC) analyses to evaluate their ability for discriminating which subjects presented brain amyloidosis.
Results
FBB-PET global SUVR correlated weakly but significantly with AĪ²42/40 plasma ratios. For TP42/40, this observation persisted after controlling for age and APOE Īµ4 allele carrier status (R2ā=ā0.193, pā=ā1.01E-09). The ROC curve demonstrated that plasma AĪ² measurements are not superior to APOE and age in combination in predicting brain amyloidosis. It is noteworthy that using a simple preselection tool (the TP42/40 ratio with an empirical cut-off value of 0.08) optimizes the sensitivity and reduces the number of individuals subjected to AĪ² FBB-PET scanners to 52.8%. No significant dependency was observed between APOE genotype and plasma AĪ² measurements (p value for interactionā=ā0.105).
Conclusion
Brain and plasma AĪ² levels are partially correlated in individuals diagnosed with SCD. AĪ² plasma measurements, particularly the TP42/40 ratio, could generate a new recruitment strategy independent of the APOE genotype that would improve identification of SCD subjects with brain amyloidosis and reduce the rate of screening failures in preclinical AD studies. Independent replication of these findings is warranted.
Highlights
-
Brain and plasma AĪ² levels are partially correlated in SCD subjects.
-
Plasma AĪ² measurements are independent of APOE genotype.
-
The model including only plasma TP42/40 level as a variable achieved the highest sensitivity in predicting AĪ² PET positivity (83%).
-
A simple preselection step using the TP42/40 classifier with an empirical cut-off value of 0.08 would reduce the number of individuals subjected to AĪ² FBB-PET by 52.8%.
Background
Alzheimerās disease (AD), the most common cause of dementia, is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline [1]. Pathological findings of AD include deposits of amyloid beta (AĪ²) peptides in the brain conforming extracellular amyloid plaques together with intracellular deposits of hyperphosphorylated tau [2]. The progressive increase of both pathological hallmarks is associated with gradual synaptic and neuronal loss resulting in the clinical deterioration of patients [3].
There are no effective disease-modifying therapies for AD available at the current time. Neuropsychological assessment [4], cerebrospinal fluid [5] (CSF) analysis, and amyloid positron emission tomography (PET) scans are common methods used for prodromal AD detection. CSF and amyloid PET provide the most reliable in-vivo biomarkers of prodromal AD, but they are not suitable for population screening purposes due to the invasive CSF sampling procedure and the high cost and limited availability of amyloid PET imaging [6, 7]. Magnetic resonance imaging (MRI)-based AD biomarkers have demonstrated high sensitivity to prodromal AD [8]; however, the specificity of MRI is limited for predicting conversion of mild cognitive impairment (MCI) to dementia [9] and MRI is also impractical in patients with some types of pacemakers, metal implants, or claustrophobia. Consequently, despite the robustness of these biomarkers, they are not suitable for broad population screening in primary care clinical settings. Therefore, there is a growing need for accurate identification of asymptomatic (preclinical) individuals with underlying AD pathology to improve diagnosis and subject inclusion in prevention trials of prodromal and presymptomatic AD.
Discovery of blood-based AD biomarkers would entail important cost-benefit and scalability advantages over current techniques, potentially enabling broader clinical access and efficient population screening. The plasma concentration of AĪ² is a logical candidate, but studies to date have produced conflicting results on its utility [10]. Several longitudinal studies with large cohorts such as the Framingham Study [11] with 2189 dementia-free participants followed from baseline until they developed dementia, died, or had been followed for 10Ā years and the Rotterdam Study [12] with 1756 participants and 392 incident dementia cases identified (follow-up mean 8.6Ā years) have reported increased risk of dementia associated with lower AĪ²42/40 plasma ratios and that a reduction in plasma AĪ²42 levels over time is linked with cognitive decline [13, 14]. A recent publication [15] studied the ability of AĪ² precursor protein (APP/AĪ²42), AĪ²40/AĪ²42 ratios, and their composites to predict individual brain AĪ²+/ā status determined by AĪ²-PET imaging. The results showed that all test biomarkers correlated with both AĪ² PET burden and levels of AĪ²42 in CSF in two independent cohorts, demonstrating that the three different types of AĪ²-related biomarkers (plasma, CSF, and PET imaging) are highly correlated with each other, clearly indicating the potential utility of plasma biomarkers. Furthermore, an independent study [16] suggests that individuals with subjective cognitive decline (SCD) exhibit significantly higher AĪ²42 plasma concentrations compared with participants with no complaints. However, other studies have reported a weak or even a lack of association of plasma AĪ²42/40 ratio with AD diagnosis [17,18,19].
Given that both subjective complaints and impaired episodic memory are present in MCI, the existence of an earlier distinct clinical stage where subjective complaints exist in the absence of detectable objective cognitive deficits is plausible [20]. There is evidence suggesting that SCD may increase the risk of progression to cognitive impairment and dementia [21], and that individuals with SCD have a higher risk of developing AD [22], and present more functional deficits [23] and AD brain pathology than non-SCD participants [24]. SCD might represent the earliest point on the continuum of clinical Alzheimerās symptomatology [25,26,27], even anticipating the onset of subtle but detectable neuropsychological or biological alterations. Hence, a better understanding of the baseline characteristics of this group of patients may enhance our knowledge of early AD processes, facilitating early diagnosis, follow-up, and preventive treatment, making SCD an interesting target population to study.
The primary aim of this study was to assess the association between plasma AĪ² levels and amyloid brain burden. Specifically, we measured AĪ²42 and AĪ²40 plasma levels using two specific sandwich enzyme-linked immunosorbent assay (ELISA) kits, ABtest40 and ABtest42 (Araclon Biotech, Zaragoza, Spain), and quantified amyloid brain burden using florbetaben(18F) (FBB)-PET global standardized uptake value ratio (SUVR) in 200 individuals with SCD. We evaluated whether plasma AĪ² ratios may be useful biomarkers for AD and a screening tool for amyloidosis in healthy populations.
