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Abstract 

Background:  Neuronal hyperexcitability and inhibitory interneuron dysfunction are frequently observed in preclini-
cal animal models of Alzheimer’s disease (AD). This study investigates whether these microscale abnormalities explain 
characteristic large-scale magnetoencephalography (MEG) activity in human early-stage AD patients.

Methods:  To simulate spontaneous electrophysiological activity, we used a whole-brain computational network 
model comprised of 78 neural masses coupled according to human structural brain topology. We modified relevant 
model parameters to simulate six literature-based cellular scenarios of AD and compare them to one healthy and six 
contrast (non-AD-like) scenarios. The parameters include excitability, postsynaptic potentials, and coupling strength 
of excitatory and inhibitory neuronal populations. Whole-brain spike density and spectral power analyses of the 
simulated data reveal mechanisms of neuronal hyperactivity that lead to oscillatory changes similar to those observed 
in MEG data of 18 human prodromal AD patients compared to 18 age-matched subjects with subjective cognitive 
decline.

Results:  All but one of the AD-like scenarios showed higher spike density levels, and all but one of these scenarios 
had a lower peak frequency, higher spectral power in slower (theta, 4–8Hz) frequencies, and greater total power. 
Non-AD-like scenarios showed opposite patterns mainly, including reduced spike density and faster oscillatory activ-
ity. Human AD patients showed oscillatory slowing (i.e., higher relative power in the theta band mainly), a trend for 
lower peak frequency and higher total power compared to controls. Combining model and human data, the findings 
indicate that neuronal hyperactivity can lead to oscillatory slowing, likely due to hyperexcitation (by hyperexcitability 
of pyramidal neurons or greater long-range excitatory coupling) and/or disinhibition (by reduced excitability of inhibi-
tory interneurons or weaker local inhibitory coupling strength) in early AD.

Conclusions:  Using a computational brain network model, we link findings from different scales and models and 
support the hypothesis of early-stage neuronal hyperactivity underlying E/I imbalance and whole-brain network 
dysfunction in prodromal AD.
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Background
Evidence for neuronal hyperactivity and network hyper-
excitability in the early trajectory of Alzheimer’s dis-
ease (AD), as well as its role in memory dysfunction, is 
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accumulating from multiple lines of study [9–11, 16, 
20, 58, 64, 92, 98, 99]. In AD animal models, in vivo cal-
cium imaging have revealed hyperactive neurons in the 
hippocampus even before substantial amyloid-β plaque 
load [9, 10], and electroencephalography (EEG) record-
ings have showed cortical and hippocampal epileptiform 
spikes [53, 58]. In humans, functional magnetic reso-
nance imaging (fMRI) studies provided support for the 
early stage neuronal hyperactivity hypothesis, showing 
task-based hyperactivation of the default mode network 
and hippocampus in asymptomatic and mildly impaired 
AD subjects [43, 64, 65]. Hippocampal hyperactiva-
tion and cognitive deficits in amnestic mild cognitively 
impaired (MCI) patients could be partially rescued by 
levetiracetam treatment [4, 5]. Though fMRI indicates 
a relative change in oxygenated blood levels and is not 
directly measuring neuronal activity, EEG or magnetoen-
cephalography (MEG) recordings capture neuronal activ-
ity directly (on a group level). EEG/MEG studies have 
provided additional support for an early stage hyperexcit-
able network in AD, by showing that humans at risk of 
developing AD dementia also have a higher risk of EEG 
activity patterns associated with epilepsy [26, 40, 93, 
95]. It remains uncertain, however, how microscale neu-
ronal hyperactivity (defined in this study as higher abso-
lute spike density of the excitatory pyramidal neurons) 
translates into macroscale features as determined with 
noninvasive and direct measures of neuronal network 
activity such as EEG or MEG. Understanding how micro-
scale neuronal hyperactivity is observed from large-scale 
electromagnetic signals is of significant importance as 
it allows early detection of AD-related neuronal dys-
function and is a potential therapeutic target: restoring 

neuronal imbalance may prevent irreversible neuronal 
degeneration, network disconnection, and cognitive 
decline [70].

EEG/MEG renders a unique opportunity to assess how 
excitation-inhibition (E/I) balance, i.e., the ratio of excita-
tory and inhibitory neuronal firing rates in a network, is 
perturbed in disease. It captures the electromagnetic field 
produced by continuously changing synaptic currents in 
many postsynaptic pyramidal neurons with regular ori-
entation perpendicular to the cortical surface and, by 
source modeling, MEG even allows detection of synaptic 
activity in the deeper, subcortical, brain regions includ-
ing the hippocampus [3, 25]. Synaptic dysfunction and 
E/I imbalance in smaller assemblies of interconnected 
neurons may cause abnormal network activity (i.e., larger 
interconnected circuits involving different brain regions) 
and influences the shape and behavior of neural oscilla-
tions important for cognitive function [12, 81]. Although 
EEG/MEG signals, in theory, hold information about 
desynchronized neuronal activity and E/I imbalance, the 
translation of local neuronal firing to whole-brain activity 
introduces a major increase in complexity and requires 
additional research.

A robust macroscale electromagnetic finding in 
patients across the AD continuum is a gradual diffuse and 
progressive slowing of the oscillatory cortical rhythms, 
in particular higher relative theta power and lower beta 
power, followed in later stages by a decrease in alpha 
power and increase in delta power as well as a lower peak 
frequency (i.e., the dominant frequency between 4 and 
13 Hz) (Fig. 1) [17, 24, 25]. Intuitively, oscillatory slowing 
likely reflects a gradual decrease of neuronal activity due 
to, for instance, amyloid-β accumulation and subsequent 

Fig. 1  Illustration of the hypothesized course of peak frequency and neuronal activity across different stages of AD. This figure presents a working 
model based on previous results from electrophysiological studies. While the oscillatory peak frequency is progressively slowing over time, 
neuronal activity is hypothesized to follow an inverted U-shape curve across the course of AD. Please note that the group with subjective cognitive 
complaints presented here refers to subjects with confirmed amyloid pathology (by CSF or PET), in contrast to subjects with a diagnosis of 
subjective cognitive decline without amyloid pathology that are included as elderly healthy controls in this study
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neurodegeneration, although numerous studies now 
point towards the contrary. Possibly, AD progression is 
initially characterized by neuronal hyperactivity associ-
ated with amyloid-β pathology, followed by hypoactivity 
and neuronal loss through excitotoxicity and pathologi-
cal tau proteins in later disease stages, and thus may fol-
low a biphasic course (Fig. 1) [8, 16, 63, 68, 75]. Several 
functional connectivity studies have examined the tem-
poral correlation in neurophysiological signals between 
distinct brain regions and provided support for this 
biphasic theory by showing hypersynchronization in the 
early stages of AD and a global disconnected network in 
more late stages [16, 48, 56, 57, 63, 75, 77]. Results from 
optogenetic stimulation studies in animal models show a 
link between specific neuronal firing rates and modula-
tion of oscillatory power and indicate a positive relation 
between inhibitory interneuron firing rate and high fre-
quency (gamma) oscillatory power, as well as between 
pyramidal cell activity and power of low-frequency 
oscillations [13, 74]. Whether such a causal relationship 
between neuronal activity and oscillatory power also 
exists in humans, and whether neuronal hyperactivity 
relates to slowing of the oscillatory activity in particular, 
has not been elucidated yet.

