Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K: Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proceedings of the National Academy of Sciences of the United States of America. 1985, 82: 4245-4249. 10.1073/pnas.82.12.4245.
PubMed Central
CAS
PubMed
Google Scholar
Glenner GG, Wong CW: Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications. 1984, 120: 885-890. 10.1016/S0006-291X(84)80190-4.
CAS
PubMed
Google Scholar
Lee V, Balin B, Otvos L, Trojanowski J: A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science. 1991, 251: 675-678. 10.1126/science.1899488.
CAS
PubMed
Google Scholar
Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai L-H: Amyloid-Independent Mechanisms in Alzheimer's Disease Pathogenesis. The Journal of Neuroscience. 2010, 30: 14946-14954. 10.1523/JNEUROSCI.4305-10.2010.
PubMed Central
CAS
PubMed
Google Scholar
Herskowitz JH, Seyfried NT, Gearing M, Kahn RA, Peng J, Levey AI, Lah JJ: Rho Kinase II Phosphorylation of the Lipoprotein Receptor LR11/SORLA Alters Amyloid-β Production. Journal of Biological Chemistry. 2011, 286: 6117-6127. 10.1074/jbc.M110.167239.
PubMed Central
CAS
PubMed
Google Scholar
Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L: Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. The Lancet Neurology. 2006, 5: 228-234. 10.1016/S1474-4422(06)70355-6.
CAS
PubMed
Google Scholar
Blennow K, Hampel H: CSF markers for incipient Alzheimer's disease. The Lancet Neurology. 2003, 2: 605-613. 10.1016/S1474-4422(03)00530-1.
CAS
PubMed
Google Scholar
Kamath S, Blann AD, Lip GYH: Platelet activation: assessment and quantification. European Heart Journal. 2001, 22: 1561-1571. 10.1053/euhj.2000.2515.
CAS
PubMed
Google Scholar
Cardigan R, Turner C, Harrison P: Current methods of assessing platelet function: relevance to transfusion medicine. Vox Sanguinis. 2005, 88: 153-163. 10.1111/j.1423-0410.2005.00618.x.
CAS
PubMed
Google Scholar
Qureshi AH, Chaoji V, Maiguel D, Faridi MH, Barth CJ, Salem SM, Singhal M, Stoub D, Krastins B, Ogihara M, Zaki MJ, Gupta V: Proteomic and Phospho-Proteomic Profile of Human Platelets in Basal, Resting State: Insights into Integrin Signaling. PLoS One. 2009, 4: e7627-10.1371/journal.pone.0007627.
PubMed Central
PubMed
Google Scholar
Gawaz M, Langer H, May AE: Platelets in inflammation and atherogenesis. The Journal of Clinical Investigation. 2005, 115: 3378-3384. 10.1172/JCI27196.
PubMed Central
CAS
PubMed
Google Scholar
Kaneez FS, Saeed SA: Investigating GABA and its function in platelets as compared to neurons. Platelets. 2009, 20: 328-333. 10.1080/09537100903047752.
CAS
PubMed
Google Scholar
Fatima Shad K, Saeed S: The metabolism of serotonin in neuronal cells in culture and platelets. Experimental Brain Research. 2007, 183: 411-416. 10.1007/s00221-007-1133-7.
CAS
Google Scholar
Walther DJ, Peter J-U, Winter S, Höltje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M: Serotonylation of Small GTPases Is a Signal Transduction Pathway that Triggers Platelet ±-Granule Release. Cell. 2003, 115: 851-862. 10.1016/S0092-8674(03)01014-6.
CAS
PubMed
Google Scholar
Bush AI, Martins RN, Rumble B, Moir R, Fuller S, Milward E, Currie J, Ames D, Weidemann A, Fischer P: The amyloid precursor protein of Alzheimer's disease is released by human platelets. Journal of Biological Chemistry. 1990, 265: 15977-15983.
CAS
PubMed
Google Scholar
JAREMO P, MILOVANOVIC M, BULLER C, NILSSON S, WINBLAD B: Low-density platelet populations demonstrate low in vivo activity in sporadic Alzheimer disease. Platelets. 2012, 23: 116-120. 10.3109/09537104.2011.593654.
