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Abstract 

Introduction:  This study sought to explore the association between Life’s Simple 7 (LS7) and cerebrospinal fluid 
(CSF) Alzheimer’s disease (AD) pathological biomarkers in the cognitively normal northern Chinese population.

Methods:  From the Chinese Alzheimer’s Biomarker and LifestylE (CABLE) study, 1106 cognitively normal participants 
were enrolled. The mean age was 62.34 years, and 39.6% were female. LS7 scores were summed with each metric 
assigned 0, 1, or 2 scores. The multiple linear regression models were used to investigate the association between LS7 
scores and CSF AD biomarkers.

Results:  We found that LS7 scores were significantly associated with CSF AD pathologies, including Aβ42/40 
(β = 0.034, P = .041), p-tau181 (β =  − 0.043, P = .006), and t-tau (β =  − 0.044, P = .003). In subscales, the biological met‑
rics (blood pressure, cholesterol, glucose) were significantly related to CSF tau-related biomarkers. These associations 
were observed in the APOE ε4 allele non-carriers, yet not in carriers. The relationship of behavior metrics was found in 
the middle age and males.

Conclusion:  Improving LS7 scores might do a favor to alleviate the pathology of AD in the preclinical stage, espe‑
cially among the APOE ε4 allele non-carriers.
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Introduction
As the most common form of dementia, Alzheimer’s dis-
ease (AD) is a multifactorial neurodegenerative disease, 
featured by extracellular amyloid β plaques (Aβ) and 
intracellular tau neurofibrillary tangles of the brain which 

could have changed decades before the clinical stage 
and can be detected by biomarkers of positron emission 
tomography (PET) imaging and cerebrospinal fluid (CSF) 
[1, 2]. Since there is no effective treatment, prevention 
remains the most preferred and earliest strategy. Most 
studies have focused on a single factor of individual life-
style and vascular risks, which have been identified as 
modifiable factors and could only approximately attribute 
a third of dementia cases [3]. However, recent evidence 
suggested that multidomain intervention simultaneously 
might play more roles in preventing cognitive decline and 
dementia [4, 5].
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The Life’s Simple 7 (LS7) was proposed as an assess-
ment of cardiovascular health by the American Heart 
Association (AHA), based on 4 health behaviors (physi-
cal activity, body mass index [BMI], diet, and smoking) 
and 3 biological metrics (blood pressure [BP], fasting 
blood glucose [FBG], and total cholesterol [TC]) [6]. 
Emerging proofs suggested that ideal LS7 was associated 
with better cognition [7–9]. Moreover, it was related to 
reduced risks of dementia and AD [5, 10–12]. Nonethe-
less, insignificant relationships between LS7 and cogni-
tion, dementia, and AD were also observed [13–16]. The 
correlations between LS7 and white matter hyperinten-
sity, silent brain infarct, cerebral volume, and higher total 
brain and gray matter volumes have been observed [10, 
17]. However, the relationships between LS7 and AD core 
pathologies have not been examined, including Aβ42, 
total tau (t-tau), and phosphorylated tau (p-tau) which 
could be well reflected in CSF with decreased Aβ42 and 
increased t-tau and p-tau181 levels [18]. Nonetheless, 
the heterogeneity of CSF Aβ42 levels was thought signifi-
cant [19], and Aβ42/40 ratio was believed to improve the 
accuracy of discriminating AD compared to Aβ42 [20]. 
CSF Aβ40 is the most bountiful variation of Aβ, yet it is 
less pathological. Many studies showed that CSF Aβ40 
levels were higher in populations with AD, indicating 
that it may serve as a clue to AD risks [21, 22]. There-
fore, in this study, we aimed (1) to research the associa-
tions between LS7 and AD core hallmarks of CSF Aβ42, 
Aβ42/40, t-tau, and p-tau181 and the biomarker of CSF 
Aβ40 in cognitively intact adults and (2) to research the 
above relationship among different APOE ε4 allele sta-
tuses, age groups, and genders.

