Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of IONIS-HTTRx in Patients with Early Manifest Huntington's Disease. NCT02519036. 2015.
Ross CA, Tabrizi SJ. Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10:83–98.
Article
CAS
PubMed
Google Scholar
Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12:435–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeVos SL, Miller RL, Schoch KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9(374).
Cole T, Paumier K, Zhao H, Weihofen A, Kordasiewicz H, Swayze E. Snca targeted antisense oligonucleotides mediate progression of pathological deposition in alpha synuclein rodent transmission models of Parkinson’s disease. AAN Annual Meeting Poster Session VI. Vancouver: Vancouver Convention Centre; 2016. P6.239. http://www.abstractsonline.com/pp8/#!/4046/presentation/6251.
Zhao H, Cole T, Weihofen A, Swayze E, Kordasiewicz H. Antisense oligonucleotides to LRRK2 ameliorate alpha-synuclein pathology and behavioral deficit induced by pre-formed alpha-synuclein fibrils (I1.007). AAN Annual Meeting INS Data Blitz. Vancouver: Vancouver Convention Centre; 2016. http://www.abstractsonline.com/pp8/#!/4046/presentation/8588.
Scoles DR, Meera P, Schneider MD, et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature. 2017;544:362–6.
Article
CAS
PubMed
Google Scholar
Becker LA, Huang B, Bieri G, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544:367–71.
Article
CAS
PubMed
Google Scholar
Godinho BM, Malhotra M, O'Driscoll CM, Cryan JF. Delivering a disease-modifying treatment for Huntington's disease. Drug Discov Today. 2015;20:50–64.
Article
CAS
PubMed
Google Scholar
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.
Article
CAS
PubMed
Google Scholar
Keiser MS, Kordasiewicz HB, McBride JL. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia. Hum Mol Genet. 2016;25:R53–64.
Article
CAS
PubMed
Google Scholar
de Fougerolles AR. Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther. 2008;19:125–32.
Article
PubMed
Google Scholar
Lecaros RL, Huang L, Lee TC, Hsu YC. Nanoparticle delivered VEGF-A siRNA enhances photodynamic therapy for head and neck cancer treatment. Mol Ther. 2016;24:106–16.
Article
CAS
PubMed
Google Scholar
Lima WF, Prakash TP, Murray HM, et al. Single-stranded siRNAs activate RNAi in animals. Cell. 2012;150:883–94.
Article
CAS
PubMed
Google Scholar
Yu D, Pendergraff H, Liu J, et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell. 2012;150:895–908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington's disease transgenic mice. Mol Ther. 2005;12:618–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
McBride JL, Boudreau RL, Harper SQ, et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A. 2008;105:5868–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boudreau RL, Spengler RM, Davidson BL. Rational design of therapeutic siRNAs: minimizing off-targeting potential to improve the safety of RNAi therapy for Huntington's disease. Mol Ther. 2011;19:2169–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen ZJ, Kren BT, Wong PY, Low WC, Steer CJ. Sleeping Beauty-mediated down-regulation of huntingtin expression by RNA interference. Biochem Biophys Res Commun. 2005;329:646–52.
Article
CAS
PubMed
Google Scholar
Harper SQ, Staber PD, He X, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc Natl Acad Sci U S A. 2005;102:5820–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang YL, Liu W, Wada E, Murata M, Wada K, Kanazawa I. Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA. Neurosci Res. 2005;53:241–9.
Article
CAS
PubMed
Google Scholar
DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A. 2007;104:17204–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machida Y, Okada T, Kurosawa M, Oyama F, Ozawa K, Nukina N. rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun. 2006;343:190–7.
Article
CAS
PubMed
Google Scholar
White MD, Farmer M, Mirabile I, Brandner S, Collinge J, Mallucci GR. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci U S A. 2008;105:10238–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mangiarini L, Sathasivam K, Seller M, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87:493–506.
Article
CAS
PubMed
Google Scholar
Boudreau RL, McBride JL, Martins I, et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice. Mol Ther. 2009;17:1053–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drouet V, Perrin V, Hassig R, et al. Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol. 2009;65:276–85.