CAS
PubMed
Google Scholar
Vignini A, Sartini D, Morganti S, Nanetti L, Luzzi S, Provinciali L, Mazzanti L, Emanuelli M: Platelet amyloid precursor protein isoform expression in Alzheimer's disease: evidence for peripheral marker. Int J Immunopathol Pharmacol. 2011, 24: 529-534.
CAS
PubMed
Google Scholar
Tang K, Hynan LS, Baskin F, Rosenberg RN: Platelet amyloid precursor protein processing: A bio-marker for Alzheimer's disease. Journal of the neurological sciences. 2006, 240: 53-58. 10.1016/j.jns.2005.09.002.
PubMed Central
CAS
PubMed
Google Scholar
Stellos K, Panagiota V, Kogel A, Leyhe T, Gawaz M, Laske C: Predictive value of platelet activation for the rate of cognitive decline in Alzheimer/'s disease patients. J Cereb Blood Flow Metab. 2010, 30: 1817-1820. 10.1038/jcbfm.2010.140.
PubMed Central
CAS
PubMed
Google Scholar
Prodan CI, Ross ED, Stoner JA, Cowan LD, Vincent AS, Dale GL: Coated-platelet levels and progression from mild cognitive impairment to Alzheimer disease. Neurology. 2011, 76: 247-252. 10.1212/WNL.0b013e3182074bd2.
PubMed Central
CAS
PubMed
Google Scholar
Ciabattoni G, Porreca E, Di Febbo C, Di Iorio A, Paganelli R, Bucciarelli T, Pescara L, Del Re L, Giusti C, Falco A, Sau A, Patrono C, Davì G: Determinants of platelet activation in Alzheimer's disease. Neurobiology of Aging. 2007, 28: 336-342. 10.1016/j.neurobiolaging.2005.12.011.
CAS
PubMed
Google Scholar
Laske C, Leyhe T, Stransky E, Eschweiler GW, Bueltmann A, Langer H, Stellos K, Gawaz M: Association of platelet-derived soluble glycoprotein VI in plasma with Alzheimer's disease. Journal of Psychiatric Research. 2008, 42: 746-751. 10.1016/j.jpsychires.2007.07.017.
PubMed
Google Scholar
Laske C, Sopova K, Stellos K: Platelet Activation in Alzheimer's Disease: From Pathophysiology to Clinical Value. Curr Vasc Pharmacol. 2012
Google Scholar
Stellos K, Katsiki N, Tatsidou P, Bigalke B, Laske C: Association of Platelet Activation with Vascular Cognitive Impairment: Implications in Dementia Development?. Curr Vasc Pharmacol. 2012
Google Scholar
Thambisetty M, Lovestone S: Blood-based biomarkers of Alzheimer's disease: challenging but feasible. Biomark Med. 2010, 4: 65-79. 10.2217/bmm.09.84.
PubMed Central
CAS
PubMed
Google Scholar
Rifai N, Gillette MA, Carr SA: Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotech. 2006, 24: 971-983. 10.1038/nbt1235.
CAS
Google Scholar
Rowley JW, Schwertz H, Weyrich AS: Platelet mRNA: the meaning behind the message. Current opinion in hematology. 2012, 19: 385-391. 10.1097/MOH.0b013e328357010e.
PubMed Central
CAS
PubMed
Google Scholar
Plé H, Maltais M, Corduan A, Rousseau G, Madore F, Provost P: Alteration of the platelet transcriptome in chronic kidney disease. Thrombosis and haemostasis. 2012, 108: 605-10.1160/TH12-03-0153.
PubMed Central
PubMed
Google Scholar
Lewandrowski U, Wortelkamp S, Lohrig K, Zahedi RP, Wolters DA, Walter U, Sickmann A: Platelet membrane proteomics: a novel repository for functional research. Blood. 2009, 114: e10-e19. 10.1182/blood-2009-02-203828.