Methods
The FACEHBI cohort
The FundaciĆ³ ACE Healthy Brain Initiative (FACEHBI) uses a convenience sample of 200 individuals (mean age 65.8āĀ±ā7.2Ā years; 37.5% males) diagnosed with SCD at FundaciĆ³ ACE (Barcelona, Spain) recruited from Open House initiatives [28]. The cohort comprised of 52 (26%) APOE Īµ4 allele carriers and 18 (9%) individuals with a positive (SUVR >ā1.45) FBB-PET scan. The demographic characteristics of the study cohort are summarized in TableĀ 1 and AdditionalĀ fileĀ 1 (Table S1) by FBB-PET status.
The SCD criteria used to recruit subjects in this study have been described previously [29]. Briefly, inclusion criteria were: 1) subjective cognitive complaints defined as a score of ā„ā8 on MFE-30, the Spanish version of the Memory Failures in Everyday Life Questionnaire [30]; 2) Mini-Mental State Examination (MMSE) scoreāā„ā27; 3) Clinical Dementia Rating (CDR)ā=ā0; and 4) performance on the FundaciĆ³ ACE Neuropsychological Battery (NBACE) [31] within the normal range for age and educational level. Exclusion criteria were as follows: 1) relevant symptoms of anxiety or depression defined as a score of ā„ā11 on the Hospital Anxiety and Depression Scale (HADS) [32]; 2) presence of other psychiatric diagnosis; 3) history of alcoholism and epilepsy; and 4) known renal or liver failure.
Cognitive assessment was performed according to the routines of the Memory Clinic of FundaciĆ³ ACE as described elsewhere [33]. Baseline MRI of these subjects demonstrated the absence of signs indicative of brain pathology. All participants gave written consent and the protocol was approved by the ethics committee of the Hospital Clinic i Provincial (Barcelona, Spain) (EudraCT: 2014ā000798-38).
MRI acquisition
All MRI scans were acquired prior to FBB-PET. MRI were performed on a 1.5-T Siemens Magneton Aera (Erlangen, Germany) using a 32-channel head coil. Anatomical T1-weighted images were acquired using a rapid acquisition gradient-echo three-dimensional (3D) magnetization-prepared rapid gradient-echo (MPRAGE) sequence with the following parameters: repetition time (TR) 2.200Ā ms, echo time (TE) 2.66Ā ms, inversion time (TI) 900Ā ms, slip angle 8Ā°, field of view (FOV) 250Ā mm, slice thickness 1Ā mm, and isotropic voxel size 1 Ć 1 Ć 1 mm. Subjects also received axial T2-weighted, 3D isotropic fast fluid-attenuated inversion recovery (FLAIR) and axial T2*-weighted sequences to detect significant vascular pathology or microbleeds.
FBB-PET acquisition
FBB-PET scans were obtained with a SiemensĀ© Biograph molecular-CT machine. PET images were acquired in 20Ā min starting from 90Ā min after intravenous administration of 300 Mbq of Florbetaben(18F) radio tracer (NeuraCeqĀ©), administered as a single slow intravenous bolus (6Ā s/ml) in a total volume of up to 10Ā ml.
SUVR estimation
MRI cortical [34] and subcortical [35] parcellations were carried out with Freesurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/), following the pipeline described in https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all.
FBB-PET were coregistered to the MRI labeled data with the FSL 5.0 software package (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) by means of MCFLIRT, it is an intra-modal motion correction tool based on optimization and registration techniques from FLIRT (FMRIB's Linear Image Registration Tool), which next was also used. These are fully automated tools implemented in FSL 5.0 for linear (affine) intra- and inter-modal brain image registration [36, 37].
Amyloid cortical SUVR was determined as the average of the standardized uptake value normalized by the uptake in the cerebellar grey matter, with this reference region being selected from the MRI cerebellum external and cortex segments. Based on previous studies [38], a cut-off for SUVR above or equal to 1.45 was selected as the amyloid positivity criterion.
Blood sampling, APOE genotyping, biochemical determinations, and AĪ² measurements
Blood samples and the APOE genotype from each participant were routinely processed in FundaciĆ³ ACE as previously described [29, 39]. In brief, blood samples were obtained in the morning after an overnight fast, collected in polypropylene vials with ethylenediaminetetraacetic acid (EDTA) and immediately refrigerated. Samples were centrifuged within 24Ā h from extraction to collect the plasma and then aliquoted and frozen at ā80Ā Ā°C until assayed. Biochemical and hematologic measurements were determined in a reference laboratory according to clinical standards.
For plasma amyloid testing, four determinations were made (AdditionalĀ fileĀ 2). Total plasma (TP) and free plasma (FP) AĪ²40 and AĪ²42 levels were quantified using two specific sandwich ELISA kits, AĪ²test40 and AĪ²test42 (Araclon Biotech, Zaragoza, Spain), in accordance with the manufacturerās instructions as described elsewhere [39]. Briefly, before analysis, each plasma sample was split into two aliquots: an undiluted aliquot and another aliquot pretreated by 1:3 dilutions in a formulated sample buffer (phosphate-buffered saline (PBS) 0.5Ā M, 0.5% Tween-20, 1% blocking polymer) intended to break AĪ² interactions with other plasma components. Thus, levels of free and total AĪ²40 and AĪ²42 were separately determined in undiluted and diluted plasma, respectively. The difference between TP and FP concentration corresponds to the amount of amyloid peptide bound to plasma components (BP). The AĪ²42/AĪ²40 ratios in each of these plasma fractions (FP42/40, TP42/40, BP42/40, FP40/TP40, and FP42/TP42) were calculated and served as the target plasma biomarkers for this study.
The levels of TP and FP obtained from plasma samples were expressed as picograms (pg) of AĪ² peptide per milliliter (ml) of plasma. The analyses were always performed in duplicates of the same aliquot and in a coded manner to ensure blindness of the operator.