Ideally, a direct translation to identify the cellular 
mechanisms underlying large-scale changes in network 
activity is made by simultaneous invasive intracranial 
electrode recordings and non-invasive whole-brain 
EEG/MEG in human AD patients [49]. This type of dual 
recording is considered unethical, and, therefore, com-
putational dynamic brain network modeling is particu-
larly useful to implement AD-driven pathophysiology on 
a local level and study its effect on large-scale network 
activity. De Haan et  al. have previously simulated AD-
like network disruption with a simple rule of activity-
dependent degeneration (i.e., the cortical regions with 
the highest activity levels developed structural connec-
tivity loss) that resulted in multiple AD-like electromag-
netic network signatures including oscillatory slowing, 
higher spectral power, disruption of functional network 
topology, and hub vulnerability [16]. Interestingly, upon 
activity-dependent degeneration, the model output 
showed an initial rise in spike density of the excitatory 
neurons before a collapse [16], indicating potential early 
stage neuronal hyperactivity in AD. More recently, a 
computational network model study with AD-dependent 
local disinhibition (and thus hyperexcitation) has showed 
higher power in the theta frequency band, providing a 
possible pathophysiological mechanism of oscillatory 
slowing [80]. These findings indicate that dynamic net-
work modeling can assist in bridging scales of neuronal 
activity and our understanding of pathophysiology as 
observed in AD (Fig. 2A )[30].

What are then the cell-physiological mechanisms 
of neuronal hyperactivity that could explain aberrant 
oscillatory network activity in early AD? Although 
many studies suggest amyloid-β-induced pyrami-
dal neuron hyperexcitability [54], either indirectly by 
observing increased neuronal spiking in cortical and 
hippocampal brain regions [9–11, 68, 99] and sponta-
neous epileptiform activity in transgenic animal models 
of AD [53, 58–60, 67], or directly through electrophysi-
ological recordings in  vivo [47] and in brain slices 
derived from transgenic mice [53, 82], others showed 
impairments of inhibitory interneurons as a mecha-
nism of network hyperexcitability in AD [2]. In particu-
lar, functional impairments of fast-spiking parvalbumin 
positive interneurons [15, 38, 52, 61, 92], but also of 
somatostatin positive interneurons [71], have been 
demonstrated. In addition, amyloid-β interferes with 
the number of postsynaptic inhibitory receptors (on 
pyramidal neurons) [88] and excessively activates inhib-
itory receptors on the inhibitory neuron population 
itself, leading to disinhibition of the excitatory neurons 
[36, 66]. Furthermore, a loss of functional inhibitory 
synapses in AD has been suggested as important con-
tributor of aberrant neuronal network activity [21, 28, 
73, 83]. Finally, amyloid-β may introduce E/I imbal-
ance indirectly through blocking synaptically released 
glutamate reuptake by astrocytes [50, 99] elevating lev-
els of glutamate in the synaptic cleft and thus initially 
increasing postsynaptic excitatory currents, but ulti-
mately inducing synaptic depression and reducing the 
peak amplitudes of the excitatory currents (for review 
[96]).

In this study, we use a computational brain network 
model to examine the cell physiological basis of char-
acteristic global spectral power changes in early stages 
of AD. We evaluate the compatibility of AD-driven 
mechanisms of neuronal hyperactivity with large-scale 
oscillatory slowing (Fig.  2B). Based on studies of AD 
animal and cell models, we consider the following sce-
narios of AD-like neuronal dysfunction: pyramidal neu-
ronal hyperactivity by (intrinsic) hyperexcitability of 
pyramidal neurons (1A), disturbed glutamate homeo-
stasis simulated by increased excitatory postsynaptic 
potentials (1B), and increased long-range excitatory 
to excitatory coupling (1C). Inhibitory neuronal dys-
function by (intrinsic) inhibitory hypoexcitability (2A), 
through decreased inhibitory post-synaptic potential in 
pyramidal neurons (2B), and by decreased inhibitory to 
excitatory coupling strength (2C). By generating spec-
tral activity profiles for each scenario, we can assess 
its compatibility with empirical MEG findings of early 
stage AD patients.
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Methods
Computational modeling
The coupled neural mass model
The computational model was comprised of 78 single 
neural mass models (NMMs) that were each consid-
ered a cortical patch and represented the average activ-
ity of a large population of interconnected excitatory and 
inhibitory neurons (Fig.  2C) [51, 97]. The fluctuation of 
the average membrane potential of the main pyramidal 
neuronal populations mimicked the EEG or MEG sig-
nals. Besides the multichannel output of fluctuations in 
average membrane potentials, the model offered a direct 
readout of neuronal activity by the pulse density out-
put, i.e., the number of excitatory cells firing per unit 
time. The NMM and its parameters have been informed 
by histological and biophysical studies and have been 
originally designed to realistically simulate and explain 
complex electrophysiological dynamics in the alpha fre-
quency band observed with EEG or MEG [41, 51, 79, 
97]). In addition to physiological alpha rhythms (with 

harmonics extending to higher frequencies), the model 
has generated EEG phenomena after parameter modifi-
cation such as  seen in patients with encephalopathy or 
epilepsy [79, 89]. Of note, the model-generated output 
did not cover the entire human frequency spectrum, 
although this has been previously attempted by oth-
ers [19]. We were primarily interested in effects on the 
dominant alpha rhythm as empirical hallmark in neu-
rophysiological AD data, so we preferred the specificity 
and relative simplicity of this model. Also when Deco and 
colleagues assumed a single oscillator in their model, the 
best fit to empirical MEG data was obtained using a fun-
damental frequency in the alpha range, further justifying 
our model choice [19]. To introduce anatomical informa-
tion and long-range network activity in a healthy brain, 
we realistically coupled the neural mass models accord-
ing to a diffusion tensor imaging (DTI)-derived structural 
connectivity matrix of the human cortex [31]. Coupling 
between NMMs, if present, was always reciprocal and 
excitatory. The global coupling factor (S) determined the 

Fig. 2  AD-mediated microscale neuronal hyperactivity and its translation to large-scale EEG/MEG signals. A By using a computational brain 
network model, we can implement empirically informed AD neuronal pathology as measured by single cell patch-clamp recordings, microcircuit 
local field potentials, or calcium imaging, and investigate the effects on macroscale brain oscillations as measured by whole-brain EEG/MEG in 
human prodromal AD patients. B Schematic illustration of the different scenarios of AD-mediated changes in neuronal activity implemented in the 
model. Scenario 1: pyramidal neuronal hyperactivity by simulation of A: (intrinsically) increased excitability of excitatory neurons, or by B: increased 
excitatory postsynaptic potentials of pyramidal (and inhibitory) neurons, or by C: increased excitatory to excitatory coupling strength. Scenario 
2: inhibitory neuronal dysfunction by simulation of A: (intrinsically) decreased excitability of inhibitory neurons, or by B: decreased inhibitory 
postsynaptic potential in the excitatory population, or by C: decreased inhibitory to excitatory synaptic coupling. C Simplified presentation of the 
computational dynamic brain network model used in this study. Only two coupled neural masses are shown for simplicity. The number-letter 
combinations correspond to the different AD-like scenarios in B and their location reflects the virtual spatial location. For more details about the 
scenarios, we refer to Table 2



Page 5 of 20van Nifterick et al. Alzheimer’s Research & Therapy          (2022) 14:101 	

overall coupling strength between neural masses and was 
set as default to 1.5 to obtain a network with physiologi-
cally plausible oscillations as proposed in previous stud-
ies [16, 18]. The relevant parameters of the model are 
listed in Table 1 and based on previous work by de Haan 
et  al. [16]. The NMM has been employed extensively in 
previous studies addressing a variety of questions and 
disorders, including the study of evoked potentials, path-
ological brain rhythms, and the transition between nor-
mal and epileptic activity. We refer to these studies and 
the supplementary material for more detailed descrip-
tions about the model ([16, 62, 79, 90]).

Simulation of pathophysiology in early AD
We implemented different mechanisms of AD (‘AD-like 
scenarios’) that potentially explain oscillatory slowing in 
human AD patients. The mechanisms were based upon 
previous experimental research and implemented in the 
model through adjusting single relevant parameters of all 
NMMs, while keeping other parameters constant. Using 
the coupled neural mass model, we could not only evalu-
ate the effect of these modifications on network activity 
but also on activity of a smaller scale (i.e., pyramidal spike 
density). Besides the AD-like mechanisms, non-AD-
like ’contrast scenarios’ that involvde the exact opposite  
mechanisms  of each AD-like scenario were investigated 
to show that large-scale oscillatory slowing is not a trivial 
outcome. We compared each scenario to a ’control’ (or 

healthy) condition with ’normal’ parameter values that 
have been determined previously by others and that are 
based on biophysical and histological neuronal proper-
ties [51, 62, 78].