CAS
PubMed
Google Scholar
Moebius J, Zahedi RP, Lewandrowski U, Berger C, Walter U, Sickmann A: The Human Platelet Membrane Proteome Reveals Several New Potential Membrane Proteins. Molecular & Cellular Proteomics. 2005, 4: 1754-1761. 10.1074/mcp.M500209-MCP200.
CAS
Google Scholar
Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG: Comparison of Label-free Methods for Quantifying Human Proteins by Shotgun Proteomics. Molecular & Cellular Proteomics. 2005, 4: 1487-1502. 10.1074/mcp.M500084-MCP200.
CAS
Google Scholar
Vischer UM, Wollheim CB: Purine Nucleotides Induce Regulated Secretion of von Willebrand Factor: Involvement of Cytosolic Ca2+ and Cyclic Adenosine Monophosphate-Dependent Signaling in Endothelial Exocytosis. Blood. 1998, 91: 118-127.
CAS
PubMed
Google Scholar
Seyfried NT, Huysentruyt LC, Atwood JA, Xia Q, Seyfried TN, Orlando R: Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach. Cancer Lett. 2008, 263: 243-252. 10.1016/j.canlet.2008.01.007.
PubMed Central
CAS
PubMed
Google Scholar
Donovan LE, Higginbotham L, Dammer EB, Gearing M, Rees HD, Xia Q, Duong DM, Seyfried NT, Lah JJ, Levey AI: Analysis of a membrane-enriched proteome from postmortem human brain tissue in Alzheimer's disease. PROTEOMICS-Clinical Applications. 2012, 6: 201-211. 10.1002/prca.201100068.
PubMed Central
CAS
PubMed
Google Scholar
Xu P, Duong DM, Peng J: Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res. 2009, 8: 3944-3950. 10.1021/pr900251d.
PubMed Central
CAS
PubMed
Google Scholar
Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP: Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res. 2003, 2: 43-50. 10.1021/pr025556v.
CAS
PubMed
Google Scholar
Seyfried NT, Xu P, Duong DM, Cheng D, Hanfelt J, Peng J: Systematic approach for validating the ubiquitinated proteome. Anal Chem. 2008, 80: 4161-4169. 10.1021/ac702516a.
PubMed Central
CAS
PubMed
Google Scholar
Gozal YM, Duong DM, Gearing M, Cheng D, Hanfelt J, Funderburk C, Peng J, Lah J, Levey A: Proteomics analysis reveals novel components in the detergent-insoluble subproteome in Alzheimers disease. Journal of Proteome Research. 2009
Google Scholar
Zhou J-Y, Hanfelt J, Peng J: Clinical proteomics in neurodegenerative diseases. PROTEOMICS-Clinical Applications. 2007, 1: 1342-1350. 10.1002/prca.200700378.
CAS
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols. 2008, 4: 44-57. 10.1038/nprot.2008.211.
Google Scholar
White JG, Gerrard JM: Recent advances in platelet structural physiology. Supplementum ad Thrombosis and haemostasis. 1978, 63: 49-60.
CAS
PubMed
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL: Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001, 305: 567-580. 10.1006/jmbi.2000.4315.
CAS
PubMed
Google Scholar
Kim SI, Voshol H, van Oostrum J, Hastings TG, Cascio M, Glucksman MJ: Neuroproteomics: expression profiling of the brain's proteomes in health and disease. Neurochem Res. 2004, 29: 1317-1331.
CAS
PubMed
Google Scholar
Thambisetty M, Simmons A, Hye A, Campbell J, Westman E, Zhang Y, Wahlund L-O, Kinsey A, Causevic M, Killick R, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Spenger C, Lovestone S, the AddNeuroMed consortium: Plasma Biomarkers of Brain Atrophy in Alzheimer's Disease. PLoS One. 2011, 6: e28527-10.1371/journal.pone.0028527.
PubMed Central
CAS
PubMed
Google Scholar
Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, Perrin RJ, Bales KR, Soares H, Fagan AM, Holtzman DM: Multiplexed Immunoassay Panel Identifies Novel CSF Biomarkers for Alzheimer's Disease Diagnosis and Prognosis. PLoS One. 2011, 6: e18850-10.1371/journal.pone.0018850.