Article
CAS
PubMed
Google Scholar
Stanek LM, Sardi SP, Mastis B, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington's disease. Hum Gene Ther. 2014;25:461–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
McBride JL, Pitzer MR, Boudreau RL, et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease. Mol Ther. 2011;19:2152–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grondin R, Kaytor MD, Ai Y, et al. Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain. 2012;135:1197–209.
Article
PubMed
PubMed Central
Google Scholar
Stiles DK, Zhang Z, Ge P, et al. Widespread suppression of huntingtin with convection-enhanced delivery of siRNA. Exp Neurol. 2012;233:463–71.
Article
CAS
PubMed
Google Scholar
Grondin R, Ge P, Chen Q, et al. Onset time and durability of Huntingtin suppression in rhesus putamen after direct infusion of antihuntingtin siRNA. Mol Ther Nucleic Acids. 2015;4:e245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiriboga CA, Swoboda KJ, Darras BT, et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology. 2016;86:890–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388:3017–26.
Article
CAS
PubMed
Google Scholar
Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron. 2012;74:1031–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanek LM, Yang W, Angus S, et al. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease. J Huntingtons Dis. 2013;2:217–28.
CAS
PubMed
Google Scholar
Lu XH, Yang XW. "Huntingtin holiday": progress toward an antisense therapy for Huntington's disease. Neuron. 2012;74:964–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Denovan-Wright EM, Rodriguez-Lebron E, Lewin AS, Mandel RJ. Unexpected off-targeting effects of anti-huntingtin ribozymes and siRNA in vivo. Neurobiol Dis. 2008;29:446–55.
Article
CAS
PubMed
Google Scholar
Hayashita-Kinoh H, Yamada M, Yokota T, Mizuno Y, Mochizuki H. Down-regulation of alpha-synuclein expression can rescue dopaminergic cells from cell death in the substantia nigra of Parkinson's disease rat model. Biochem Biophys Res Commun. 2006;341:1088–95.
Article
CAS
PubMed
Google Scholar
Ben Aissa M, April MC, Bergeron LJ, Perreault JP, Levesque G. Silencing of amyloid precursor protein expression using a new engineered delta ribozyme. Int J Alzheimers Dis. 2012;2012:947147.
PubMed
PubMed Central
Google Scholar
Yen L, Strittmatter SM, Kalb RG. Sequence-specific cleavage of Huntingtin mRNA by catalytic DNA. Ann Neurol. 1999;46:366–73.
Article
CAS
PubMed
Google Scholar
Wild EJ, Tabrizi SJ. Targets for future clinical trials in Huntington's disease: what's in the pipeline? Mov Disord. 2014;29:1434–45.
Article
CAS
PubMed
Google Scholar
Garriga-Canut M, Agustín-Pavón C, Herrmann F, et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A. 2012;109:E3136–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21:121–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin JW, Kim KH, Chao MJ, et al. Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet. 2016;25:4566–76.
CAS
PubMed
Google Scholar
Murlidharan G, Samulski RJ, Asokan A. Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci. 2014;7:76.
Article
PubMed
PubMed Central
Google Scholar
Kantor B, McCown T, Leone P, Gray SJ. Clinical applications involving CNS gene transfer. Adv Genet. 2014;87:71–124.
CAS
PubMed
PubMed Central
Google Scholar
Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14:316–27.
Article
CAS
PubMed
Google Scholar
Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods. 2013;24:59–67.
Article
CAS
PubMed
Google Scholar
Hult S, Soylu R, Björklund T, et al. Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab. 2011;13:428–39.
Article
CAS
PubMed
Google Scholar
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 2009;27:59–65.
Article
CAS
PubMed
Google Scholar
Dufour BD, Smith CA, Clark RL, Walker TR, McBride JL. Intrajugular vein delivery of AAV9-RNAi prevents neuropathological changes and weight loss in Huntington's disease mice. Mol Ther. 2014;22:797–810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34:204–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf DA, Hesterman JY, Sullivan JM, et al. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery. JCI Insight. 2016;1:e85311.