Taken the normal parameter values previously identi-
fied by others, we in- and decreased the parameter values 
stepwise of all the nodes in the network to generate AD-
like and non-AD-like contrast scenarios and evaluated 
the model output (S5 Fig). For the purpose of clarity, we 
showed a single representative value for each scenario, 
one by which the model generated visually evaluated 
physiological MEG-like signals with periodic oscilla-
tions and no epileptic-like activity (S1 Fig). Furthermore, 
these values were considered still physiologically relevant 
because they are close to the original value. Because the 
neural mass model is a mathematically simplified model 
of activity over a large group of neurons it allowed activ-
ity and dynamics of a neuronal population to be sum-
marized in just a couple of variables. The downside of 
this approach was that a detailed characterization of 
single neurons is lost and mapping of experimental data 
to model parameters is thus approximate. Some model 
parameters matched neuronal characteristics better than 
others and were therefore more suitable candidates to 
introduce literature-based AD-like mechanisms. The 
tested scenarios were as follows and an overview of the 
modeled AD-like changes is provided in Table 2.

Table 1  General neural mass model parameters and their descriptions

The defined values represent the values as used in default, i.e., control condition in the current study

Parameter Description Value (default)

t Sample time 0.002 s

P(t) The pulse density of an input signal to the excitatory population 550 spikes/s−1

Noise Random fluctuations around average level of P(t) 1.0

A he(t) Amplitude of the EPSP 1.6 mV

A hi(t) Amplitude of the IPSP 32 mV

a he(t) Shape parameter of EPSP 55 s−1

b he(t) Shape parameter of EPSP 605 s−1

a hi(t) Shape parameter of IPSP 27.5 s−1

b hi(t) Shape parameter of IPSP 55 s−1

g Parameter of sigmoid function that relates membrane potential to impulse density 25 s−1

q Parameter of sigmoid function that relates membrane potential to impulse density 0.34 mV−1

Vd1 Threshold potential used in the sigmoid function that relates membrane potential to impulse density for main popula-
tion of excitatory neurons

7 mV

Vd2 Threshold potential used in sigmoid function that relates membrane potential to impulse density for inhibitory neurons 7 mV

C1 Connection strength between main population of excitatory and inhibitory neurons 32

C2 Connection strength between inhibitory neurons and main population of excitatory neurons 3

S Coupling strength between neural masses (gain factor) 1.5

T Time delay for the coupling between neural masses 0.002 s

N Number of neural masses (/nodes) in network model 78
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Parameters Vd1 and Vd2 were part of a non-linear 
function that related the membrane potential to corre-
sponding pulse densities. These parameters defined the 
firing threshold potential and thus were candidate model 
parameters to integrate AD-mediated increased excit-
ability of the excitatory and decreased excitability of the 
inhibitory neuronal populations, respectively. The inhibi-
tory and excitatory postsynaptic potentials (IPSP and 
EPSP) were modelled in the impulse response functions 
he(t) and hi(t) and were suitable candidates to simulate 
AD-mediated enhanced excitatory neurotransmission 
(by disrupted glutamate homeostasis) or a reduced inhib-
itory neurotransmission (by a lower number of inhibitory 
postsynaptic receptors), respectively. The local inhibi-
tory coupling coefficient (C2) determined the interaction 
between inhibitory and excitatory neuronal populations 
within a neural mass and was a good candidate to gen-
erate a model with AD-mediated reduction in inhibitory 
synaptic coupling strength and/or number of functional 
synaptic contacts to pyramidal neurons. The global cou-
pling factor S multiplied the excitatory output (i.e., spike 
density) of one neural mass before it reached another 
neural mass (if coupled) and allowed simulation of an 
AD-mediated long-range increase of excitatory activity 
to other coupled excitatory neuronal populations.

Scenario 1: pyramidal neuronal hyperactivity 

1A: (Intrinsic) pyramidal neuronal hyperexcitability. 
Different pyramidal neuronal excitability levels were 
obtained by adjusting the excitatory neuron firing 
threshold parameter Vd1(t). In the “healthy” or con-
trol condition, the threshold value for the excitatory 
(Vd1) neuronal populations had a value of 7 and this 
was altered to the value 6, meaning that the thresh-
old was lower and we thus simulated a network with 
AD-like pyramidal neuronal hyperexcitability. The 
pyramidal neuron threshold potential was set to 8 to 
generate a contrast scenario with pyramidal neuronal 
hypoexcitability.

To test the effect of AD-like increased extracellular glu-
tamate levels and thus a scenario with higher excitatory 
neurotransmission, we studied the effect of two different 
model parameters (scenario 1B and 1C).

1B: Increased excitatory postsynaptic potential. To 
simulate the effect of increased extracellular glu-
tamate levels, we changed the EPSP curve that was 
modeled as the impulse response function he(t) with 
parameters a1 and b1 (S2 Fig). Although increased 
neurotransmitter concentration is physiologically 

translated to higher EPSP frequencies in the post-
synapse and not higher amplitude or duration, in 
this model, we regarded increased EPSP amplitude 
as synchronous EPSPs and thus a summation of 
multiple EPSPs. In control condition, a1 had a value 
of 55 and b1 of 605 s−1 that were set to 48 and 540 
s−1 for AD-like increased EPSP amplitude and dura-
tion respectively (Table 2). Important to note here is 
that when we changed the EPSP curve, this not only 
affected the pyramidal (excitatory) neuronal popu-
lation but also the inhibitory neuronal population, 
because both excitatory and inhibitory populations 
received excitatory input in the model. Changing 
the EPSP curve thus influenced both excitatory and 
inhibitory activity. The excitatory impulse response 
function he(t) parameters a1 and b1 received a value 
of 42 and 670 to simulate a contrast scenario with 
decreased EPSP amplitude/duration.
1C: Increased excitatory to excitatory coupling. As 
alternative scenario of increased excitatory signals 
in the circuit (due to glutamate reuptake block by 
AD pathology), we could modulate the global cou-
pling factor (S) between coupled neural masses. We 
increased the S value from 1.5 in control to a value of 
2.0 in the AD-like scenario, which led to a stronger 
multiplication of the excitatory output signal (that 
is spike density (E(t)) between the pyramidal neu-
ronal populations of two coupled neural masses and 
thus more excitatory input to the excitatory popula-
tions only). In the non-AD-like contrast scenario, 
the S parameter was set to a value of 1.0 to simulate 
reduced excitatory input towards the neural masses.

Scenario 2: Inhibitory neuronal dysfunction 

2A: (Intrinsic) inhibitory neuronal hypoexcitability. 
Similar adjustments were made as in scenario 1A but 
now for the firing threshold of the inhibitory neu-
ronal populations (parameter Vd2), i.e., the  control 
scenario had a Vd2 value of 7, the AD-like scenario of 
inhibitory hypoexcitability received a Vd2 value of 8 
(and thus a higher firing threshold), and the contrast-
scenario received a Vd2 value of 6, reflecting inhibi-
tory hyperexcitability.
2B: Decreased inhibitory post-synaptic potential. To 
simulate AD-like decreased inhibitory transmission 
and a reduced number of postsynaptic inhibitory 
receptors in the pyramidal neuronal population, we 
changed the amplitude and duration of the IPSP of 
the pyramidal population only (because the inhibi-
tory neurons did not receive inhibitory input in the 
current model). Parameters a2 and b2 of the impulse 
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response function hi(t) determined the IPSP shape 
and had a value of 27.5 and 55 s−1 in control condi-
tion (S2 Fig) and were adjusted to 40 and 70 s−1 to 
simulate AD-like reduced IPSP for a2 and b2 respec-
tively. The parameters for the IPSP received a value 
of 17.5 and 35 s−1 to simulate a contrast scenario 
with increased IPSP (S2 Fig).
2C: Decreased inhibitory synaptic coupling. To 
simulate a loss of functional inhibitory synapses 
and therefore reduced inhibitory synaptic coupling 
strength, we adjusted the local inhibitory synaptic 
coupling coefficient C2 that determined the inhibi-
tory to excitatory coupling strength. In control con-
ditions, the C2 was 3, and to simulate AD-like loss of 
inhibition this parameter received a value of 2. The 
C2 parameter was increased to 4 in the non-AD-like 
contrast scenario to mimic stronger inhibition of 
excitatory synapses.

