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Abstract 

Background:  Alzheimer’s disease is the most prevalent cause of dementia in the elderly. Neuronal death and 
synaptic dysfunctions are considered the main hallmarks of this disease. The latter could be directly associated to an 
impaired metabolism. In particular, glucose metabolism impairment has demonstrated to be a key regulatory ele-
ment in the onset and progression of AD, which is why nowadays AD is considered the type 3 diabetes.

Methods:  We provide a thread regarding the influence of glucose metabolism in AD from three different perspec-
tives: (i) as a regulator of the energy source, (ii) through several metabolic alterations, such as insulin resistance, that 
modify peripheral signaling pathways that influence activation of the immune system (e.g., insulin resistance, diabe-
tes, etc.), and (iii) as modulators of various key post-translational modifications for protein aggregation, for example, 
influence on tau hyperphosphorylation and other important modifications, which determine its self-aggregating 
behavior and hence Alzheimer’s pathogenesis.

Conclusions:  In this revision, we observed a 3 edge-action in which glucose metabolism impairment is acting in 
the progression of AD: as blockade of energy source (e.g., mitochondrial dysfunction), through metabolic dysregula-
tion and post-translational modifications in key proteins, such as tau. Therefore, the latter would sustain the current 
hypothesis that AD is, in fact, the novel diabetes type 3.

Keywords:  Glucose metabolism impairment, Tau posttranslational modifications, Insulin resistance, ER stress, 
Alzheimer’s disease
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Introduction
Alzheimer’s disease (AD) is the most common demen-
tia with 60–70% of cases. Behavioral changes and cogni-
tive impairment resulting from neurodegeneration are 
observed, possibly 10 years after the onset of proteinopa-
thy. The two characteristic phenomena, used as biomarkers 
[1] are the presence of Ab plaques and hyperphosphoryla-
tion of tau that self-aggregates, forming neurofibrillary 
tangles (NFT) [2, 3]. However, AD is a multifactorial dis-
ease with a complex etiology. Two major groups of patients 

are evidenced: early-onset or familial with a hereditary 
component due to genetic mutations that alter the amy-
loid precursor protein (APP) or presenilins 1 and 2. The 
second group, late-onset or sporadic AD, occurs in 97% 
of cases. It is associated with multiple factors such as the 
polymorphism of apolipoprotein E (APOE) gene, present-
ing the APOε4 allele, hyperlipidemia, hypertension, type II 
diabetes, and coronary disease [4]. Age is one of the main 
associated risk factors for developing sporadic AD [5]. Dif-
ferent molecular events are involved. One of them is the 
misfolding of proteins due to the stress of the endoplas-
mic reticulum and failures in its quality control system of 
response to unfolded proteins (UPR) [6]. This enables for 
the accumulation of NFT.

Another alteration associated with age, due to the fact 
that neurons have a decreased capacity to regenerate, is 
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the decrease in the amount of available energy [7]. This 
is due to two main reasons: the glucose transporters 
(GLUT) are expressed in less quantity [8] and alterations 
in insulin signaling [9].

The human brain uses 20% of the glucose [10]; it needs 
a lot of energy principally to support the synaptic activity 
[11]; 95% of glucose is used in the production of ATP [12]. 
This is why alterations in glucose metabolism cause dam-
age to cell regulation, as decreased ATP can affect proper 
synaptic function [4]. Much of the process is independent 
of insulin regulation. However, there are insulin recep-
tors in various brain areas, influencing processes such as 
memory, cognition, and regulation of energy metabolism 
[13, 14]. Insulin resistance significantly increases the risk 
of developing sporadic AD [15, 16], while type II diabetes 
(DTII) increases the risk of AD by 50% [17].

In addition, it has been shown that the develop-
ment of insulin resistance and DTII may be mediated 
by endoplasmic reticulum (ER) stress by activating 
c-Jun N-terminal kinases (JNKs), and this in turn trig-
gers downstream signaling cascade activity [18] of the 
inflammatory type [19], due to the excessively prolonged 
response to unfolded proteins (UPRs) by the stressed ER 
[19]. It has been shown that epigenetic variations such 
as glycosylations disturb protein folding and trigger ER 
stress [19]. All the latter also influence post-translational 
modifications in tau that propitiate tau self-assembly, 
from an a-helix to a b-sheet structure [20]. This b-sheet 
conformation is the one prone to form aggregates [20]. 
Increased phosphorylation, decreased ubiquitination, 
and decreased methylation are some of the post-trans-
lational changes observed in AD [21–23]. Remarkably, 
lysine methylation is decreased in AD patients [22], 
which may be explained by the decreased glucose uptake 
due to the downregulation of the GLUT receptors [24]. 
The latter is correlated with tau hyperphosphorylation 
[24], leading to the final outcome of neurodegeneration 
and neuroinflammation.