Materials and methods
The populations
All individuals in this study were enrolled in the Chinese 
Alzheimer’s Biomarker and LifestylE (CABLE) study, 
a large-scale ongoing study from 2017 exploring the 
genetic and environmental factors and biomarkers of AD 
in the 40- to 90-year-old northern Han Chinese popu-
lation [23]. The subjects were recruited from the city of 
Qingdao, Shandong province, China, with a convenient 
sample from hospitalized patients of Qingdao Munici-
pal Hospital. The exclusion criteria were (a) infection of 
the central nervous system, epilepsy, head trauma, major 
neurological disorders, or other neurodegenerative dis-
eases rather than AD (e.g., Parkinson’s disease); (b) major 
psychological disorders; (c) severe systemic diseases (e.g., 
malignant tumors); and (d) family history of genetic dis-
eases. The Institutional Ethics Committee of Qingdao 
Municipal Hospital approved the CABLE study, and it 
was carried out following the Declaration of Helsinki. All 
subjects or their proxies gave written consent.

A total of 1106 cognitively intact subjects with ade-
quate data of CSF biomarkers and LS7 measurements 
were enrolled in this cross-sectional study. All individu-
als underwent comprehensive clinical, psychiatric neu-
ropsychological examinations; biochemical testing; and 
biological samples (blood and CSF sample) collections 
at study entry. The basic information of age, sex, years of 
education, and medical history was obtained through a 
structured questionnaire and supplemented by an elec-
tronic medical record system. Global cognitive function 
was examined by the China Modified Mini-Mental State 
Examination (CM-MMSE). Depression and anxiety were 
assessed using the Hamilton Rating Scale for Depres-
sion (HAMD) and Hamilton Rating Scale for Anxiety 
(HAMA), respectively. The population diagnosed with 
cognitive impairment (CM-MMSE ≤ 24 for > 6  years 
of education, ≤ 20 for no more than 6  years of educa-
tion, ≤ 17 for no education), significantly depression 
(HAMD > 7), or anxiety (HAMA > 7) were excluded.

CSF AD biomarkers assessments and APOE‑ε4 genotyping
The fasting CSF sample was extracted via a standard 
operating procedure with the discarding of the first 
1–2 mL and processed within 2 h. After centrifuging at 
2000 × g for 10 min, it was stored in an enzyme-free EP 
(Eppendorf ) tube at − 80 °C. The thaw/freezing cycle was 
limited to two times or less. CSF Aβ42, Aβ40, p-tau181, 
and t-tau levels were determined with the ELISA kits 
(Innotest β-AMYLOID (1–42) [catalog number: 81583]; 
β-AMYLOID (1–40) [catalog number: 81585]; PHOS-
PHO-TAU (181p) [catalog number: 81581]; hTAU-Ag 
[catalog number: 81579]; Fujirebio, Ghent, Belgium). All 
measurements were performed by professional experi-
menters who were blind to clinical information. The 
within-batch coefficient of variation (CV) was < 5% (mean 
CV 4.5% for Aβ42, 3.7% for Aβ40, 2.5% for p-tau181, and 
4.4% for t-tau). The inter-batch CV was < 20% (mean CV 
5.3% for Aβ42, 3.4% for Aβ40, 2.4% for p-tau181, and 
4.8% for t-tau).

Using the QIAamp® DNA Blood Mini Kit (250), DNA 
was drawn from fasting blood samples. Next, it was sep-
arated and stored in an enzyme-free EP tube at − 80  °C 
until the APOE genotyping was completed in this study. 
Two specific loci related to APOE status (rs7412 and 
rs429358) were selected for genotyping with restriction 
fragment length polymorphism technology. Participants 
were classified as APOE ε4 non-carriers and APOE ε4 
carriers (individuals with at least one copy of the APOE 
ε4 gene).

Measurements of LS7 metrics
We looked into each indicator of LS7 and categorized 
them into poor (score as 0), intermediate (score as 1), 
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and ideal (score as 2) qualities leaning on the AHA cri-
teria and with modifications in terms of diet and physical 
activity (Additional file  1: Table  S1). All of the behavior 
metrics including BMI, smoking, diet, and physical activ-
ity were measured through a self-reported questionnaire 
and medical record system. The biological metrics of BP, 
cholesterol, and glucose levels were tested by profession-
als in the laboratory.