We chose to study the effects of each parameter modi-
fication separately to understand its specific contribu-
tion. First, we explored the effects of introducing insults 
on single (uncoupled) neural mass activity (S1 Table, S3 
Fig, S4 Fig). Second, we repeated this for each scenario 
in the network model. Integrating the lesions in a single 
neural mass showed different effects than in a network of 
neural masses, indicating the unpredictability and impor-
tance of investigating AD mechanisms in a network. We 
ran simulations of MEG-like activity 50 times (except for 
the spike density analysis, which was repeated 10 times 
for each scenario), adequately capturing the variability 
of the output (see Fig. 4). The computational brain net-
work model was programmed in Java and implemented 
in the in-house developed program BrainWave (version 
0.9.152.12.26), written by C.J. Stam (latest version avail-
able for download at http://​home.​kpn.​nl/​stam7​883/​brain​
wave.​html).

Human data
Subjects
MEG data from a total of 36 participants were obtained 
from the Amsterdam Dementia Cohort of Alzheimer 
center Amsterdam (Amsterdam UMC, location VUmc). 
All subjects underwent a standardized screening includ-
ing assessment of medical history, informant-based 
history, physical and neurological examination, neu-
ropsychological evaluation, MEG, laboratory tests, MRI 
scanning, and lumbar puncture (and/or PET imaging) 
to quantify the levels of amyloid and tau in cerebral spi-
nal fluid (CSF). An interdisciplinary clinical commit-
tee established a diagnosis [91]. We included healthy 
elderly subjects without cognitive impairment and with 

negative amyloid biomarker status (by CSF or PET imag-
ing), although with a diagnosis of subjective cognitive 
decline (SCD) according to the standard diagnostic cri-
teria [1, 46], as well as age- and gender-matched patients 
diagnosed with mild cognitive impairment (MCI) with 
evidence of amyloid pathology. MCI patients received a 
(semi-)annual clinical follow-up for 3 years after the ini-
tial visit to the clinic and 67% of these patients converted 
to AD dementia after 3 years. All participants gave writ-
ten informed consent for use of their clinical data in 
future scientific research and the Amsterdam Demen-
tia Cohort received approval by the Institutional Ethics 
Review Board of the VUmc.

MEG data acquisition and analyses
In short, as part of the standardized screening protocol, 
subjects underwent a two times 5 min resting-state eyes-
closed MEG recording in a supine position in a magneti-
cally shielded room (VacuumSchmelze GmbH, Hanua, 
Germany) using a 306-channel whole-head system 
(Elekta Neurmag Oy, Helsinki, Finland). Patients were 
instructed to close their eyes and lay still, but stay awake. 
A sample frequency of 1250 Hz was used, with an online 
anti-aliasing (410 Hz) and high-pass filter (0.1 Hz). We 
applied an offline temporal extension of Signal Space Sep-
eration filter (tSSS) implemented in the MaxFilter soft-
ware (Elekta Neuromag Oy, version 2.2.10), with a sliding 
window and correlation limit of 10s and 0.9 respectively. 
Raw data were visually inspected to select bad channels 
that were manually discarded before estimation of the 
SSS coefficients. The number of excluded channels var-
ied between 1 and 12 channels. The head position rela-
tive to the MEG sensors was recorded continuously using 
the signals from four head-localization coils. Using a 3D 
digitizer (Fastrak, Polhemus, Colchester, VT, USA), we 
digitized the head-localization coil positions as well as 
the outline of the participant’s scalp (∼ 500 points). This 
scalp surface was used for co-registration with a struc-
tural (MRI) template that produced the best fit.

MEG source reconstruction
Source reconstruction was performed by an atlas-
based beamforming approach [39]. Sensor signals were 
projected to an anatomical framework by means of 
automated anatomical labeling (AAL [87]) such that 
source-reconstructed neuronal activity for 78 cortical 
regions-of-interest (ROIs [31]; and two hippocampi were 
obtained. A centroid-based approach according to Hille-
brand et al. [39] was applied to obtain representative sin-
gle time series for each ROI. The sphere that best fitted 
the scalp surface was used as a volume conductor model 
to compute the beamformer weights and an equivalent 
current dipole was used as source model. The orientation 

http://home.kpn.nl/stam7883/brainwave.html
http://home.kpn.nl/stam7883/brainwave.html
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of the dipole was chosen to maximize the beamformer 
output [72]. First, the broadband (0.5–70 Hz) normal-
ized beamformer weights for the selected voxel were 
computed [14] and subsequently the broadband (0.5–48 
Hz) time series for this voxel, i.e., a virtual electrode, was 
reconstructed (see [39] for details). The source-recon-
structed time series were converted to ASCII files and 
five artifact-free, downsampled epochs (4096 samples, 
13.2 s each) of the first 5-min MEG recording for each 
subject were used for further analysis.

Outcome measures
Similar spectral analyses have been applied to both sim-
ulated and human MEG data (Fig.  3) using BrainWave. 
Each virtual electrode or neural mass in the model net-
work was subject to Fast Fourier Transformation to 
derive a power spectrum, the relative power in commonly 
used frequency bands delta (0.5–4 Hz), theta (4–8 Hz), 
lower alpha 1 (8–10 Hz), higher alpha 2 (10–13 Hz), beta 
(13–30 Hz) and gamma (30–45 Hz), total power (abso-
lute broadband power, 0.5–48 Hz), and peak frequency 
(between 4 and 13 Hz). In this study, we focused on rela-
tive alpha 1 and alpha 2 power, with additional adjacent 
relative theta and beta power. Gamma and delta bands 
were excluded from the analysis because these bands 
are frequently contaminated by physiological artifacts in 

human data and because we were primarily interested in 
effects on the dominant alpha rhythm as empirical hall-
mark in neurophysiological AD data.

For human data, the outcome measures were averaged 
over 5 epochs per subject and 78 ROIs to obtain whole-
brain MEG characteristics prior to group statistics. Peak 
frequency was calculated for parieto-occipital regions 
only. For simulated MEG data, we obtained ‘whole-brain’ 
output by averaging over all 78 coupled neural masses for 
each iteration and subsequently averaged the outcome 
measures over all iterations per scenario. To visualize 
changes in simulated spectral peak upon AD-like insults 
irrespective of amplitude, each average power spectrum 
was normalized to a total (absolute) power of 1. Also, 
the relative power was plotted over the dominant oscil-
latory frequency range only to make changes in the oscil-
latory peak  visible. Spike density captured the neuronal 
activity of the pyramidal neuron population within the 
neural masses for each time point with a sampling time 
of 0.002 seconds and was reported as the average spike 
density over the whole brain (all 78 neural masses) for 10 
iterations.