Article
PubMed
PubMed Central
Google Scholar
Hammond SM, Hazell G, Shabanpoor F, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A. 2016;113:10962–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 2010;9:57–67.
Article
CAS
PubMed
Google Scholar
Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5:834–9.
Article
CAS
PubMed
Google Scholar
Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol. 2005;348:1079–90.
Article
CAS
PubMed
Google Scholar
Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11:263–70.
Article
CAS
PubMed
Google Scholar
Karikó K, Bhuyan P, Capodici J, Weissman D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol. 2004;172:6545–9.
Article
PubMed
Google Scholar
Barik S. RNAi in moderation. Nat Biotechnol. 2006;24:796–7.
Article
CAS
PubMed
Google Scholar
Martin JN, Wolken N, Brown T, Dauer WT, Ehrlich ME, Gonzalez-Alegre P. Lethal toxicity caused by expression of shRNA in the mouse striatum: implications for therapeutic design. Gene Ther. 2011;18:666–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441:537–41.
Article
CAS
PubMed
Google Scholar
Borel F, van Logtenstein R, Koornneef A, et al. In vivo knock-down of multidrug resistance transporters ABCC1 and ABCC2 by AAV-delivered shRNAs and by artificial miRNAs. J RNAi Gene Silencing. 2011;7:434–42.
CAS
PubMed
PubMed Central
Google Scholar
Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA. 2005;11:220–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boudreau RL, Martins I, Davidson BL. Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther. 2009;17:169–75.
Article
CAS
PubMed
Google Scholar
Sathasivam K, Neueder A, Gipson TA, et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A. 2013;110:2366–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rué L, Bañez-Coronel M, Creus-Muncunill J, et al. Targeting CAG repeat RNAs reduces Huntington's disease phenotype independently of huntingtin levels. J Clin Invest. 2016;126:4319–30.
Article
PubMed
PubMed Central
Google Scholar
Hall B, Mak E, Cervenka S, Aigbirhio FI, Rowe JB, O'Brien JT. In vivo tau PET imaging in dementia: pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Ageing Res Rev. 2017;36:50–63.
Article
CAS
PubMed
Google Scholar
Lleó A, Cavedo E, Parnetti L, et al. Cerebrospinal fluid biomarkers in trials for Alzheimer and Parkinson diseases. Nat Rev Neurol. 2015;11:41–55.
Article
PubMed
Google Scholar
Wild EJ, Boggio R, Langbehn D, et al. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington's disease patients. J Clin Invest. 2015;125:1979–86.
Article
PubMed
PubMed Central
Google Scholar
Finkel R, Chiriboga C, Vajsar J, et al. Interim results of a phase 2 clinical study of nusinersen (ISIS-SMNRx) in patients with infantile-onset spinal muscular atrophy. American Academy of Neurology 2016 Annual Meeting. Vancouver: Vancouver Convention Centre; 2016. http://www.neurology.org/content/86/16_Supplement/P5.004.
Ross CA, Aylward EH, Wild EJ, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014;10:204–16.
Article
CAS
PubMed
Google Scholar
Tabrizi SJ, Langbehn DR, Leavitt BR, et al. Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 2009;8:791–801.
Article
PubMed
PubMed Central
Google Scholar
Tabrizi SJ, Scahill RI, Durr A, et al. Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 2011;10:31–42.
Article
PubMed
Google Scholar
Tabrizi SJ, Reilmann R, Roos RA, et al. Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 2012;11:42–53.
Article
PubMed
Google Scholar
Tabrizi SJ, Scahill RI, Owen G, et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol. 2013;12(7):637–49.
Nasir J, Floresco SB, O'Kusky JR, et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell. 1995;81:811–23.
Article
CAS
PubMed
Google Scholar
Dragatsis I, Levine MS, Zeitlin S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet. 2000;26:300–6.