PubMed Central
CAS
PubMed
Google Scholar
Ryu JK, McLarnon JG: A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer's disease brain. Journal of Cellular and Molecular Medicine. 2009, 13: 2911-2925. 10.1111/j.1582-4934.2008.00434.x.
PubMed Central
CAS
PubMed
Google Scholar
Herczenik E, Bouma B, Korporaal SJA, Strangi R, Zeng Q, Gros P, Van Eck M, Van Berkel TJC, Gebbink MFBG, Akkerman J-WN: Activation of Human Platelets by Misfolded Proteins. Arteriosclerosis, Thrombosis, and Vascular Biology. 2007, 27: 1657-1665. 10.1161/ATVBAHA.107.143479.
CAS
PubMed
Google Scholar
Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D, Bhuvanendran S, Fenz KM, Strickland S: Fibrinogen and 2-Amyloid Association Alters Thrombosis and Fibrinolysis: A Possible Contributing Factor to Alzheimer's Disease. Neuron. 2010, 66: 695-709. 10.1016/j.neuron.2010.05.014.
PubMed Central
CAS
PubMed
Google Scholar
Berger G, Masse J, Cramer E: Alpha-granule membrane mirrors the platelet plasma membrane and contains the glycoproteins Ib, IX, and V. Blood. 1996, 87: 1385-1395.
CAS
PubMed
Google Scholar
Meyer SC, Fox JEB: Interaction of Platelet Glycoprotein V with Glycoprotein Ib-IX Regulates Expression of the Glycoproteins and Binding of von Willebrand Factor to Glycoprotein Ib-IX in Transfected Cells. Journal of Biological Chemistry. 1995, 270: 14693-14699. 10.1074/jbc.270.24.14693.
CAS
PubMed
Google Scholar
Luo S-Z, Mo X, Afshar-Kharghan V, Srinivasan S, López JA, Li R: Glycoprotein Ibα forms disulfide bonds with 2 glycoprotein Ibβ subunits in the resting platelet. Blood. 2007, 109: 603-609. 10.1182/blood-2006-05-024091.
PubMed Central
CAS
PubMed
Google Scholar
Jahroudi N, Schmaier A, Srikanth S, Mahdi F, Lutka FA, Bowser R: Von Willebrand factor promoter targets the expression of amyloid β protein precursor to brain vascular endothelial cells of transgenic mice. Journal of Alzheimer's Disease. 2003, 5: 149-158.
CAS
PubMed
Google Scholar
Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA: Thrombospondins Are Astrocyte-Secreted Proteins that Promote CNS Synaptogenesis. Cell. 2005, 120: 421-433. 10.1016/j.cell.2004.12.020.
CAS
PubMed
Google Scholar
Roberts W, Magwenzi S, Aburima A, Naseem KM: Thrombospondin-1 induces platelet activation through CD36-dependent inhibition of the cAMP/protein kinase A signaling cascade. Blood. 2010, 116: 4297-4306. 10.1182/blood-2010-01-265561.
CAS
PubMed
Google Scholar
Isenberg JS, Wink DA, Roberts DD: Thrombospondin-1 antagonizes nitric oxide-stimulated vascular smooth muscle cell responses. Cardiovascular Research. 2006, 71: 785-793. 10.1016/j.cardiores.2006.05.024.
CAS
PubMed
Google Scholar
Isenberg JS, Romeo MJ, Yu C, Yu CK, Nghiem K, Monsale J, Rick ME, Wink DA, Frazier WA, Roberts DD: Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood. 2008, 111: 613-623. 10.1182/blood-2007-06-098392.
PubMed Central
CAS
PubMed
Google Scholar
Buee L, Hof PR, Roberts DD, Delacourte A, Morrison JH, Fillit HM: Immunohistochemical Identification of Thrombospondin in Normal Human Brain and in Alzheimer's Disease. American Journal of Pathology. 1992, 141: 783-788.