Combining simulated and human data
This study first tested the hypothesis that AD-like neu-
ronal mechanisms increase the excitatory neuronal 

Fig. 3  Simplified illustration of data generation and analyses of simulated MEG and human MEG. A computational brain model comprised of 78 
neural masses coupled according to human DTI-derived binary structural connectivity matrix [31] was used to simulate whole-brain MEG-like 
oscillations. The simulated oscillations are derived from fluctuations in average membrane membrane potential of the excitatory neurons of each 
neural mass. We investigated the effect of different AD-driven neuronal function changes (see Fig. 2) on network oscillations and spike density 
of the pyramidal neuron populations. Fast Fourier Transformation was applied to simulated and human MEG data for spectral analysis. Human 
resting-state eyes-closed MEG was available for 18 prodromal AD patients (amyloid positive patients diagnosed with mild cognitive impairment) as 
well as 18 age- and gender-matched elderly control subjects
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activity and thus an increase in spike density compared 
to control condition and that contrast (non-AD-like) sce-
narios decrease the spike density. Second, a visual inspec-
tion of the average changes (while taking into account the 
variances) in modeled brain oscillatory power and peak 
frequency was performed. Third, based on previous (pre-)
clinical findings, the hypothesis that human prodromal 
AD patients’ MEG have a characteristic global slowing 
of oscillations, at least involving higher relative power in 
slower (theta) frequency bands, was tested. In addition, 
total (absolute broadband) power was analyzed, a poten-
tial indicator of E/I imbalance and neuronal network 
hyperexcitability. Fourth, simulated brain activity was 
compared to human data. Although one could prefer to 
fit the model to empirical data, this is a computationally 
expensive method and introduces other problems such 
as how to achieve and determine a good fit. Moreover, in 
our opinion, aiming to reach an optimal fit between mod-
eled and empirical data can be considered over-interpre-
tation of the data and goes beyond the purpose of this 
particular study, i.e., we regarded the demonstration of a 
more general(izable) link between neuronal hyperexcita-
tion and oscillatory slowing to be more convincing than 
a perfect fit in this specific dataset, also given the natural 
variability of neurophysiological data. Therefore, model 
and human MEG data was compared in a qualitative 
way on key parameters that have also been established in 
neurophysiological AD literature in the past decades [33, 
34, 69]. Finally, the findings were summarized into three 
subcategories: oscillatory behavior (that can be slower/
faster/not altered in the diseased state compared to con-
trol condition), neuronal activity (indicating whether the 
spike density levels of the excitatory neuronal popula-
tions in the model were higher/lower/not different from 
control condition), and total power (reflecting higher/
lower/similar absolute broadband power as control con-
dition). Because the model generatds mainly alpha activ-
ity we had to be careful in making conclusions about and 
to not over-interpret individual band-pass power changes 
upon AD-like neuronal dysfunction. Therefore, we visu-
ally inspected the data and provided this composite 
oscillatory behavior outcome measure that may indicate 
global oscillatory slowing even in the presence of some 
increase in the faster beta power.

Statistical analyses
Statistical software package SPSS version 25.0 for Mac 
was used for statistical analyses of human MEG data. 
Subject characteristics were compared between groups 
with independent samples t-tests. Spectral measures 
were visually checked for normal distribution using his-
tograms and were subsequently compared with inde-
pendent samples t-tests (not assuming equal variance). 

Statistical significance was determined at p < 0.05 for 
whole-brain analyses. Simulated MEG data were not sta-
tistically tested because of the following reasons: (1) as 
many simulations as needed can be computed to obtain 
good statistical power and (2) model parameter values 
could be relatively arbitrarily chosen and therefore con-
cluding whether a small change in outcome was more or 
less relevant than a large effect can be considered over 
interpretation. However, error bars and all individual 
(average) data points were included in the figures.

Results
Pyramidal neuronal hyperactivity
Scenario 1A: (Intrinsic) pyramidal neuronal hyperexcitability
Increased pyramidal neuronal excitability (i.e., hyperex-
citability) resulted in higher relative power in the theta,  
(Fig. 4A), alpha 2 and beta bands (Fig. 4C and D),  as well 
as  lower relative power in the alpha 1 band and a lower 
peak frequency (Fig. 4B and E) compared to the control 
condition. Furthermore, AD-like pyramidal neuronal 
hyperexcitability was associated with higher total power 
and spike density (Fig. 4F and G) compared to control.

In contrast, decreased excitability of the pyramidal 
neurons (i.e., hypoexcitability) resulted in higher aver-
age relative power of alpha 1 (Fig. 4B), alpha 2 and beta 
bands (Fig. 4C and D) compared to control, but did show 
a difference in relative theta power compared to con-
trol (Fig.  4A). Pyramidal neuronal hypoexcitability also 
resulted in a slower peak frequency (Fig. 4E) but this was 
associated with lower total power and reduced spike den-
sity (Fig. 4F and G) compared to control.

Scenario 1B: Increased excitatory postsynaptic potential
Prolonged EPSP caused higher relative power in the theta 
and beta frequency bands (Fig. 4A and D) and a decrease 
in alpha 1 and 2 band (Fig. 4B and C) compared to con-
trol. Furthermore, increased EPSP resulted in a lower 
peak frequency and higher total power (Fig.  4E and F) 
but a small decrease in pyramidal neuron spike density 
(Fig. 4G) compared to control.

In contrast, decreased EPSP amplitude and dura-
tion resulted in lower relative power in theta frequency 
band (Fig.  4A) and higher relative alpha 1, alpha 2 and 
beta power (Fig. 4B and C and D) compared to control. 
In addition, decreased EPSP amplitude and duration 
showed a higher peak frequency (Fig. 4E) and spike den-
sity of the pyramidal neuron population (Fig.  4G) but 
lower total power (Fig. 4F) compared to control.

Scenario 1C: Increased excitatory to excitatory coupling
An increased excitatory to excitatory coupling between 
the neural masses resulted in higher relative theta and 
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beta power (Fig.  4A and D) and lower relative alpha 1 
and alpha 2 power (Fig. 4B and C) compared to control. 
The peak frequency was also lower (Fig. 4E) and the total 
power and spike density were increased (Fig. 4F and G) 
compared to control.

In contrast, lower excitatory global coupling resulted 
in lower relative theta and beta power (Fig.  4A and 
D) and increased relative alpha 1 and alpha 2 power 
(Fig.  4B and C) compared to control. The peak fre-
quency was higher (Fig. 4E) and total power and spike 
density were decreased (Fig.  4F and G) compared to 
control.

Inhibitory neuronal dysfunction
Scenario 2A: Decreased inhibitory interneuron excitability
A decrease in excitability of the inhibitory interneurons 
(i.e., hypoexcitability) resulted in higher relative theta 
(Fig.  4A) and beta power (Fig.  4D) and lower power in 
relative alpha 1 (Fig. 4B) and alpha 2 (Fig. 4C) frequen-
cies compared to the control condition. Inhibitory 

hypoexcitability furthermore resulted in lower peak fre-
quency and higher total power (Fig. 4E and F) and spike 
density of the pyramidal population (Fig. 4G) compared 
to control condition.

Increased excitability of inhibitory interneurons 
resulted in lower relative theta and beta power (Fig. 4A 
and D) and higher relative alpha 1 (Fig. 4B) and alpha 2 
(Fig.  4C) power in comparison with control condition. 
Furthermore, the data presented a higher peak frequency 
(Fig. 4E) and decrease in total power (Fig. 4F) and pyram-
idal neuronal spike density (Fig.  4G) upon decreased 
inhibitory neuronal excitability.

Scenario 2B: Decreased inhibitory postsynaptic potential
Decreased IPSP amplitude and duration caused lower 
relative theta, alpha 1, and beta power (Fig.  4A, B, and 
D) and increased alpha 2 power (Fig.  4C) compared to 
control scenario. Furthermore, higher peak frequency 
and higher total power (Fig. 4E and F) and spike density 
(Fig.  4G) resulted from decreased IPSP in comparison 
with the control condition.