Here, we review how alterations in glucose metabolism 
stress the endoplasmic reticulum and this, in turn, influ-
ences the post-translational modifications of the tau pro-
tein associated with AD.

Metabolic alterations in the pathogenesis of AD
Endoplasmic reticulum (ER) stress
The cell has intracellular organelles that fulfill different 
functions, for example, in the nucleus the transcription 
of DNA to RNA [25]. In the ER, proteins are synthesized 
and subsequently transported to the Golgi apparatus, 
before their subsequent destination [26]. The ER has an 
intracellular membrane system, with a unique quality 
control system that allows the management of protein 

aggregates [27] and whose purpose is to maintain proteo-
stasis [28].

ER stress is understood as the imbalance between ER 
protein folding capacity and the demand for protein 
synthesis, resulting in the accumulation of misfolded 
proteins in the ER lumen (misfolded) [29–31]. This can 
be produced by pathological conditions that can disrupt 
ER function, such as changes in the availability of Ca+2, 
ATP, or pathogens that release of misfolded or unfolded 
proteins (UPs) [32]. In the latter case, misfolded pro-
teins or UP are directed towards a degradation pathway 
present in the ER called ERAD (ER-associated deg-
radation) [33, 34]. UPs are recognized by chaperone 
proteins, which together with other proteins, stabilize 
unstable forms [35].

The ER is stressed when the amount of misfolded 
proteins exceeds its containment capacity, so mecha-
nisms are displayed to correct this error [36]. A cel-
lular UP response program (UPR) is activated to 
manage this error that acts through the reduction of 
the synthesis of new proteins and the transcription of 
chaperones and activates the degradation of UP in the 
proteasomes [27, 29, 37, 38].

Due to ER stress, sensors of the UP response are acti-
vated and decrease protein translation: IRE1 (endori-
bonuclease that requires inositol), PERK (protein kinase 
RNA-like endoplasmic reticulum kinase), and ATF6 (that 
activates transcription factor 6) [27, 32, 37, 39]. Then, the 
chaperone binding immunoglobulin protein (BiP) binds 
and inhibits one of the aforementioned transduction pro-
teins, binding to misfolded proteins and adaptation to UP 
overload [32]. In this case, the UPR is not able to rees-
tablish the folding equilibrium, and ER stress eventually 
leads to apoptosis [27, 40].

When the UPR is surpassed due to the excessive 
accumulation of misfolded proteins derived from envi-
ronmental factors such as aging [31, 41], and genetic 
mutations, it could lead to diseases such as diabetes type 
2 (DTII), atherosclerosis, and neurodegenerative dis-
eases, e.g., AD, which is associated with abnormal pro-
tein folding [42].

Misfolded proteins that aggregate intracellularly consti-
tute a hallmark in the pathogenesis of neurodegenerative 
diseases. It is likely that the ER regulatory mechanisms 
are bypassed, allowing self-aggregation and intracellu-
lar damage [41]. A tauopathy modeling was performed 
in a C-elegans; AD is one of them. The vital importance 
of IRE1 and ATF6, two of the UPR pathways to regulate 
proteostasis in ER, was highlighted [41]. Furthermore, a 
chronic UPR response can induce apoptosis through an 
intrinsic mitochondrial pathway dependent on members 
of the pro-apoptotic B cell lymphoma (Bcl-2) family [43]. 
If ER stress is prolonged, it causes an alteration in insulin 
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synthesis, while apoptosis of B cell of the pancreas has 
been observed in the late stages of hyperglycemia and 
insulin resistance [44].