PubMed Central
CAS
PubMed
Google Scholar
Horn M, Bertling A, Brodde MF, MÜLler A, Roth J, Van Aken H, Jurk K, Heilmann C, Peters G, Kehrel BE: Human neutrophil alpha-defensins induce formation of fibrinogen and thrombospondin-1 amyloid-like structures and activate platelets via glycoprotein IIb/IIIa. Journal of Thrombosis and Haemostasis. 2012, 10: 647-661. 10.1111/j.1538-7836.2012.04640.x.
CAS
PubMed
Google Scholar
Traut M, Haufe CC, Eismann U, Deppisch RM, Stein G, Wolf G: Increased Binding of Beta-2-Microglobulin to Blood Cells in Dialysis Patients Treated with High-Flux Dialyzers Compared with Low-Flux Membranes Contributed to Reduced Beta-2-Microglobulin Concentrations. Blood Purification. 2007, 25: 432-440. 10.1159/000110069.
CAS
PubMed
Google Scholar
Zhang J, Sokal I, Peskind ER, Quinn JF, Jankovic J, Kenney C, Chung KA, Millard SP, Nutt JG, Montine TJ: CSF Multianalyte Profile Distinguishes Alzheimer and Parkinson Diseases. American Journal of Clinical Pathology. 2008, 129: 526-529. 10.1309/W01Y0B808EMEH12L.
PubMed Central
CAS
PubMed
Google Scholar
Carrette O, Demalte I, Scherl A, Yalkinoglu O, Corthals G, Burkhard P, Hochstrasser DF, Sanchez J-C: A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer's disease. Proteomics. 2003, 3: 1486-1494. 10.1002/pmic.200300470.
CAS
PubMed
Google Scholar
Chauhan VPS, Ray I, Chauhan A, Wisniewski HM: Binding of Gelsolin, a Secretory Protein, to Amyloid β-Protein. Biochemical and Biophysical Research Communications. 1999, 258: 241-246. 10.1006/bbrc.1999.0623.
CAS
PubMed
Google Scholar
Baumann MH, Kallijärvi J, Lankinen H, Soto C, Haltia M: Apolipoprotein E includes a binding site which is recognized by several amyloidogenic polypeptides. Biochemical Journal. 2000, 349: 77-84. 10.1042/0264-6021:3490077.
PubMed Central
CAS
PubMed
Google Scholar
Güntert A, Campbell J, Saleem M, O'Brien DP, Thompson AJ, Byers HL, Ward MA, Lovestone S: Plasma Gelsolin is Decreased and Correlates with Rate of Decline in Alzheimer's Disease. Journal of Alzheimer's Disease. 2010, 21: 585-596.
PubMed
Google Scholar
Bucki R, Levental I, Kulakowska A, Janmey PA: Plasma gelsolin: function, prognostic value, and potential therapeutic use. Current Protein & Peptide Science. 2008, 9: 541-551. 10.2174/138920308786733912.
CAS
Google Scholar
Fiala M, Mahanian M, Rosenthal M, Mizwicki MT, Tse E, Cho T, Sayre J, Weitzman R, Porter V: MGAT3 mRNA: A Biomarker for Prognosis and Therapy of Alzheimer's Disease by Vitamin D and Curcuminoids. Journal of Alzheimer's Disease. 2011, 25: 135-144.
CAS
PubMed
Google Scholar
Meda SA, Narayanan B, Liu J, Perrone-Bizzozero NI, Stevens MC, Calhoun VD, Glahn DC, Shen L, Risacher SL, Saykin AJ, Pearlson GD: A large scale multivariate parallel ICA method reveals novel imaging-genetic relationships for Alzheimer's disease in the ADNI cohort. Neuroimage. 2012, 60: 1608-1621. 10.1016/j.neuroimage.2011.12.076.
PubMed Central
PubMed
Google Scholar
Grimm MOW, Kuchenbecker J, Rothhaar TL, Grösgen S, Hundsdörfer B, Burg VK, Friess P, Müller U, Grimm HS, Riemenschneider M, Hartmann T: Plasmalogen synthesis is regulated via alkyl-dihydroxyacetonephosphate-synthase by amyloid precursor protein processing and is affected in Alzheimer's disease. Journal of Neurochemistry. 2011, 116: 916-925. 10.1111/j.1471-4159.2010.07070.x.