Both inter-assay and intra-assay coefficients of variation were below 5% and 8ā20% for ABtest40 and ABtest42, respectively. The detection limit was 3.13 and 200Ā pg/ml for ABtest40 and 1.56 and 100Ā pg/ml for ABtest42. One sample was removed from the original FACEHBI cohort [29] because both ABtest determinations were outside the upper limit of quantification (>āULQ). In ABtest42, 84 of 400 (21%) determinations were also outside the quantification range, either because they were below the lower limit of quantification (<āLLQ) or due to undetectable peptide levels. We assigned the minimum value of quantification (1.56Ā pg/ml) to these samples.
Statistical analysis
We performed several correlation and regression analyses to explore the association between plasma amyloid ratios and FBB-PET brain amyloid burden. First, we conducted a linear regression analysis using FBB-PET global SUVR as the quantitative response variable in SCD subjects. FBB-PET global SUVR was log-transformed for all analyses since it was not normally distributed. The distribution of variables and Shapiro-Wilk test are given in Additional file 3 (Figure S1). We conducted an exploratory analysis with three different transformations for the plasma AĪ²42/AĪ²40 ratios: dichotomous (with regard to the median of the population), quartile, and logarithmic. First, we performed Pearson and Spearman correlation analyses between log-transformed FBB-PET global SUVR and the raw values of each plasma AĪ² measure of interest as well as the transformed plasma AĪ² ratios (TableĀ 2 and Additional file 4: Table S2). Next, we performed a linear regression analysis using a backward-selection procedure with FBB-PET global SUVR as the quantitative dependent variable, with age, gender, education, APOE Īµ4 carrier status, and the best performing log-transformed plasma AĪ²42/40 ratio as independent variables (TableĀ 3 and AdditionalĀ fileĀ 5: Table S3). Bonferroni correction was used to adjust for multiple comparisons.
We used logistic regression to construct four different models (TableĀ 4) to evaluate the usefulness of the covariates selected from the backward regression model for discriminating which SCD participants were FBB-PET amyloid positive (>ā1.45) in 199 participants. The models were structured to reflect categories of predictive information by the ease of its acquisition. Accordingly, the first model (model #1) included only predictors that can be easily obtained (age). The second model additionally requires a blood extraction and includes two parts: model #2a for APOE Īµ4 carrier status (0ā1) which served as the reference model for discrimination of amyloid PET-positive subjects as proposed by Petersen [25], and model #2b for a plasma determination of TP42/40 in log units. The third model (model #3) included the three variables described above (age, APOE, and TP42/40). Finally, the fourth model (model #4) only included the target plasma biomarker (logTP42/40). We used the area under the receiver operating characteristic curve (AUROC) from the models as a measure of how well the model discriminated between FBB-PET positive and negative subjects. The criterion for choosing the operating point along the ROC curve was Youdenās index maximum. The logistic models allowed us to assign a predicted probability of being FBB-PET SUVR positive to each subject based on values for the selected variables in the model. In addition to sensitivity/specificity performance measures, the predictive values (positive (PPV) and negative (NPV)) of the models were calculated.
Finally, the effect of APOE genotype on plasma AĪ² levels was assessed by comparing AĪ² plasma measurements between APOE Īµ4 carriers and noncarriers by analysis of variance (ANOVA) (AdditionalĀ fileĀ 6: Table S4) by performing separate regression analyses between logTP42/40 and FBB-PET global SUVR in APOE Īµ4 carriers and noncarriers (AdditionalĀ fileĀ 7: Figure S4), and by testing the interaction term between APOE Īµ4 carrier status and logTP42/40 in the logistic regression model #3 described above. Statistical analysis was performed with SPSS 19 and RStudio Version 1.0.136. The Ggplot2 package was used for graphic representations.
Results
Relationship between AĪ² plasma ratio and FBB-PET
The FACEHBI study has been designed to identify the most important factors related to preclinical AD [29]. To evaluate the strength of the association between plasma amyloid biomarkers and AĪ²-PET burden, we conducted correlation analyses. Logarithmic TP42/40 and FP42/40 showed significant negative Pearsonās correlations with amyloid PET burden, although only TP42/40 exceeds the Bonferroni correction (rā=āā0.248 (ā0.374 to ā0.113); pā=ā4.04E-04). In contrast, direct plasma levels of AĪ²40 and AĪ²42 did not significantly correlate with FBB-PET global SUVR (Additional file 4: Table S2C). BP42/40 was excluded from further analyses due to collinearity with TP42/40 (Pearsonās rā=ā0.972 (0.963ā0.979); pā<ā2.2E-16; Additional file 4: Table S2A).
Backward regression analysis identified age, APOE Īµ4 status (0ā1), and logTP42/40 as significant covariates of the best model predicting FBB-PET global SUVR (R2ā=ā0.193 and p valueā=ā1.01E-09; Table 3). The inverse association between FBB-PET SUVR and TP42/40 is graphically represented with raw data in Fig.Ā 1. The associations with the other AĪ² plasma biomarkers are shown in AdditionalĀ fileĀ 8 (Figure S2). After stratifying for APOE Īµ4, the linear regression analysis showed a negative relationship between plasma TP42/40 and FBB-PET uptake (rā=āā0.523 (ā0.185 to ā0.067); pā=ā8.12E-05) exclusively in APOE Īµ4 carriers (AdditionalĀ fileĀ 9: Figure S3).