Fig. 4  Oscillatory behavior after AD-mediated neuronal dysfunctions. This figure shows the effect of simulated AD-like microscale mechanisms (in 
red) on large-scale outcome measures. The results of the healthy control scenario  are plotted in grey and the opposite, non-AD-like, mechanisms 
(contrast scenarios) are shown in blue. For each AD-like or contrast scenario, we modified a single model parameter (see Table 2) and analyzed the 
simulated MEG. A–D Relative power in four frequency bands of interest (theta (4–8 Hz), alpha 1 (8–10 Hz), alpha 2 (10–13 Hz), beta (13–30 Hz)). E 
Peak frequency shows the dominant frequency between 4 and 13 Hz. F Total (absolute broadband (0.5–48 Hz)) power. G Spike density indicates 
the spiking activity of the pyramidal neuronal populations in the network over a certain time period. Each dot represents the average (whole-brain) 
value over all 78 ROIs for 1 iteration. Number of iterations: 50, except for spike density that has been iterated 10 times. Black lines are mean and 
standard deviation (SD) values over all iterations per scenario. X-axis represent the different scenarios (see legend). Note the differences in y-axis for 
the distinct relative frequency bands; i.e., alpha 2 and beta frequencies have more than 10 times lower power values than relative alpha 1 power
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Increased amplitude and duration of the IPSP resulted 
in higher relative theta, alpha 2, and beta power (Fig. 4A, 
C, and D) and lower relative alpha 1 power (Fig.  4B) 
compared to the control condition. Also, increased IPSP 
showed a lower peak frequency (Fig. 4E) as well as lower 
total power and pyramidal neuron spike density (Fig. 4F 
and G) compared to the control scenario.

Scenario 2C: Decreased inhibitory synaptic coupling
Reduced inhibitory to excitatory coupling resulted in 
greater power in relative theta and alpha 2 frequency 
bands (Fig. 4A and C) and lower relative alpha 1 and beta 
power (Fig.  4B and D) in comparison with the control 
scenario. Subsequently, the simulated EEG signals for 
this scenario showed lower peak frequency (Fig. 4E) and 
higher total power (Fig. 4F) and spike density (Fig. 4G).

In contrast, increasing inhibitory to excitatory coupling 
caused lower relative theta and beta power (Fig. 4A and 
D) and higher alpha 1 and alpha 2 power (Fig. 4B and C). 
The peak frequency was also higher compared to control 
condition (Fig.  4E) and a lower spike density could be 
observed (Fig. 4G).

Simulated MEG power spectra
Figure  5 shows the normalized average power spectra 
for all scenarios. From this figure, one can appreciate 
that multiple scenarios had higher power in more slow 
frequencies (i.e., oscillatory slowing) whereas other sce-
narios showed the opposite pattern: an increase in power 
in the faster frequencies across the alpha 1/2 frequency 
range.

Human MEG
Table  3 shows the main characteristics of both subject 
groups. Comparing subject characteristics between 18 
amyloid-negative SCD patients (SCD−) and 18 age and 
gender-matched amyloid-positive MCI subjects (MCI+) 
(Table  3) shows that the MCI+ patients had on aver-
age significantly lower mini-mental state examination 
(MMSE) scores (p < 0.01) than SCD− subjects (Table 3).

Whole-brain MEG spectral measures are compared 
between MCI+ and SCD− subjects (Fig.  6). Independ-
ent samples t-tests for the global MEG measures showed 
that relative theta (t(34) = 3.95, p < 0.01) and relative 
alpha 1 power (t(34) = 2.13, p < 0.05) was significantly 
higher in the MCI+ group (Fig. 6A and B), whereas the 
beta power was significantly lower (t(34) = −2.04, p < 
0.05) compared to SCD− subjects (Fig. 6D). The groups 
did not differ in peak frequency or relative alpha 2 power 
(Fig.  6E and C). Total (absolute broadband) power was 
higher in MCI+ subjects compared to SCD− subjects, 

but did not reach significance (t(34) = −1.958, p = 0.060) 
(Fig.  6F). The normalized power spectra (Fig.  6G) indi-
cate relatively higher power across the theta and lower 
alpha frequencies in the MCI group compared to the 
control group, albeit with a large variability (not statisti-
cally tested).

Combining simulated and human MEG data
All of the simulated AD-like scenarios show a higher 
average spike density of the pyramidal neurons (that can-
not be measured directly in humans using MEG), except 
for scenario 1B (increased EPSPs). Oscillatory slowing, 
i.e., a shift in relative power from higher frequencies to 
lower frequencies, mainly theta power, was observed in 
MEG of MCI patients (Table 4) as well as in the major-
ity of the empirically informed AD-like scenarios (except 
for scenario 2B: decreased IPSP) compared to controls. 
Of the five AD-like scenarios with higher spike density, 
four also had slower oscillatory activity similar to human 
AD patients. Human MCI patients’ MEG data showed a 
trend towards higher total (absolute broadband) power, 
which was consistently found in all simulated brain activ-
ity of the AD-like scenarios. Across the contrast (non-
AD-like) scenarios, one scenario showed higher spike 
density compared to the control condition but this was 
not linked to oscillatory slowing or higher total power. 
One contrast scenario showed slower oscillatory behav-
ior, but this was not complemented with higher spike 
density or higher total power.

Discussion
Previous in vitro and in vivo studies in experimental mod-
els of AD revealed early increases in neuronal excitability 
and cellular firing rates associated to AD pathology [9, 10, 
38, 53, 58, 99], but direct evidence for these findings in 
human AD patients is limited and difficult to acquire [49]. 
This study used a computational dynamic brain network 
model to introduce different AD-dependent mechanisms 
of neuronal hyperactivity on a cellular level, investigated 
its effect on a physiological network level, and compared 
this with large-scale human MEG data of early-stage AD 
patients. Of the hypothesized mechanisms of AD, the 
majority indeed showed neuronal hyperactivity comple-
mented with slowing of the oscillations (i.e., an increase 
in slower frequencies, theta power mainly, and decrease in 
faster frequencies) and thus replicated human AD patients’ 
MEG. These scenarios included hyperexcitable excitatory 
neurons, hypoexcitable inhibitory interneurons, stronger 
long-range excitatory coupling, and weaker local inhibi-
tory coupling. In contrast, non-AD-like scenarios showed 
opposite effects.
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AD‑driven neuronal hyperactivity explains oscillatory 
behavior in early disease stages
The modeled AD-like scenarios were based on impor-
tant candidate mechanisms from recent AD literature 
to increase their plausibility. Previous reports provided 
evidence for altered excitability of pyramidal neurons in 
early stages of AD [11, 29, 99]. Indeed, the data showed 
that pyramidal neuronal hyperexcitability (scenario 1A) 
result in higher pyramidal spike density and lead on a 
network level to behavior that resemble aspects of the 
electrophysiological abnormalities of prodromal AD 
patients, including higher total broadband power, higher 

Fig. 5  Normalized average power spectra of simulated MEG across AD-like, healthy control and contrast scenarios. The average power spectra 
were normalized to total power  and averaged over 50 iterations. For each AD-like or contrast scenario, we modified a single model parameter 
(see Table 2), by increasing (up: shown in red) or decreasing (down: shown in blue) this parameter. Of note, interpretation of the direction (up/
down) of parameter modification is intuitively, such that ‘up’ means stronger coupling or hyperexcitability (which is actually derived by lowering the 
threshold). Control (or healthy) condition is shown in grey. Note that a different y-axis is used for scenario 2B

Table 3  Subject characteristics

Values are mean and standard deviation, unless stated otherwise. Differences 
were tested with independent samples t-tests

SCD subjective cognitive decline, MCI amnestic mild cognitive impairment with 
positive amyloid biomarkers for Alzheimer’s disease, M/F male/female, MMSE 
Mini-Mental State Examination
** p < 0.01

SCD− MCI+

N 18 18

Female/male 10/8 9/9

Age (y) 64.2 (± 6.1) 64.1 (± 6.2)

MMSE score 27.8 (± 2.1) 25.8 (± 1.9)**
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Fig. 6  Human MEG spectral analyses. Shown are median and IQR of the relative power in commonly used frequency bands (A theta (4–8 Hz), B 
lower alpha 1 (8–10 Hz), C higher alpha 2 (10–13 Hz), D beta (13–30 Hz)) as well as the E peak frequency (that represents the posterior dominant 
frequency within the 6–13 Hz band), and F total power (absolute broadband (0.5–48 Hz)) power for 18 MCI+ patients (shown in red) and 18 elderly 
controls (SCD−, shown in grey). Each dot represents the average value for each subject over 5 epochs and 80 channels. G The power spectrum is 
normalized such that the total power is 1 for each group. Shown are the mean and standard deviation per group. **p < 0.01, *p < 0.05

