# Table 1 Graph measures as calculated for each subject

Name   Formula Reference
degree   = mean(W) (all links of a single node)
Average clustering coefficient Cw Cw = mean(C) [38]
$${C}_i = \frac{\underset{l\ne k}{{\displaystyle {\sum}_{k\ne i}}{\displaystyle {\sum}_{l\ne i}}{W}_{ik}{W}_{il}{W}_{kl}}}{\underset{i\ne k}{{\displaystyle {\sum}_{k\ne i}}{\displaystyle {\sum}_{l\ne i}}{W}_{ik}{W}_{il}}}$$
Normalized clustering coefficient Gamma Cw / Cr [49]
(Cr = average of 50 randomized input matrices)
Average path length Lw $$L = \raisebox{1ex}{1}\!\left/ \!\raisebox{-1ex}{W}\right.$$ [38]
L = ∞ (if W = 0)
$$Lw = \frac{1}{\frac{1}{N\left(N-1\right)}*\ {\displaystyle {\sum}_{i=1}^N}{\displaystyle {\sum}_{j\ne i}^N}\left(1/{L}_{ij}\right)}$$
Normalized average path length Lambda Lw / Lr [49]
(Lr = average of 50 randomized matrices)
Degree correlation Rw Rw = Pearson correlation of degrees of pairs of neighbors [50]
Degree diversity Kw $$Kw=\frac{\left\langle degre{e}^2\right\rangle }{\left\langle degre e\right\rangle }$$ [44]