CAS
PubMed
Google Scholar
Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P: A Quantitative Analysis of Isoferritins in Select Regions of Aged, Parkinsonian, and Alzheimer's Diseased Brains. Journal of Neurochemistry. 1995, 65: 717-724.
CAS
PubMed
Google Scholar
Freude S, Schilbach K, Schubert M: The Role of IGF-1 Receptor and Insulin Receptor Signaling for the Pathogenesis of Alzheimer's Disease: From Model Organisms to Human Disease. Current Alzheimer Research. 2009, 6: 213-223. 10.2174/156720509788486527.
CAS
PubMed
Google Scholar
Fedrizzi L, Carafoli E: Ca2+ dysfunction in neurodegenerative disorders: Alzheimer's disease. BioFactors. 2011, 37: 189-196. 10.1002/biof.157.
CAS
PubMed
Google Scholar
Supnet C, Bezprozvanny I: Neuronal Calcium Signaling, Mitochondrial Dysfunction, and Alzheimer's Disease. Journal of Alzheimer's Disease. 2010, 20: 487-498.
Google Scholar
Treusch S, Hamamichi S, Goodman JL, Matlack KES, Chung CY, Baru V, Shulman JM, Parrado A, Bevis BJ, Valastyan JS, Han H, Lindhagen-Persson M, Reiman EM, Evans DA, Bennett DA, Olofsson A, DeJager PL, Tanzi RE, Caldwell KA, Caldwell GA, Lindquist S: Functional Links Between Aβ Toxicity, Endocytic Trafficking, and Alzheimer's Disease Risk Factors in Yeast. Science. 2011, 334: 1241-1245. 10.1126/science.1213210.
PubMed Central
CAS
PubMed
Google Scholar
Hirokawa N, Niwa S, Tanaka Y: Molecular Motors in Neurons: Transport Mechanisms and Roles in Brain Function, Development, and Disease. Neuron. 2010, 68: 610-638. 10.1016/j.neuron.2010.09.039.
CAS
PubMed
Google Scholar
Lewis TL, Mao T, Arnold DB: A Role for Myosin VI in the Localization of Axonal Proteins. PLoS Biol. 2011, 9: e1001021-10.1371/journal.pbio.1001021.
PubMed Central
CAS
PubMed
Google Scholar
Hooff GP, Wood WG, Müller WE, Eckert GP: Isoprenoids, small GTPases and Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2010, 1801: 896-905. 10.1016/j.bbalip.2010.03.014.
CAS
Google Scholar
Söderberg M, Edlund C, Alafuzoff I, Kristensson K, Dallner G: Lipid composition in different regions of the brain in Alzheimer's disease/senile dementia of Alzheimer's type. Journal of Neurochemistry. 1992, 59: 1646-1653. 10.1111/j.1471-4159.1992.tb10994.x.
PubMed
Google Scholar
Dammer EB, Na CH, Xu P, Seyfried NT, Duong DM, Cheng D, Gearing M, Rees H, Lah JJ, Levey AI, Rush J, Peng J: Polyubiquitin Linkage Profiles in Three Models of Proteolytic Stress Suggest the Etiology of Alzheimer Disease. Journal of Biological Chemistry. 2011, 286: 10457-10465. 10.1074/jbc.M110.149633.
PubMed Central
CAS
PubMed
Google Scholar
Arnaud L, Robakis NK, Figueiredo-Pereira ME: It May Take Inflammation, Phosphorylation and Ubiquitination to 'Tangle' in Alzheimer's Disease. Neurodegenerative Diseases. 2006, 3: 313-319. 10.1159/000095638.
PubMed
Google Scholar
Blurton-Jones M, LaFerla FM: Pathways by Which Aβ Facilitates Tau Pathology. Current Alzheimer Research. 2006, 3: 437-448. 10.2174/156720506779025242.
CAS
PubMed
Google Scholar
Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S-i, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M: The Membrane-Anchored MMP Inhibitor RECK Is a Key Regulator of Extracellular Matrix Integrity and Angiogenesis. Cell. 2001, 107: 789-800. 10.1016/S0092-8674(01)00597-9.