To assess the relevance of the plasma biomarkers in predicting amyloid PET positivity, the TP42/40 model was selected for the subsequent AUROC analysis. Education and gender were excluded due to their lack of significance in the backward regression model. When AĪ²-PET was used as the standard classifier for AĪ²+/AĪ²ā status, all models worked in a similar way to the reference discrimination model #2a with age and APOE as predictors (AUROCs of 0.702, 0.806, 0.754, 0.818, and 0.681 for models #1, #2a, #2b, #3, and #4 respectively; Table 4, Fig. 2). The effect and significance of TP42/40 was maintained in the different models indicating a robust association with AĪ²-PET positivity. Model #2a presented the best balance between PPV/NPV (34.3ā96.3%, respectively), but at the same time showed the lowest sensitivity (66.7%). On the other hand, TP42/40 alone (model #4) achieved the best sensitivity (83.3%) and a good NPV (97.2%), indicating its value as a potential screening tool for detecting brain amyloidosis (Table 4). Using an empirical cut-off point of TP42/40ā=ā0.08, individuals with a TP42/40 plasma ratioā<ā0.08 (52.8%) would be prescreened with a FBB-PET scan, capturing 83% of the positive amyloid cases, thus reducing the prescreening number of AĪ² FBB-PET (sensitivityā=ā83.3%; specificityā=ā51.9%; NPVā=ā96.9%; PPVā=ā14.7%; Fig. 1).
Effect of APOE genotype on plasma AĪ² levels
In the current study, we found no association between APOE genotype and plasma AĪ² measurements, indicating independence between both variables. No plasma AĪ² measure significantly differed between APOE Īµ4 carriers and noncarriers (Additional file 6: Table S4 and Additional file 7: FigureĀ 4). This independence, confirmed by the absence of significance for the interaction term between APOE Īµ4 and logTP42/40 (AdditionalĀ fileĀ 10: Table S5) (odds ratio (OR) 0.022, 95% confidence interval (CI) 2.30E-04 to 2.201); pā=ā0.105) could be an advantage if using this biomarker as a screening tool since it would avoid bias resulting from APOE screening.
Discussion
The FACEHBI study has been designed to identify the most relevant factors related to preclinical AD in a cohort of individuals with SCD [29]. FACEHBI has a 9% prevalence of amyloid PET positivity, which is lower than similar series reported in the literature. Ossenkoppele et al. [40] estimated a prevalence of 11% brain amyloid positivity in a cohort of healthy controls aged 55ā64 years, and 22% in those aged 65ā74 years. In a meta-analysis [41], Jansen et al. reported a prevalence of amyloid PET positivity of approximately 20% at age 65 years. The Mayo Clinic population study [42] showed a prevalence of amyloid PET positivity of 13% in the age group 60ā64 years and 32% in those aged 65 to 69 years. A possible cause for the low prevalence of amyloid PET positivity in the FACEHBI cohort is that a strict definition of cognitive normality was used. A score of 1.5 SD below the mean according to age and level of education in any single NBACE [43] test precluded individuals from enrolling into the FACEHBI study. Other studies with a more liberal definition of cognitive normality included patients that would have been considered to have MCI by our standards, presumably increasing their prevalence of amyloid PET positivity. Secondly, the setting of the study is relevant, as it is well known that participants from clinical samples tend to show higher risk of cognitive progression (and probably greater brain amyloidosis) than those from population-based samples and healthy volunteers, even though both groups are considered to be cognitively normal. In this regard, FACEHBI is a mixed sample, but most of our participants (70%) are healthy volunteers from the community who came to check their cognition for free through Open Door Initiatives. This could partly explain a lower prevalence of brain amyloidosis in our FACEHBI participants compared with pure clinical samples.
The main finding of this study is that lower plasma AĪ²42/40 ratios (particularly the TP42/40 ratio) correlate with higher cerebral AĪ² plaque burden assessed by amyloid FBB-PET imaging in the FACEHBI SCD cohort. This inverse correlation is presumably driven by the reduction of AĪ²42 and the increase of AĪ²40 in the AĪ²+Ā population (AdditionalĀ fileĀ 11: Figure S5). These results are independent of previous explorations and are in line with other promising results reporting similar associations between plasma AĪ²42/40 ratio and cortical fibrillary AĪ² burden [15, 44,45,46,47,48,49,50] (for review see [51,52,53]). This study provides added value as it is one of few [48, 49] that explores the association between AĪ² plasma ratios and AĪ² brain burden within a population of cognitively normal individuals, avoiding the possibility of potential circular associations related to inclusion of MCI and AD subjects along with healthy controls in the same models. Nevertheless, discrepant results from other studies [17,18,19, 54,55,56] that assessed the performance of plasma AĪ² levels in predicting the AĪ² brain status cannot be disregarded. Part of this controversy could be explained by the mixed distribution of individuals with and without cerebral AĪ² deposition (as quantified by amyloid PET and/or by CSF analysis) among healthy controls, MCI, and demented individuals.
It is believed that the clearance of brain AĪ² is reduced in AD patients compared with healthy controls. This is consistent with a report by Giedraitis et al. [57] who found a correlation between CSF and plasma levels of both AĪ²40 and AĪ²42 in healthy individuals, whereas no correlations were seen in AD or MCI patients. Thus, the search for an association between blood and brain AĪ² levels should be directed towards the earliest stages of the disease (preclinical/prodromal AD), which is also when it is of maximum clinical interest especially as a target population for the development of novel disease-modifying therapies. However, it has been difficult to draw definite conclusions with respect to changes in plasma AĪ² concentration in AD [52] because of the inconsistency of the available data. Stringent standardization is required to obtain reliable data that facilitate comparison between studies. In this study we used AĪ²42/AĪ²40 plasma ratios (particularly the TP42/40 ratio) instead of single peptide measurements to attenuate possible bias in single AĪ² peptide level quantifications caused by inconsistencies in sample handling [58].
The regression model that included only the TP42/40 ratio did not show sufficient predictive ability to identify those individuals with a positive FBB-PET scan, accounting for only 20% of the variance. Clearly, screening with these factors would not be an acceptable option for determining amyloid PET positivity in the clinical practice setting. Nevertheless, the plasma TP42/40 ratio showed a significant negative correlation with FBB-PET SUVR. This suggests that this plasma AĪ² biomarker could be useful as an enrichment tool to identify potential candidates for clinical trials focused on preclinical AD. To prove this, we would need to reproduce the results in a controlled trial with an independent sample. Our analyses suggest that inclusion of the TP42/40 plasma biomarker in a classifier model could reduce unnecessary amyloid PET scans, facilitating recruitment for clinical trials. Taking this into account, in a clinical trial recruiting scenario targeting cognitively normal people, a prescreening step using a TP42/40 classifier (cut-off valueā=ā0.08) would reduce the number of individuals undergoing AĪ² FBB-PET scans to 52.8%. The cortical AĪ² burden of these subjects would have to then be confirmed by AĪ² FBB-PET scans. Consequently, this strategy would reduce the costs [59] of identifying individuals with brain amyloidosis for AD prevention trials [60].