We obtained BMI by the calculation of weight divided 
by height squared. Subjects who were smoking were 
regarded as current smokers, and those who had quit 
smoking were regarded as past smokers with different 
quitting times. Compared with the AHA criteria, our 
diet metric only involved two components of fruit and 
fish, and with the information of frequency through a 
questionnaire, yet lacking quantitative data. Moreover, 
the whole grain, sodium, and sugar-sweetened beverage 
intake were not included since insufficient information 
was collected. For each ingredient, the daily frequency 
was coded as 2, once or several times a week coded as 
1, and never or occasionally coded as 0, and the sum of 
the two ingredients was used to ultimately categorize the 
diet metric (Additional file  1: Table  S1). The measure-
ment of physical activity during leisure time was exam-
ined through a questionnaire looking at the frequency of 
exercise, with a major limitation of lacking intensity and 
duration. We assigned daily frequent as 2 scores, once 
a week or several times a week as 1 score, and never or 
occasionally as 0 scores. BP was measured in triplicate 
every morning when the participants were resting and in 
a sitting position during their first 5 days of hospitaliza-
tions, and the mean of measurements was used to divide 
the metric. After fasting for at least 8  h, the enzymatic 
method and the glucose hexokinase (HK) method were 
used to test the fasting plasma total cholesterol and glu-
cose levels, respectively.

The composite LS7 scores were calculated from the 
sum of 7 components, ranging from 0 to 14. It was fur-
ther ranked as poor (scores 0–5, < mean − standard 
deviation [SD]), intermediate (scores 6–10, ≥ mean − SD 
and < mean + SD), and optimal (scores 
11–14, ≥ mean + SD) levels.

Statistical analysis
The baseline characteristics were compared using the 
chi-square test (for categorical variables) and the analysis 
of variance or Kruskal–Wallis test (for continuous vari-
ables). We normalized the level of CSF AD biomarkers by 
the Box–Cox transformations using the “car” package of 
the R software and standardized them by Z-scale in case 
of skewed distribution. Extreme values outside the 3 SD 
of CSF AD biomarkers were excluded.

Across the three categories of LS7 scores, differences 
in CSF AD biomarkers were compared using analysis of 
variance, and the cognition test was compared using the 
Kruskal–Wallis test. We applied multiple linear regres-
sion (MLR) models to explore the association between 
total LS7 scores and CSF Aβ42, Aβ42/40, Aβ40, t-tau, 
and p-tau181 biomarkers, with the adjustment of age, 
sex, education, and APOE ɛ4 allele statuses. Moreo-
ver, the subscale of the biological metrics (the summary 
scores of BP, total cholesterol, and glucose), behavior 
metrics (the summary scores of BMI, smoke, diet, and 
physical activity), and individual components of LS7 was 
investigated. Interactions were tested in regression mod-
els by the terms of APOE genotype, age, and sex with 
LS7 score, and followed by stratified analyses by differ-
ent APOE ε4 allele statuses (non-carrier or carrier), mid-
life (< 65 years), or late life (≥ 65 years), male or female. 
Lastly, sensitivity analyses were performed by (1) addi-
tionally adjusting for the comorbidities of coronary heart 
disease and stroke to control relevant confounders and 
(2) analyzing the relatively healthy population with no 
history of hypertension, diabetes, and hyperlipemia, who 
were in an early stage of disease, to validate the associa-
tion between LS7 score and CSF AD biomarkers.

The packages “car,” “ggplot2,” and “lm” in the R 4.0.3 
software were used for statistical analyses and illustra-
tions (R Project for Statistical Computing; http://​www.r-​
proje​ct.​org). P values of less than 0.05 were considered 
significant.

Results
Characteristics of participants
We totally included 1106 subjects with a mean age of 
62.34 (SD = 10.27), ranging from 40 to 89, which were 
shown in Table 1. About one-third (39.6%) of the partici-
pants were female, and 137 (13.92%) were APOE ɛ4 car-
riers. A total of 639 were in their middle age (< 65 years), 
and 467 were in late age (≥ 65 years). The mean LS7 score 
was 7.99 (SD = 2.05), and the distribution was exhibited 
in Additional file 1: Fig. S1. Individuals with higher levels 
of LS7 scores were younger and better educated (Table 1).

Association between LS7 scores and CSF AD biomarkers
Across the three LS7 categories, the group with an 
optimal level of LS7 scores was proved to have lower 
CSF t-tau and p-tau181 levels (Fig.  1). Associa-
tions between higher LS7 scores and decreased CSF 
p-tau181 (β =  − 0.043, P = 0.006), t-tau (β =  − 0.044, 
P = 0.003), and increased Aβ42/40 (β = 0.034, 
P = 0.041) biomarkers were significantly revealed 
when adjusting for age, sex, education, and APOE ɛ4 
allele (Fig. 2). In subscales, the biological metrics was 
significantly associated with p-tau181 (β =  − 0.073, 

http://www.r-project.org
http://www.r-project.org
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P = 0.002) and t-tau (β =  − 0.069, P = 0.002) (Fig.  2). 
Besides, the relationships between the total LS7 score 
and the biological metrics with Aβ40 were also found 
(Additional file 1: Table S2). Yet, we did not record any 
association of behavior metrics. There were no signifi-
cant associations with CSF Aβ42 (Fig. 2). Individually, 
we observed that the metrics of BP, glucose, and physi-
cal activity were related to CSF AD biomarkers (Addi-
tional file 1: Table S3).