Table 4  Summary table of the main outcome measures for human MEG and simulated MEG

This table shows the direction of change in MEG outcome measures for human MCI and simulated early AD-like or its opposite (contrast) scenarios. Neuronal activity 
(that is spike density of pyramidal neurons) can only be assessed in model data and show an increase in AD-like scenarios mainly. Of note, the interpretation of the 
direction (up/down) of parameter modification is intuitive, such that “up” of means hyperexcitability (which is actually derived by lowering the threshold) or stronger 
coupling. N.a. not available, N.s. not significant, AD Alzheimer’s disease

Human AD AD-like scenarios Contrast scenarios

1A 1B 1C 2A 2B 2C 1A 1B 1C 2A 2B 2C

Parameter Vd1 EPSP S Vd2 IPSP C2 Vd1 EPSP S Vd2 IPSP C2

Direction up up up down down down down down down up up up

Neuronal activity n.a. Higher Lower Higher Higher Higher Higher Lower Higher Lower Lower Lower Lower

Oscillatory behavior Slower Slower Slower Slower Slower Faster Slower Faster Faster Faster Faster Slower Faster

Total power Higher (n.s.) Higher Higher Higher Higher Higher Higher Lower Lower Lower Lower Lower Lower
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relative theta power, lower relative alpha 1 power, and 
a lower peak frequency (i.e., a slowing of the dominant 
brain rhythm). Contradictory to a slower oscillatory pro-
file with reduced alpha 1 power in this and other AD-like 
scenarios, the human prodromal AD patients showed an 
increase in alpha 1 power. However, we have concluded 
that this group has slower oscillations because it shows 
increased theta and reduced beta. Also, in humans a shift 
to alpha 1 power may be a part of the oscillatory slow-
ing process because the peak generally lays in the higher 
alpha 2 band. This is in contrast to the “healthy” alpha 
peak in the alpha 1 band in simulated data, and thus a 
slowing will cause a reduction of the alpha 1 instead.

Although one computational model study linked hyper-
excitable pyramidal neurons to oscillatory slowing previ-
ously [80], it is not a trivial finding, because various other 
scenarios resulted in very different, incompatible oscil-
latory behaviors. The finding that neuronal hyperactiv-
ity in AD is likely explained by hyperexcitable pyramidal 
neurons is in line with results from human induced pluri-
potent stem cell (iPSC)-derived neurons of AD muta-
tion carriers, showing enhanced excitability compared to 
wild-type neurons [29]. When looking at the neurophysi-
ological epilepsy literature, where neuronal hyperexcit-
ability in seizures is often accompanied by pronounced 
theta activity (e.g., the “Risinger” rhythm in temporal epi-
lepsy) [84], this may reflect a similar mechanism, albeit 
with a different cause and disease course. Intriguingly, 
a low dose of the anti-epileptic drug levetiracetam has 
shown promise to reduce hyperactivity and improve cog-
nitive performance in predementia AD patients [4, 5] and 
several clinical trials testing levetiracetam treatment to 
reduce neuronal hyperexcitabilty in different populations 
of AD patients are ongoing (summarized in [85]). Fur-
ther research is required to increase our understanding 
of anti-epileptic treatment effects in human AD patients.

Neuronal hyperexcitation through disturbed gluta-
matergic homeostasis in AD has gained increasing atten-
tion in the literature [37, 99]. This was simulated in two 
ways: (1) by increasing the amplitude and duration of 
the post-synaptic excitatory impulse response (scenario 
1B) and (2) by increasing the global excitatory coupling 
strength between coupled neural masses (scenario 1C). 
Although scenario 1B generated a slowing of the oscil-
lations, similar to our prodromal AD patients, this was 
associated with a (slightly) lower spike density, rather 
than neuronal hyperactivity. This may be found because 
not only pyramidal neurons but also inhibitory interneu-
rons received increased EPSPs, which have tipped the E/I 
balance to an inhibition dominated network and reduced 
neuronal activity. The slowing of oscillations is likely a 
result of an increase in the length of the postsynaptic cur-
rents. Interestingly, when testing a stronger increase in 

EPSPs, spike density didincrease and led to a global slow-
ing although with a very strong increase in total power, 
suggesting that a scenario of strongly increased EPSP is 
not very likely a phenomena of early stage AD (that only 
showed a trend towards higher total power). In contrast, 
stronger excitatory coupling (scenario 1C) resulted in 
neuronal hyperactivity, oscillatory slowing, and higher 
total power which provides support for an AD-medi-
ated neuronal hyperexcitation and network dysfunction 
through disturbed glutamate homeostasis. Overall, the 
observed likelihood of hyperexcitability and hyperex-
citation being involved in oscillatory slowing, as well as 
the seemingly beneficial effect of reducing hyperexcit-
ability point from different angles towards its role in AD 
pathophysiology.

Disinhibition leads to neuronal hyperactivity and AD‑like 
oscillatory slowing
Inhibitory interneurons are known for their critical role 
in synchronizing neuronal activity and the generation of 
neuronal oscillations [42, 86]. Because their dysfunction 
is increasingly associated with AD [2], we also explored 
network-effects of AD-driven disinhibition. In a network 
of neural masses, all three disinhibition scenarios caused 
an increase in neuronal activity. Furthermore, inhibitory 
interneuron hypoexcitability (scenario 2A) and reduced 
inhibitory to excitatory coupling (scenario 2C), but not 
reduced IPSP (scenario 2B), resulted in oscillatory slow-
ing. Other computational modeling studies also linked 
local disinhibition-mediated neuronal hyperactivity to 
increased theta oscillatory activity in the network [16, 
80]. This study explored multiple mechanisms of inhibi-
tory dysfunction based on empirical studies (as well as 
scenarios with opposite parameter changes) and used 
a model that generated realistic brain oscillations that 
allowed for a qualitative comparison to human data. Of 
interest, a reduction in the IPSP (of pyramidal neurons, 
scenario 2B) resulted in  neuronal hyperactivity, but not 
oscillatory slowing. This finding indicates that the post-
synaptic activity, possibly due to an altered number of 
inhibitory receptors of the pyramidal neurons in AD, is 
most likely not causing early-stage oscillatory slowing. 
In cultured human neurons, patch-clamp recordings 
revealed a significant decrease in the frequency of IPSPs 
in AD neurons, but not a change in amplitude [29], as 
was also reported in another study using a transgenic AD 
animal model [92]. Perhaps, reducing the duration and 
thus the total current of the IPSP to simulate reduced 
inhibition is not the optimal model parameter change to 
replicate the empirical studies, but rather a reduction in 
frequency of inhibitory impulses is more accurate. Taken 
together, these findings confirm previous experimental 
results and propose inhibitory dysfunction, in particular 
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inhibitory interneuron hypoexcitability and decreased 
inhibitory synaptic coupling strength, as important con-
tributor of neuronal hyperactivity and slowing of brain 
activity in early stages of AD.

Oscillatory slowing due to suppressed neuronal activity 
in AD
Although scenarios of neuronal hyperactivity were most 
frequently linked to oscillatory slowing on the larger-
scale, two scenarios showed both lower spike densi-
ties as well as oscillatory slowing, including the AD-like 
increased EPSP scenario (1B) and the contrast, non-AD-
like, increased IPSP scenario (2B). Whereas the disturbed 
glutamate reuptake hypothesis was previously proposed 
as early-stage disease mechanism [29] and the increased 
EPSP model scenario replicated part of the human early 
stage AD patient findings, this scenario may be a more 
plausible explanation for later stages of AD. Advanced 
AD is characterized by more extensive spectral slow-
ing that is intuitively and more commonly associated 
with neuronal hypoactivity [8]. Reduced neuronal activ-
ity is more likely a phenomenon of neurodegeneration 
and linked to tau pathology in more severely affected 
AD patients. Not only transgenic tau mice showed sup-
pressed neuronal activity measured with in vivo calcium 
imaging in the parietal cortex [8], but clinical observa-
tions from fMRI and fluordeoxyglucose-PET in human 
AD patients in more severe disease stages also showed 
cortical and hippocampal hypoactivity and hypometabo-
lism [22, 76]. Moreover, de Haan et al. detected neuronal 
hypoactivity and oscillatory slowing in the end stage of 
the activity dependent degeneration model [16]. Possibly, 
prolonged EPSP and increased IPSP represent mecha-
nisms of neuronal hypoactivity and more severe oscilla-
tory slowing in later disease stages.