We observed an association of age with plasma AĪ² ratios as described in previous studies [41, 42, 59, 61]. No association was found between the APOE Īµ4 genotype and AĪ² plasma ratios, demonstrating independence between APOE Īµ4 genotype and this candidate plasma biomarker. The linear regression analysis stratifying for APOE Īµ4 showed a negative relationship between TP42/40 and FBB-PET SUVR in APOE Īµ4 carriers but not in noncarrier SCD individuals. At first glance, these results seem contradictory with other studies reporting a significant negative relationship between plasma AĪ² and amyloid PET only in APOE Īµ4 noncarriers [46, 48, 62, 63]. One possible explanation could stem from the difference in cohort composition, as the previous studies included patients with MCI and AD diagnosis, while our sample is comprised only of SCD individuals. Therefore, their APOE Īµ4 carrier group included participants who were older and more cognitively impaired than ours, whereas their APOE Īµ4 noncarrier group could be more similar to our APOE Īµ4 carrier group in terms of demographics and cognition. Therefore, they observed a negative correlation between AĪ² plasma and PET in APOE Īµ4 noncarriers that would be equivalent to the correlation in APOE Īµ4 carriers in our study. We attribute this finding to the potential enrichment of preclinical AD cases in the APOE Īµ4+ SCD subgroup. Specifically, our hypothesis is that the rate of genuine AD cases contained in a study population might distort the correlation between AĪ²-PET and plasma amyloid measurements.
We consider one of the main strengths of this study is that it includes a well-defined homogeneous population putatively positioned at a very early stage of the disease. We know that the main risk factors such as age and APOE do not follow the correlation expected in advanced stages of AD [64], and we have previously reported [64] that the APOE Īµ4 genotype had significant effects on the association with FBB-PET global SUVR in SCD subjects. Thus, AD does not behave linearly, and it could be that the TP42/40 ratio behaves independently from APOE when positioned to the left of the disease continuum. Our data show that refraining from strict inclusion criteria, such as APOE Īµ4 positivity, will be important to avoid detection bias.
An important limitation of this study is the fact that the FBB-PET cut-off value for positivity is arbitrary in SCD populations. The global SUVR >ā1.45 cut-off value has been calculated for dementia patients but perhaps it should be adjusted for populations with different degrees of cognitive impairment or even on different segments of the AD continuum. Another limitation is the small sample size which warrants independent replication. Although Fandos et al. [49] reported similar results from the AIBL dataset in cognitively healthy and SCD individuals [65], it would be interesting to repeat the same analysis by AĪ² cluster and replicate our findings in a larger population with a higher rate of amyloid PET-positive individuals to improve discrimination and accuracy of the plasma amyloid cut-off point.
Future research should address whether the association between brain and plasma AĪ² levels in SCD participants is able to discriminate those older adults who will experience a fast cognitive decline from those who will remain stable over time.
Conclusion
The present data show an inverse association between plasma AĪ²42/40 ratios and brain fibrillary AĪ² deposition in SCD participants. Including the TP42/40 plasma ratio could help generate a more cost-effective recruitment strategy for clinical trials independent of the APOE genotype (reflecting the real diversity of the APOE genotype in preclinical AD) and reducing the associated costs of preselecting subjects using expensive imaging techniques.
Abbreviations
- ABtest:
-
Araclon Biotech test
- AD:
-
Alzheimerās disease
- ANOVA:
-
Analysis of variance
- APOE :
-
Apolipoprotein E
- APP :
-
Amyloid precursor protein
- AUROC:
-
Area under the receiver operating characteristic curve
- AĪ²:
-
Amyloid beta
- BP:
-
Bound to plasma components
- CDR:
-
Clinical Dementia Rating
- CI:
-
Confidence interval
- CSF:
-
Cerebrospinal fluid
- ELISA:
-
Enzyme-linked immunosorbent assay
- FACEHBI:
-
FundaciĆ³ ACE Healthy Brain Initiative
- FBB:
-
Florbetaben
- FLAIR:
-
Fast fluid-attenuated inversion recovery
- FOV:
-
Field of view
- FP:
-
Free plasma
- FSL:
-
FMRIB Software Library
- HADS:
-
Hospital Anxiety and Depression Scale
- LLQ:
-
Lower limit of quantification
- MCI:
-
Mild cognitive impairment
- MFE:
-
Memory Failures in Everyday Life Questionnaire
- MMSE:
-
Mini-Mental State Examination
- MPRAGE:
-
Magnetization-prepared rapid gradient-echo
- MRI:
-
Magnetic resonance imaging
- NBACE:
-
FundaciĆ³ ACE Neuropsychological Battery
- NPV:
-
Negative predictive value
- OR:
-
Odds ratio
- PET:
-
Positron emission tomography
- PPV:
-
Positive predictive value
- SCD:
-
Subjective cognitive decline
- SUVR:
-
Standardized uptake value ratio
- TE:
-
Echo time
- TI:
-
Inversion time
- TP:
-
Total plasma
- TR:
-
Repetition time
- ULQ:
-
Upper limit of quantification
References
Izco M, et al. Changes in the brain and plasma Abeta peptide levels with age and its relationship with cognitive impairment in the APPswe/PS1dE9 mouse model of Alzheimerās disease. Neuroscience. 2014. https://doi.org/10.1016/j.neuroscience.2014.01.003.