CAS
PubMed
Google Scholar
Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K, Kitaura Y, Takai S, Sasahara RM, Horimoto A, Ikawa Y, Ratzkin BJ, Arakawa T, Noda M: Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proceedings of the National Academy of Sciences. 1998, 95: 13221-13226. 10.1073/pnas.95.22.13221.
CAS
Google Scholar
Muraguchi T, Takegami Y, Ohtsuka T, Kitajima S, Chandana EPS, Omura A, Miki T, Takahashi R, Matsumoto N, Ludwig A, Noda M, Takahashi C: RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat Neurosci. 2007, 10: 838-845. 10.1038/nn1922.
CAS
PubMed
Google Scholar
Yong VW, Power C, Forsyth P, Edwards DR: Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001, 2: 502-511. 10.1038/35081571.
CAS
PubMed
Google Scholar
Ferretti MT, Cuello AC: Does a Pro-Inflammatory Process Precede Alzheimer's Disease and Mild Cognitive Impairment?. Current Alzheimer Research. 2011, 8: 164-174. 10.2174/156720511795255982.
CAS
PubMed
Google Scholar
Backstrom JR, Lim GP, Cullen MJ, Tökés ZA: Matrix Metalloproteinase-9 (MMP-9) Is Synthesized in Neurons of the Human Hippocampus and Is Capable of Degrading the Amyloid-β Peptide (1-40). The Journal of Neuroscience. 1996, 16: 7910-7919.
CAS
PubMed
Google Scholar
Zara S, Rapino M, Sozio P, Di Stefano A, Nasuti C, Cataldi A: Ibuprofen and lipoic acid codrug 1 control Alzheimer's disease progression by down-regulating protein kinase C ù-mediated metalloproteinase 2 and 9 levels in β-amyloid infused Alzheimer's disease rat model. Brain Research. 2011, 1412: 79-87.
CAS
PubMed
Google Scholar
Lim NKH, Villemagne VL, Soon CPW, Laughton KM, Rowe CC, McLean CA, Masters CL, Evin G, Li Q-X: Investigation of Matrix Metalloproteinases, MMP-2 and MMP-9, in Plasma Reveals a Decrease of MMP-2 in Alzheimer's Disease. Journal of Alzheimer's Disease. 2011, 26: 779-786.
CAS
PubMed
Google Scholar
Bein K, Simons M: Thrombospondin Type 1 Repeats Interact with Matrix Metalloproteinase 2. Journal of Biological Chemistry. 2000, 275: 32167-32173.
CAS
PubMed
Google Scholar
Thorngate FE, Raghow R, Wilcox HG, Werner CS, Heimberg M, Elam MB: Insulin promotes the biosynthesis and secretion of apolipoprotein B-48 by altering apolipoprotein B mRNA editing. Proceedings of the National Academy of Sciences. 1994, 91: 5392-5396. 10.1073/pnas.91.12.5392.
CAS
Google Scholar
Farese RV, Véniant MM, Cham CM, Flynn LM, Pierotti V, Loring JF, Traber M, Ruland S, Stokowski RS, Huszar D, Young SG: Phenotypic analysis of mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. Proceedings of the National Academy of Sciences. 1996, 93: 6393-6398. 10.1073/pnas.93.13.6393.
CAS
Google Scholar
Elam MB, von Wronski MA, Cagen L, Thorngate F, Kumar P, Heimberg M, Wilcox HG: Apolipoprotein B mRNA editing and apolipoprotein gene expression in the liver of hyperinsulinemic fatty Zucker rats: relationship to very low density lipoprotein composition. Lipids. 1999, 34: 809-816. 10.1007/s11745-999-0427-z.
CAS
PubMed
Google Scholar
Boren J, Lee I, Zhu W, Arnold K, Taylor S, Innerarity TL: Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100. The Journal of Clinical Investigation. 1998, 101: 1084-1093. 10.1172/JCI1847.