Neuronal hypoactivity in a network cannot explain MEG 
signals in early AD
Furthermore, contrast (non-AD-like) scenarios were 
explored and expected to most likely not explain human 
MEG data. Indeed, that is what the data presented here 
suggest, illustrating that oscillatory slowing is not a trivial 
outcome of merely changing some model parameter set-
tings but this is more a specific large-scale outcome of 
AD-mediated neuronal dysfunction. One a-priori defined 
non-AD-like mechanism is of interest in particular and 
involved the hyperexcitable inhibitory neurons (2A). 
Although contradictory to the many other AD animal 
studies, Hijazi et al. [38] discovered inhibitory interneu-
ron hyperexcitability (in PV+ cells specifically) in a 
transgenic AD animal model prior to hyperactivity of the 
pyramidal neurons [38]. Possibly, this scenario manifests 
in AD patients in an even earlier stage, without any or 

only subjective cognitive complaints. Based on our find-
ings, this is translated on a network level into higher rela-
tive power in the faster frequencies, alpha 2 in particular, 
as well as a reduction in total power. Although investi-
gated in a small sample, EEG analyses of presymptomatic 
PS1 mutation carriers have shown higher power in the 
relative alpha 2 band and lower power in the theta band 
[23, 56, 57] compared to healthy subjects, potentially 
indicative of preclinical hyperexcitable inhibitory neu-
rons. Alternatively, the lack of different interneuron sub-
types in the model and a distinction between feedback 
or feedforward inhibition loops may have influenced the 
results.

Oscillatory slowing due to neuronal hyperactivity requires 
network connectivity
Importantly, the effect of introducing AD-like and its 
opposite microscale pathophysiology in uncoupled, sin-
gle, neural masses is different from that in a neural mass 
network (S1 Table, S3 Fig, S4 Fig). Similar to the network 
model, AD-like scenarios in a single, uncoupled, neural 
mass cause neuronal hyperactivity as well as higher total 
power mainly. However, this hyperactivity is frequently 
linked to higher power in the alpha 2 band and resulted 
in a higher peak frequency as well, and thus not repli-
cated oscillatory slowing. The discrepancy in results indi-
cate that microscale pathology may have different impact 
with increasing scale and complexity, which strengthens 
our choice to integrate single neurobiological substrates 
within a network model. Multiscale network modeling is 
challenging, but will ultimately increase our understand-
ing of global network disruption and cognitive deteriora-
tion, not only in AD but also in other disorders. Future 
studies could aim to assess the influence of network 
topology by comparing scenarios running on different 
network types.

Total power as potential biomarker of hyperactivity
Model data show a consistent increase in total power in 
all AD-like scenarios and, therefore, it may yield prom-
ise as a large-scale biomarker of early-stage AD. A clear 
trend towards higher total power levels in MCI patients 
can be appreciated from the human data. However, we 
cannot conclude that higher total power is merely a con-
sequence of increased spiking of the pyramidal neuron 
population based on our findings. Total power in MEG 
is less sensitive to inter-individual differences in environ-
mental settings than EEG but could still be influenced by 
non-physiological differences between groups. Future 
studies of total power as well as novel algorithms that 
could infer E/I balance from large-scale electromagnetic 
physiological signals (such as the functional E/I measure 
[6]) in early affected brain regions may ultimately provide 



Page 17 of 20van Nifterick et al. Alzheimer’s Research & Therapy          (2022) 14:101 	

direct support for the early stage neuronal hyperactivity 
in AD hypothesis and help to find relevant entry points 
for therapeutic targets [6, 27, 94].

Strengths and limitations
According to the motto “a model should not be too sim-
ple, nor too complex”, one of the strengths of this study 
is that it employed a computational model that gener-
ates realistic macroscale neurophysiology, allowing for 
qualitative comparison to human data, yet is sufficiently 
straightforward to systematically explore meaningful 
parameter changes. The proposed AD-like mechanisms 
were based on empirical studies and are introduced in 
a network of neural masses, allowing to translate find-
ings from multiple scales and models and testing oppo-
site scenarios to make the AD-like mechanisms more 
probable. Human MEG recordings were analyzed in 
source space and involved data of well-characterized 
and matched subjects, although ideally we would have 
compared the MCI to cognitively elderly healthy con-
trol subjects without a diagnosis of subjective cognitive 
decline. This study is also constrained by some method-
ological choices. Analyzing narrow frequency bands of 
model data is not as informative as for human data, but 
here the primary interest of this study is to find mecha-
nisms that underlie general, well-established AD hall-
marks such as slowing of the posterior dominant alpha 
rhythm. This phenomenon could be reliably reproduced 
and interpreted by the model, including a reduction in 
peak frequency that was expected based on previous AD 
literature (reviewed in [24]). These very robust neuro-
physiological parameters have guided the model choice 
for this particular study. Another limitation is that only 
known pathophysiological effects of amyloid-β were 
introduced, because microscale studies of neuronal dys-
function have mainly been performed in amyloidosis 
models of AD and amyloid-β is (assumed) one of the 
earliest measurable indicators of AD (Jack [45]). Other 
factors such as inflammation and hyperphosphorylated 
tau may also influence the activity of neurons [44, 99] 
and their contribution to network abnormalities should 
also be explored. For simplicity, this study tested single 
parameter changes to find different contributors of net-
work dysfunction in AD, although multiple effects of 
the toxic oligomers can occur simultaneously and likely 
influence each other. Another limitation is that regional 
vulnerability in AD is not considered, regardless of the 
well-known specific spreading patterns of amyloid-β and 
vulnerability of network hubs in AD [7, 35]. However, 
interpreting the effect of microscale changes on a global 
network level is already challenging, and considering 
spatial differences as well would introduce another layer 
of complexity.

Future directions
Because this study attempted to relate scales that are 
challenging to combine in experimental practice, vari-
ous follow-up endeavors can be imagined. First, replicat-
ing the current findings in more sophisticated models 
that replicate an extended number of empirical MEG 
phenomena (such as neuronal plasticity and region spe-
cific oscillatory frequencies) may extend our knowledge 
in regard of regional effects across multiple frequency 
bands and robustness of the network dynamics to AD-
like perturbation on smaller scales [81]. Second, applying 
higher-order measures to model data, such as analysis of 
functional connectivity and network organization, could 
increase the likelihood of contribution of the currently 
proposed mechanisms to network imbalance in early 
stage AD, in particular because functional connectivity 
may be a biomarker of underlying neuronal hyperexcit-
ability, considering that MCI is increasingly associated 
with hyperconnectivity ([24, 55]). Third, although a com-
plication to the model, one can incorporate AD-like dam-
age to the network over time to study directionality 
of effects as has been reported earlier [16], along with 
potential counter-mechanisms [18], which were not yet 
based on experimentally observed pathophysiological 
mechanisms [32]. Fourth, studying neuronal network 
activity of human iPSC-derived AD neurons in  vitro as 
well as in  vivo mesoscale data from animal models of 
AD would provide the missing link to bridge small-scale 
phenomenon to macroscale network changes in human 
patients.

Conclusions
This study linked current empirical data from differ-
ent scales and showed that molecular and cellular find-
ings from AD animal models very likely explain network 
abnormalities in human prodromal AD patients and 
are thus mechanisms of therapeutic interest. Addi-
tional studies are required to find robust large-scale bio-
markers of cellular hyperexcitability and E/I imbalance in 
early AD.
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