Interactions and stratified analyses by APOE ε4 allele 
statuses, age, and genders
Interaction between age and behavior metrics was 
found (P = 0.0243, Additional file  1: Table  S4). In 
the mid-age, both biological and behavior metrics 
were significantly related to CSF tau-related bio-
markers, whereas in the late age, only the biological 
metrics were noticed to be associated with CSF bio-
markers (Fig.  3, Additional file  1: Table  S5). Besides, 
significant associations between LS7 scores and CSF 
Aβ42/40 (β = 0.039, P = 0.029), p-tau181 (β =  − 0.049, 
P = 0.003), and t-tau (β =  − 0.050, P = 0.004) biomark-
ers were revealed among the APOE ε4 non-carriers, yet 
not among carriers (Fig. 3). Moreover, LS7 scores were 
associated with CSF AD biomarkers in both males and 
females, and the behavior metrics were observed to be 
associated with CSF Aβ42/40 in males (Fig. 3).

Sensitivity analyses
We performed sensitivity analyses by additionally adjust-
ing for the comorbidities of coronary heart disease and 
stroke and produced similar results of the associations 
between LS7 scores and CSF Aβ42/40, p-tau181, and 
t-tau biomarkers (Additional file 1: Table S6). Addition-
ally, in the relatively healthy population with no history of 
hypertension, diabetes, and hyperlipemia, there was only 
a significant association between the biological metrics 
and CSF Aβ40 biomarker (Additional file 1: Table S7).

Discussion
This study is the first to examine the association between 
LS7 scores and CSF AD biomarkers in the cognitively 
intact population. Our results demonstrated that LS7 
scores, especially the biological metrics, were signifi-
cantly related to CSF Aβ42/40 and tau-related pathology. 
These relationships were significant among the APOE ɛ4 
non-carriers, yet not in the carriers. These findings pro-
vided supports for the linkage between LS7 cardiovascu-
lar health and AD risks.

Given the complicated nature of dementia, the inter-
ventions of LS7, which could control for multiple risk 
factors and underlying mechanisms at the same time, 
have been noticed to promote brain health and prevent 
dementia [4]. A 2-year randomized controlled trial dem-
onstrated that multidomain intervention of vascular 

Table 1  Characteristics of participants across LS7 categories

The statistically significant results have been bolded

LS7 Life’s Simple 7, APOE ε4 apolipoprotein E genotype ε4, CM-MMSE China Modified Mini-Mental State Examination, P-TAU181 phosphorylated tau181, T-TAU​ total tau
a The difference among the groups was examined by the analysis of variance
b The difference among the groups was examined by the chi-square test
c The difference among the groups was examined by the Kruskal–Wallis test

Characteristics LS7 categories Total P value

Poor Intermediate Optimal

N 128 852 126 1106 –

Age (years), mean (SD) 62.12 (9.74) 62.89 (10.15) 58.84 (10.96) 62.34 (10.27) .0002a

Gender, female (%) 44 (34.37) 334 (39.20) 60 (47.61) 438 (39.60) .0861b

Education (years), mean (SD) 9.35 (4.33) 9.61 (4.21) 10.90 (3.83) 9.73 (4.20) .0031a

APOE ε4, yes (%) 19 (16.10) 104 (13.79) 14 (12.50) 137 (13.92) .7163b

CM-MMSE, mean (SD) 27.85 (2.26) 27.90 (2.06) 28.33 (1.77) 27.94 (2.05) .0942c

LS7 score, mean (SD) 4.47 (0.78) 8.01 (1.28) 11.44 (0.70) 7.99 (2.05)  < .0001a

CSF AD biomarkers
  Abeta42, mean (SD) 187.19 (97.19) 202.61 (112.61) 182.53 (91.32) 198.64 (108.95) .1920a

  AbetA40, mean (SD) 6116.46 (2834.65) 5880.47 (2650.43) 5014.28 (2349.72) 5808.7 (2653.89) .0015a

  Abeta42/40, mean (SD) 0.0401 (0.0423) 0.0404 (0.0289) 0.0411 (0.0213) 0.0404 (0.0300) .2090a