Article
CAS
PubMed
Google Scholar
Wang G, Liu X, Gaertig MA, Li S, Li XJ. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc Natl Acad Sci U S A. 2016;113:3359–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gagnon KT, Pendergraff HM, Deleavey GF, et al. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry. 2010;49:10166–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J, Dodd DW, Hudson RH, Corey DR. Cellular localization and allele-selective inhibition of mutant huntingtin protein by peptide nucleic acid oligomers containing the fluorescent nucleobase [bis-o-(aminoethoxy)phenyl]pyrrolocytosine. Bioorg Med Chem Lett. 2009;19:6181–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J, Matsui M, Corey DR. Allele-selective inhibition of mutant huntingtin by peptide nucleic acid-peptide conjugates, locked nucleic acid, and small interfering RNA. Ann N Y Acad Sci. 2009;1175:24–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Datson NA, González-Barriga A, Kourkouta E, et al. The expanded CAG repeat in the huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain. PLoS One. 2017;12:e0171127.
Article
PubMed
PubMed Central
Google Scholar
Lombardi MS, Jaspers L, Spronkmans C, et al. A majority of Huntington's disease patients may be treatable by individualized allele-specific RNA interference. Exp Neurol. 2009;217:312–9.
Article
CAS
PubMed
Google Scholar
van Bilsen PH, Jaspers L, Lombardi MS, Odekerken JC, Burright EN, Kaemmerer WF. Identification and allele-specific silencing of the mutant huntingtin allele in Huntington's disease patient-derived fibroblasts. Hum Gene Ther. 2008;19:710–9.
Article
PubMed
Google Scholar
Pfister EL, Kennington L, Straubhaar J, et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington's disease patients. Curr Biol. 2009;19:774–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller JRC, Pfister EL, Liu W, et al. Allele-selective suppression of mutant Huntingtin in primary human blood cells. Sci Rep. 2017;7:46740.
Article
PubMed
PubMed Central
Google Scholar
Southwell AL, Skotte NH, Kordasiewicz HB, et al. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther. 2014;22:2093–106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carroll JB, Warby SC, Southwell AL, et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol Ther. 2011;19:2178–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Østergaard ME, Southwell AL, Kordasiewicz H, et al. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res. 2013;41:9634–50.
Article
PubMed
PubMed Central
Google Scholar
Skotte NH, Southwell AL, Østergaard ME, et al. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients. PLoS One. 2014;9:e107434.
Article
PubMed
PubMed Central
Google Scholar
Wave Life Sciences Press Release. Wave Life Sciences Initiates Two Phase 1b/2a Clinical Trials: PRECISION-HD1 and PRECISION-HD2 in Patients with Huntington’s Disease. 2017. http://ir.wavelifesciences.com/phoenix.zhtml?c=254233&p=irol-newsArticle&ID=2286672.
Smith RA, Miller TM, Yamanaka K, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. 2006;116:2290–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winer L, Srinivasan D, Chun S, et al. SOD1 in cerebral spinal fluid as a pharmacodynamic marker for antisense oligonucleotide therapy. JAMA Neurol. 2013;70:201–7.
Article
PubMed
Google Scholar
Single and Multiple Dose Study of BIIB067 in Adults with Amyotrophic Lateral Sclerosis (ALS). NCT02623699. Clinical Trials.gov. 2015.
Spark Therapeutics Press Release. Spark Unveils Vision of Having 10 Clinical-Stage Gene Therapy Programs by 2018, Including One Commercial and Two in Pivotal Trials. 2016. http://ir.sparktx.com/phoenix.zhtml?c=253900&p=irol-newsArticle&ID=2128384.
Biogen Press Release. New Data Show SPINRAZA™ (nusinersen) Significantly Reduces Risk of Death or Permanent Ventilation in Infantile-Onset Spinal Muscular Atrophy. 2017. http://media.biogen.com/press-release/rare-and-genetic-diseases/new-data-show-spinraza-nusinersen-significantly-reduces-risk.
U.S. Food and Drug Administration (FDA) Press Release. FDA approves first drug for spinal muscular atrophy. 2016. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm534611.htm. Accessed 23 Dec 2016.
O'Kelly F, Marignol L, Meunier A, Lynch TH, Perry AS, Hollywood D. MicroRNAs as putative mediators of treatment response in prostate cancer. Nat Rev Urol. 2012;9:397–407.
Article
PubMed
Google Scholar