PubMed Central
CAS
PubMed
Google Scholar
Fishel MA, Watson GS, Montine TJ, Wang Q, Green PS, Kulstad JJ, Cook DG, Peskind ER, Baker LD, Goldgaber D, Nie W, Asthana S, Plymate SR, Schwartz MW, Craft S: Hyperinsulinemia provokes synchronous increases in central inflammation and β-amyloid in normal adults. Arch Neurol. 2005, 62: 1539-1544. 10.1001/archneur.62.10.noc50112.
PubMed
Google Scholar
Tan ZS, Beiser AS, Fox CS, Au R, Himali JJ, Debette S, DeCarli C, Vasan RS, Wolf PA, Seshadri S: Association of Metabolic Dysregulation With Volumetric Brain Magnetic Resonance Imaging and Cognitive Markers of Subclinical Brain Aging in Middle-Aged Adults. Diabetes Care. 2011, 34: 1766-1770. 10.2337/dc11-0308.
PubMed Central
PubMed
Google Scholar
Muraishi A, Capuzzi DM, Tuszynski GP: Binding of Thrombospondin to Human Plasma Lipoproteins. Biochemical and Biophysical Research Communications. 1993, 193: 1145-1151. 10.1006/bbrc.1993.1745.
CAS
PubMed
Google Scholar
Takechi R, Galloway S, Pallebage-Gamarallage MMS, Mamo JCL: Chylomicron amyloid-beta in the aetiology of Alzheimer's disease. Atherosclerosis Supplements. 2008, 9: 19-25.
CAS
PubMed
Google Scholar
Orth M, Luley C, Wieland H: Effects of VLDL, chylomicrons, and chylomicron remnants on platelet aggregability. Thrombosis Research. 1995, 79: 297-305. 10.1016/0049-3848(95)00116-9.
CAS
PubMed
Google Scholar
Xu N, Ohlin AK, Nilsson A: Chylomicron-induced prothrombin activation and platelet aggregation. Arteriosclerosis, Thrombosis, and Vascular Biology. 1994, 14: 1014-1020. 10.1161/01.ATV.14.6.1014.
CAS
Google Scholar
Chen M, Inestrosa NC, Ross GS, Fernandez HL: Platelets are the primary source of amyloid β-peptide in human blood. Biochemical and Biophysical Research Communications. 1995, 213: 96-103. 10.1006/bbrc.1995.2103.
CAS
PubMed
Google Scholar
van Nostrand WE, Schmaier AH, Farrow JS, Cunningham DD: Protease nexin-II (amyloid beta-protein precursor): a platelet alpha-granule protein. Science. 1990, 248: 745-748. 10.1126/science.2110384.
CAS
PubMed
Google Scholar
Järemo P, Milovanovic M, Buller C, Nilsson S, Winblad B: Low-density platelet populations demonstrate low in vivo activity in sporadic Alzheimer disease. Platelets. 2012, 23: 116-120. 10.3109/09537104.2011.593654.
PubMed
Google Scholar
Casserly I, Topol EJ: Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. The Lancet. 2004, 363: 1139-1146. 10.1016/S0140-6736(04)15900-X.
CAS
Google Scholar
Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K: Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med. 2003, 9: 61-67.
CAS
PubMed
Google Scholar
Helzner EP, Luchsinger JA, Scarmeas N, Consentino S, Brickman AM, Glymour MM, Stern Y: Contribution of vascular risk factors to the progression in alzheimer disease. Archives of Neurology. 2009, 66: 343-348. 10.1001/archneur.66.3.343.
PubMed Central
PubMed
Google Scholar
Roselli F, Tartaglione B, Federico F, Lepore V, Defazio G, Livrea P: Rate of MMSE score change in Alzheimer's disease: Influence of education and vascular risk factors. Clinical Neurology and Neurosurgery. 2009, 111: 327-330. 10.1016/j.clineuro.2008.10.006.
PubMed
Google Scholar
van der Meijden PE, Heemskerk JW: Platelet protein shake as playmaker. Blood. 2012, 120: 2931-2932. 10.1182/blood-2012-08-450080.
CAS
PubMed
Google Scholar
Snel B, Lehmann G, Bork P, Huynen MA: STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Research. 2000, 28: 3442-3444. 10.1093/nar/28.18.3442.
PubMed Central
CAS
PubMed
Google Scholar