  P-TAU181, mean (SD) 38.46 (10.45) 37.68 (9.30) 34.25 (6.95) 37.36 (9.26) .0005a

  T-TAU, mean (SD) 183.77 (78.51) 177.72 (83.35) 149.44 (65.18) 175.21 (81.43) .0001a
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risks was beneficial to cognitive functioning for the 
at-risk elderly people [24]. In France, a cohort study by 
Samieri et  al. indicated that optimal LS7 could reduce 
the incidence of dementia [25]. Other longitudinal stud-
ies from England, America, and Finland also suggested 
the associations between LS7 and cardiovascular health 
with dementia [10–12, 26]. Moreover, the relationship 
between a composite healthy lifestyle and risks of AD was 
observed in 2 longitudinal studies in Chicago [5]. Besides, 
the ideal cardiovascular health was found relevant to bet-
ter cognitive performance [8, 9, 27], and less decline [7, 
8, 25]. Nevertheless, not all results were consistent. In 
the Netherlands, a 6-year multidomain intervention of 
vascular care did not bring older people to a reduction of 
dementia. In that study, the population was not selected 

aged 70 years or older with modest cardiovascular risks 
at the baseline, which might be the reason for insignifi-
cance [16]. Also, no significant association between LS7 
and dementia was found in Germany, which lacked the 
diet metric of their LS7 assessments [15]. Notably, there 
was still no examination of the relationship between LS7 
and the pathology of AD.

In our CABLE study, we firstly revealed the relation-
ship between LS7 scores and CSF Aβ42/40 even after 
additionally adjusting for the complications of coronary 
heart disease and stroke. That supported the correla-
tions between LS7 score and AD risks despite the no 
significance with Aβ42, since many lines of evidence 
have suggested that CSF Aβ42/40 ratio performed bet-
ter for discrimination of AD, which balanced the total 

Fig. 1  Differences in CSF biomarkers between the three LS7 categories. Differences in CSF Aβ42, Aβ42/40, p-tau181, and t-tau levels were 
examined by the analysis of variance. LS7, Life’s Simple 7; CSF, cerebrospinal fluid; Aβ, amyloid beta, P-tau181, phosphorylated tau181; T-tau, total tau
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production of amyloid beta peptides [28]. Besides, the 
decreased p-tau181 and t-tau indicated the relation-
ship between LS7 scores and incipient AD risks. As 
CSF p-tau181 reflected the phosphorylation state of 
tau in brain, it is considered specific to AD patholo-
gies. Total tau in CSF presented the neuronal damage 
and degeneration with less specificity for AD [29]. In 
our study, we have excluded the population with acute 
neurological disorders and other neurodegenerative 
diseases to reduce the potential heterogeneity. In sum, 
our findings provided pathological support for the 
association between LS7 and potential AD risks. Here, 
we involved all the 7 metrics of LS7, while the diet and 
physical activity metrics were limited to frequency. 
The population in the current study was relatively 
younger with intact cognitive function, which could 
represent the preclinical stage of AD. The correlations 
between LS7 and dementia and AD risks were veri-
fied, and the underlying mechanisms of accumulation 

of neurodegenerative pathology and the reduction 
of clearance may be involved in multiple pathways, 
including vascular risks, inflammatory, oxidative stress, 
and mitochondrial dysfunction [11, 30–33].

A few studies gazed into the summary and separate 
components of LS7, which could provide additional 
insights into the relationships. Both behavior and biologi-
cal metrics of midlife were related to dementia incidence 
in London [10]. Based on a longitudinal cohort study 
in the USA, metabolic changes had a significant influ-
ence on late-life cognition [34]. Similarly, the biological 
metrics were suggested to be associated with cognitive 
decline and dementia in other two cohort studies, rather 
than the behavior metrics [7, 35]. In our study, the sub-
scale of biologics was significantly associated with CSF 
Aβ − and tau-related biomarkers. Yet, we did not find 
the relationship of behavior metrics in the total popula-
tion. The biological metric could reflect the metabolism 
of the human body objectively, which can be involved 