Ballard C, et al. Alzheimerās disease. Lancet. 2011;377:1019ā31.
Ruiz A, et al. Blood amyloid beta levels in healthy, mild cognitive impairment and Alzheimerās disease individuals: replication of diastolic blood pressure correlations and analysis of critical covariates. PLoS One. 2013. https://doi.org/10.1371/journal.pone.0081334.
Soininen HS, Scbeltens P. Early diagnostic indices for the prevention of Alzheimerās disease. Ann Med. 1998;30:553ā9.
Monge-ArgilĆ©s, J. A. et al. [Biomarkers in the cerebrospinal fluid of patients with mild cognitive impairment: a meta-analysis of their predictive capacity for the diagnosis of Alzheimerās disease]. Rev Neurol 2010;50:193ā200.
Toledo JB, Shaw LM, Trojanowski JQ. Plasma amyloid beta measurementsāa desired but elusive Alzheimerās disease biomarker. Alzheimers Res Ther. 2013;5:8.
Aizenstein HJ, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol. 2008;65:1509.
Dickerson, B. C., Wolk, D. A. and Alzheimerās Disease Neuroimaging Initiative. MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults. Neurology 78, 84ā90 (2012).
Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging. 2011;32:2322.e19ā27.
Mehta PD, et al. Plasma and cerebrospinal fluid levels of amyloid beta proteins 1-40 and 1-42 in Alzheimer disease. Arch Neurol. 2000;57:100ā5.
Chouraki V, et al. Plasma amyloid-Ī² and risk of Alzheimerās disease in the Framingham Heart Study. Alzheimers Dement. 2015;11:249ā57.e1.
van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM. Plasma AĪ²1ā40 and AĪ²1ā42 and the risk of dementia: a prospective case-cohort study. Lancet Neurol. 2006;5:655ā60.
Graff-Radford NR, et al. Association of low plasma AĪ²42/AĪ²40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol. 2007;64:354.
Lambert J-C, et al. Association of plasma amyloid with risk of dementia: the prospective Three-City Study. Neurology. 2009;73:847ā53.
Nakamura A, et al. High performance plasma amyloid-Ī² biomarkers for Alzheimerās disease. Nature. 2018;554:249ā54.
Cantero JL, Iglesias JE, Van Leemput K, Atienza M. Regional hippocampal atrophy and higher levels of plasma amyloid-beta are associated with subjective memory complaints in nondemented elderly subjects. J Gerontol Ser A Biol Sci Med Sci. 2016;71:1210ā5.
Hansson O, et al. Evaluation of plasma Abeta(40) and Abeta(42) as predictors of conversion to Alzheimerās disease in patients with mild cognitive impairment. Neurobiol Aging. 2010;31:357ā67.
Lopez OL, et al. Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study. Neurology. 2008;70:1664ā71.
Lƶvheim H, et al. Plasma concentrations of free amyloid Ī² cannot predict the development of Alzheimerās disease. Alzheimers Dement. 2017. https://doi.org/10.1016/j.jalz.2016.12.004.
Fonseca JAS, et al. Factors that predict cognitive decline in patients with subjective cognitive impairment. Int Psychogeriatrics. 2015;27(10):1671ā7.
Reisberg B, Shulman MB, Torossian C, Leng L, Zhu W. Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimers Dement. 2010;6:11ā24.
Reid LM, MacLullich AMJ. Subjective memory complaints and cognitive impairment in older people. Dement Geriatr Cogn Disord. 2006;22:471ā85.
Ogata S, Hayashi C, Sugiura K, Hayakawa K. Association between subjective memory complaints and impaired higher-level functional capacity in people aged 60 years or older. Arch Gerontol Geriatr. 2015;60:201ā5.
Kryscio RJ, et al. Self-reported memory complaints: implications from a longitudinal cohort with autopsies. Neurology. 2014;83:1359ā65.
Petersen RC, et al. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56:1133ā42.
Rabin LA, et al. Subjective cognitive decline in older adults: an overview of self-report measures used across 19 international research studies. J Alzheimers Dis. 2015;48(Suppl 1):S63ā86.
Abdelnour C, et al. Impact of recruitment methods in subjective cognitive decline. J Alzheimers Dis. 2017;57:625ā32.
RodrĆguez-GĆ³mez O, Abdelnour C, Jessen F, Valero S, Boada M. Influence of sampling and recruitment methods in studies of subjective cognitive decline. J Alzheimers Dis. 2015. https://doi.org/10.3233/JAD-150189.
Rodriguez-Gomez O, et al. FACEHBI: a prospective study of risk factors, biomarkers and cognition in a cohort of individuals with subjective cognitive decline. Study rationale and research protocols. 2016. https://doi.org/10.14283/JPAD.2016.122.
Lozoya-Delgado P, Ruiz-SĆ”nchez de LeĆ³n JM, Pedrero-PĆ©rez EJ. Validation of a cognitive complaints questionnaire for young adults: the relation between subjective memory complaints, prefrontal symptoms and perceived stress. Rev Neurol. 2012;54:137ā50.
Alegret M, et al. Cut-off scores of a Brief Neuropsychological Battery (NBACE) for Spanish individual adults older than 44 years old. PLoS One. 2013;8:e76436.
Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361ā70.
Alegret M, et al. Normative data of a brief neuropsychological battery for Spanish individuals older than 49. J Clin Exp Neuropsychol. 2012;34:209ā19.
Fischl B, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14:11ā22.
Fischl B, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341ā55.
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825ā41.
Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143ā56.
Bahar-Fuchs A, et al. Prediction of amyloid-Ī² pathology in amnestic mild cognitive impairment with neuropsychological tests. J Alzheimers Dis. 2013;33:451ā62.
Pesini P, et al. Reliable measurements of the Ī²-amyloid pool in blood could help in the early diagnosis of AD. Int J Alzheimers Dis. 2012;2012:1ā10.
Ossenkoppele R, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA. 2015. https://doi.org/10.1001/jama.2015.4669.
Jansen WJ, et al. Prevalence of cerebral amyloid pathology in persons without dementia. JAMA. 2015;313:1924.
Jack CR, et al. Age-specific population frequencies of cerebral Ī²-amyloidosis and neurodegeneration among people with normal cognitive function aged 50ā89 years: a cross-sectional study. Lancet Neurol. 2014;13:997ā1005.
Alegret M, et al. Concordance between subjective and objective memory impairment in volunteer subjects. J Alzheimerās Dis. 2015. https://doi.org/10.3233/JAD-150594.
Lui JK, et al. Plasma amyloid-Ī² as a biomarker in Alzheimerās disease: the AIBL study of aging. J Alzheimers Dis. 2010;20:1233ā42.
Devanand DP, et al. Plasma A and PET PiB binding are inversely related in mild cognitive impairment. Neurology. 2011;77:125ā31.
Rembach A, et al. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimerās disease. Alzheimers Dement. 2014;10:53ā61.
Rembach A, et al. Plasma beta-amyloid levels are significantly associated with a transition toward Alzheimerās disease as measured by cognitive decline and change in neocortical amyloid burden. Alzheimers Dement. 2013;9:P681ā2.
Janelidze S, et al. Plasma Ī²-amyloid in Alzheimerās disease and vascular disease. Sci Rep. 2016. https://doi.org/10.1038/srep26801.
Fandos N, et al. Plasma amyloid Ī² 42/40 ratios as biomarkers for amyloid Ī² cerebral deposition in cognitively normal individuals. Alzheimers Dement (Amst). 2017;8:179ā87.
Toledo JB, et al. Factors affecting AĪ² plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol. 2011;122:401ā13.
Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6:131ā44.
Snyder HM, et al. Developing novel blood-based biomarkers for Alzheimerās disease. Alzheimers Dement. 2014;10:109ā14.
Mattsson N, et al. Revolutionizing Alzheimerās disease and clinical trials through biomarkers. Alzheimers Dement (Amst). 2015;1:412ā9.
Lewczuk P, et al. Amyloid Ī² peptides in plasma in early diagnosis of Alzheimerās disease: a multicenter study with multiplexing. Exp Neurol. 2010;223:366ā70.
Mayeux R, et al. Plasma A[beta]40 and A[beta]42 and Alzheimerās disease: relation to age, mortality, and risk. Neurology. 2003;61:1185ā90.
Fagan AM, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid AĪ²42 in humans. Ann Neurol. 2006;59:512ā9.
Giedraitis V, et al. The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimerās disease. Neurosci Lett. 2007;427:127ā31.
Willemse E, et al. How to handle adsorption of cerebrospinal fluid amyloid-Ī² (1ā42) in laboratory practice? Identifying problematic handlings and resolving the issue by use of the AĪ²42/AĪ²40 ratio. Alzheimers Dement. 2017. https://doi.org/10.1016/j.jalz.2017.01.010.
Insel PS, et al. Assessing risk for preclinical Ī²-amyloid pathology with APOE, cognitive, and demographic information. Alzheimers Dement (Amst). 2016;4:76ā84.
Mielke MM, et al. Indicators of amyloid burden in a population-based study of cognitively normal elderly. Neurology. 2012;79:1570ā7.
Rowe CC, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging. 2010;31:1275ā83.
Swaminathan S, et al. Association of plasma and cortical amyloid beta is modulated by APOEĀ e4 status. Alzheimers Dement. 2014;10:e9āe18.
Tateno, A., Sakayori, T. & Okubo, Y. The effect of apoe phenotype on the association of plasma beta-amyloid and cortical amyloid accumulation. AZ Kyoto 2017 at <http://www.adi2017.org/docs/default-source/default-document-library/adi_kyoto2017_englishabstractbook_online.pdf?sfvrsn=0>
MorenoāGrau S, et al. Exploring APOE genotype effects on AD risk and Ī²-amyloid burden in individuals with subjective cognitive decline: the FACEHBI study baseline results. Alzheimers Dement. 2017. https://doi.org/10.1016/j.jalz.2017.10.005.
Ellis KA, et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimerās disease. Int. Psychogeriatrics. 2009;21:672.
Acknowledgments
We would like to thank the patients and controls who participated in this project. We also want to thank the sponsors supporting the FACEHBI project (Grifols SA, Piramal AG, Laboratorios Echevarne, Araclon Biotech, and FundaciĆ³ ACE). FundaciĆ³ ACE collaborates with the Centro de InvestigaciĆ³n BiomĆ©dica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, Spain) and is one of the participating centers of the Dementia Genetics Spanish Consortium (DEGESCO). AR is receiving financial support from the Innovative Medicines Initiative 2 Joint Undertaking which receives support from the European Unionās Horizon 2020 research and innovation programme and EFPIA Grant No. 115975. ARās research is also supported by grants PI13/02434 and PI16/01861, AcciĆ³n EstratĆ©gica en Salud, integrated in the Spanish National Rā+āDā+āI Plan and financed by ISCIII (Instituto de Salud Carlos III)-SubdirecciĆ³n General de EvaluaciĆ³n and the Fondo Europeo de Desarrollo Regional (FEDER- āUna manera de Hacer Europaā), by FundaciĆ³n bancaria āLa Caixaā and Grifols SA (GR@ACE project). The present work has been performed as part of the doctoral program of IdR at the Universitat de Barcelona (Barcelona, Spain).