Fig. 2  Associations between LS7 scores and CSF Aβ − and tau-related biomarkers. Multiple linear regression models were used to examine the 
associations between the total LS7 scores (A–D), subscales of biological metrics (E–H), and behavior metrics (I–L) with cerebrospinal fluid (CSF) 
Aβ42, Aβ42/40, p-tau181, and t-tau biomarkers, adjusting for age, sex, years of education, and APOE ɛ4 allele statuses. LS7, Life’s Simple 7; CSF, 
cerebrospinal fluid; Aβ, amyloid beta; P-tau181, phosphorylated tau181; T-tau, total tau
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in inflammatory and immune mechanisms, and interact 
with genetic risks to activate neuropathology. Subjectiv-
ity in the measurements of behaviors might cause bias, 
and the effects of behavior metrics on cognition may 
involve other mechanisms such as psychological factors 
and cognitive reservation [36, 37]. Besides, the interac-
tion between age and behavior metrics was found. In 
the mid-age, we found that both biological metrics and 
behavior metrics were relevant to CSF biomarkers, while 
in the late age, there was only biological metrics revealed 
significant association, which might be due to the com-
plex effects of BMI on dementia attenuating the signifi-
cance of behavior metrics in late life [38, 39]. Also, the 
association of biological metrics was only found in males, 
which could be derived from the different distribution of 
LS7 scores between the genders (Additional file  1: Fig. 
S1).

The genetic risks have been known as important fac-
tors contributing to the pathogenesis of dementia [40]. 
However, the interaction between lifestyle and genetic 
risk remains unclear [41]. From a series of longitudinal 

studies, associations between a composed lifestyle and 
dementia, AD, and cognition decline were suggested 
regardless of the APOE ε4 allele [5, 25, 42]. A 2-year 
multidomain intervention was found beneficial for both 
APOE ε4 non-carriers and carriers (Solomon et al. 2018). 
However, research in Rotterdam displayed the protec-
tive effects on dementia among low and intermediate 
genetic risk populations [41]. Also, significant associa-
tions between LS7 scores and composite lifestyles with 
dementia were observed only among APOE ε4 allele 
non-carriers, yet not in the carriers [11, 14]. The relation-
ship between metabolic risk profile and cognitive per-
formance was suggested stronger among APOE ε4 allele 
non-carriers [34]. In our CABLE study, we found the 
associations between LS7 scores, as well as the biological 
metrics and CSF AD biomarkers only among the APOE 
ɛ4 non-carriers, yet we failed to record these associations 
in the carriers. The population in our study was relatively 
younger (mean age = 62.71  years), and the influences of 
the APOE ε4 allele on dementia were suggested different, 
attenuating with increasing age, which might explain part 
of the non-significant interactions [43]. Nonetheless, the 
number of APOE ε4 carriers in our study was limited and 
only 137 (13.92%), which might lead to a false negative. 
More researches with an ample sample size and a suffi-
ciently long follow-up period are necessary.

Limitations
Some limitations should be noted. This study was cross-
sectional. The information on diet and physical activity 
metrics were based on frequency lacking quantitative 
data with only two dietary ingredients of fruit and fish, 
which were major weaknesses comparing with the stand-
ard AHA criteria. Besides, there was only a significant 
association with Aβ40 in the sensitivity analyses of the 
relatively healthy population without histories of hyper-
tension, diabetes, and hyperlipemia. Moreover, in these 
populations, the opposite relationship with Aβ42 existed, 
which may be due to the bias by poor efficacy of LS7 
for discrimination, and the longitudinal studies with 
the large sample are needed for further exploration. All 
analyses were performed on people recruited from the 
hospital, which can be further researched with a commu-
nity-based population in the future.

Conclusions
In summary, LS7 scores were significantly associated 
with CSF Aβ42/40, p-tau181, and t-tau biomarkers of 
AD in the cognitively intact population, which offered a 
pathological verification of multidomain intervention. 
Therefore, putting efforts into improving LS7 cardiovas-
cular health might be helpful to prevent AD, especially in 

Fig. 3  Subgroup analyses of associations between LS7 scores and 
CSF Aβ − and tau-related biomarkers stratified by APOE ɛ4 statuses, 
age, and sex. Multiple linear regression models were used to explore 
the associations with adjustment of age, sex, years of education, and 
APOE ɛ4 allele statuses. Asterisks represent statistical significance 
(*P < 0.05; **P < 0.01; ***P < 0.001). LS7, Life’s Simple 7; Aβ, amyloid 
beta; P-tau181, phosphorylated tau181; T-tau, total tau



Page 8 of 9Zhao et al. Alzheimer’s Research & Therapy           (2022) 14:74 

the APOE ɛ4 non-carriers. More longitudinal researches 
with a larger sample size as well as randomized con-
trolled trials are anticipated in the future.
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