The FACEHBI study group: C. Abdelnour1, N. Aguilera1, M. Alegret1, M. Berthier2, M. Boada1, M. Buendia1, S. Bullich3, F. Campos4, P. CaƱabate1, C. Cuevas1, I. de Rojas1, A. Espinosa1, A. Gailhajenet1, S. Diego1, S. Gil1, J. GimĆ©nez5, R. Gismondi,3 M. GĆ³mez-Chiari5, M. Guitart1, I. HernĆ”ndez1, M. Ibarria1, A. Lafuente,1 F. LomeƱa4, M. MarquiĆ©1, E. MartĆn,1 J. MartĆnez1, A. MauleĆ³n,1 G. MontĆ©1, M. Moreno1, S. Moreno-Grau1, L. NĆŗƱez6, A. Orellana,1 G. Ortega1, A. PĆ”ez,6 A. Pancho,1 J. PavĆa4, E. PelejĆ ,1 A. PĆ©rez-Cordon,1 V. PĆ©rez-Grijalba7, P. Pesini7, S. Preckler1, O. RodrĆguez-GĆ³mez1, J. Romero7, M. Rosende-Roca1, A. Ruiz1, S. Ruiz1, L. Montrreal1, A. Sanabria,1 M.A. Santos-Santos,1 M. Sarasa7, O. Sotolongo-Grau1, L. TĆ”rraga1, M.A. Tejero5, M. Torres6, S. Valero1, L. Vargas1, and A. Vivas5 (1Research Center and Memory Clinic, FundaciĆ³ ACE, Institut CatalĆ de NeurociĆØncies Aplicades, UIC-Barcelona, Spain; 2Cognitive Neurology and Aphasia Unit (UNCA), University of Malaga, Spain; 3Piramal Imaging GmbH, Berlin, Germany; 4Servei de Medicina Nuclear, Hospital ClĆnic I Provincial, Barcelona, Spain; 5Departament de DiagnĆ³stic per la Imatge, ClĆnica Corachan, Barcelona, Spain; 6Grifols, Barcelona, Spain, and 7Araclon Biothech, Zaragoza, Spain).
Funding
This work was funded by the sponsors supporting the FACEHBI project: Grifols SA, Piramal AG, Laboratorios Echevarne, Araclon Biotech, and FundaciĆ³ ACE.
Availability of data and materials
The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.
Author information
Authors and Affiliations
Consortia
Contributions
AR, LT, MB, MS, and PP contributed to the study concept and design. IdR analyzed, interpreted and drafted the manuscript. AR and PP contributed to the literature search and drafted the manuscript. AR and SV contributed to analysis and interpretation of data. OR-G, AS, AP-C, CA, IH, MR-R, AM, LV, MA, AE, GO, MG, AG, MAS-S, SR, LM, EM, EP, AO, and SM-G were involved in data collection, recruitment and evaluation of the patients. JR, PP, VP-G, and MS participated in analytical data acquisition. FL, FC, AV, MG-C, MAT, and JG performed MRI and FBB-PET assessments. OS-G and GM-R analyzed the neuroimaging data. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
The FACEHBI protocol received approval from the ethics review board of the Hospital Clinic i Provincial (Barcelona, Spain) (EudraCT: 2014ā000798-38). All the participants signed written informed consent prior to any evaluation according to Spanish biomedical laws and to the principles of the Declaration of Helsinki.
Consent for publication
Not applicable.
Competing interests
JR, PP, VP-G, and MS are employees of Araclon Biotech Ltd. MS holds several patents related to Alzheimerās disease diagnosis and treatment, and he is the founder, chief executive officer, chief scientific officer, and one of the current shareholders of Araclon Biotech Ltd. The remaining authors declare that they have no competing interests.
Publisherās Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Additional files
Additional file 1:
Table S1. Demographics and clinical characteristics of subjects studied (FACEHBI [29]) for FBB-PET status being positive >ā1.45. (DOCX 31 kb)
Additional file 2:
Plasma amyloid beta levels measured with ABtest for the FACEHBI samples. (XLSX 28 kb)
Additional file 3:
Figure S1. A) Distribution of FBB-PET and plasma ratios. B) Shapiro-Wilk test for FBB-PET and plasma ratios. C) Log distributions FBB-PET and plasma ratios. D) Shapiro-Wilk test for logarithmic FBB-PET and log-plasma ratios. A, B) Distributions and Shapiro-Wilk test for plasma ratios and FBB-PET to test normality. C, D) Distributions and Shapiro-Wilk test for transformed to logarithmic plasma ratios and FBB-PET to test normality. (PDF 299 kb)
Additional file 4:
Table S2. Exploratory analysis. (DOCX 23 kb)
Additional file 5:
Table S3. Regression analyses between AĪ² plasma ratios and FBB-PET SUVR. (DOCX 18 kb)
Additional file 6:
Table S4. ANOVAs comparing APOE Īµ4 carriers vs noncarriers. (DOCX 14 kb)
Additional file 7:
Figure S4. APOE and plasma AĪ² ratios. The effects of APOE genotype on plasma AĪ² levels using ANOVA between APOE Īµ4 carriers and noncarriers in a boxplot representation with outlier analysis. (PDF 93 kb)
Additional file 8:
Figure S2. Scatter plots for FBB-PET global SUVR and AĪ² plasma ratios in SCD subjects. Correlations between plasma biomarkers and brain AĪ² burden. Biomarkers values plotted against SUVR values from FBB-PET imaging: FP42/40 (A), BP42/40 (B), FP42/TP42 (C), and FP40/TP40 (D). (PDF 286 kb)
Additional file 9:
Figure S3. Linear regression between FBB-PET and AĪ² TP42/40 plasma ratio in APOE Īµ4 stratification SCD population. A)Ā APOE Īµ4 carriers; B)Ā APOE Īµ4 noncarriers. (PDF 115 kb)
Additional file 10:
Table S5. Interaction between APOE and L_TP42/40. (DOCX 14 kb)
Additional file 11:
Figure S5. Box plots for TP40 and TP42 by FBB-PET global SUVR status in SCD subjects. (JPEG 53 kb)
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
About this article
Cite this article
de Rojas, I., Romero, J., RodrĆguez-Gomez, O. et al. Correlations between plasma and PET beta-amyloid levels in individuals with subjective cognitive decline: the FundaciĆ³ ACE Healthy Brain Initiative (FACEHBI). Alz Res Therapy 10, 119 (2018). https://doi.org/10.1186/s13195-018-0444-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13195-018-0444-1