The large biosynthetic load on the ER for insulin pro-
duction in response to glucose (from food intake) can 
exceed ER folding capacity, resulting in ER stress. This 
leads to the consequent activation of PERK, which 
reduces the ER protein load by phosphorylating eIF2 
(elongation initiation factor-2), a protein necessary for 
protein translation [44]. It has been observed that in 
PERK −/− cells, protein synthesis does not respond to 
stress, leading to the accumulation of folded proteins 
(for example, proinsulin) and subsequently to apoptosis. 
In this case, ER stress-induced apoptosis can increase 
inflammatory signaling. PERK −/− mice are more prone 
to DTII and progressive hyperglycemia [45].

ER stress has also been related to diseases promoted 
by misfolded proteins or proteinopathies such as Alz-
heimer’s. There is an accumulation of misfolded pro-
teins exceeding the response capacity of UPR [31]; 
greater markers of UPR activation have been dem-
onstrated in the post-mortem brain of subjects with 
AD [38, 46]. It has been shown in transgenic animal 
models of AD that inhibition of PERK activity in hip-
pocampal slices facilitates mGluR-LTD and, in turn, 
deletion of PERK deactivates the eIF2a pathway, which 
has been associated with improvements in memory 
[47]. UPR plays a fundamental role in the neurotoxic-
ity manifested in AD [36]. Strong evidence shows that 
ER stress activates signaling pathways that influence 
tau phosphorylation, the amyloid cascade, and synap-
tic dysfunction [31].

Insulin resistance
Scientific evidence has proven that insulin signaling and 
glucose metabolism are altered in AD. For this reason, 
some authors such as Kroner [48] have designated AD as 
type III diabetes [16, 48].

Insulin is a polypeptide hormone made up of two 
chains of 51 long amino acids [49]; it is synthesized in 
B cells of the pancreas and regulates glucose metabo-
lism [50], although it is also released locally in the CNS 
in minimal quantities [51]. It is synthesized as a prohor-
mone, begins as a pre-proinsulin, and is eliminated in the 
rough ER cistern as proinsulin, and then it is directed 
to the Golgi apparatus, and it is packaged in secretory 
vesicles [52]. The proinsulin molecule dissociates as C 
peptide, by the enzymatic action of endopeptidases and 
carboxypeptidases, leaving the amino terminal peptide B 
linked by a disulfide bridge to the amino terminal pep-
tide A. Then, its native structure is folded, and its confor-
mation of two A chains and B is stabilized by the double 
disulfide bond [52, 53].

The peripheral areas of the body require insulin to 
activate the signaling that allows the translocation of 
glucose transporters, entering the glucose into the cell 
[54]. When insulin binds to the insulin receptor sub-
strate or signaling adapter protein (IRS), it is recruited 
and phosphorylated [55]. The IRS activates down-
stream signaling pathways, of the IRS family; there are 
two fundamental ones: IRS1 and IRS 2. These activate 
two main signaling cascades such as the phosphati-
dylinositol 3-kinase (PI3K)-AKT/protein kinase B 
(PKB) pathway and mitogen-activated protein kinase 
(MAPK) pathways [54]. Furthermore, the expression of 
the activation of the PIK3 pathway together with gly-
cosylation kinase (GSK-3) follows an expression similar 
to the insulin pathway in peripheral tissues [56]. The 
PIK3 pathway is considered an integrating pathway 
for insulin, and it is hypothesized that it is associated 
with learning and memory [50]. It was found in a group 
of diabetic women that they have greater cognitive 
impairment than women without diabetes [57]. Altera-
tions in insulin signaling are associated with cognitive 
impairment [48].

In the CNS, insulin must cross the blood-brain barrier 
(BBB) and bind to its receptor, whose conformational 
change leads to the enzymatic activity of tyrosine kinase 
and the autophosphorylation of the receptor [58]. In the 
CNS, there are receptors in septum, amygdala, hypothal-
amus, hippocampus, cerebral cortex, and olfactory bulb 
[14, 59–62]. The function in the hypothalamus of the 
insulin receptor is through signaling of food intake and 
energy regulation, influencing peripheral metabolism 
[63]. Insulin regulates neuronal development, modulates 
neurotransmitter signaling pathways, and participates in 
learning and memory [64, 65]. Regarding memory, insu-
lin activates signaling cascades in the hippocampus that 
affect synaptic plasticity [66]. Insulin resistance in the 
CNS has recently been found to cause anxious states, 
hyperphagia, and depressive-like behaviors [67]. Insulin 
resistance can be evaluated through the ratio between 
the serine-phosphorylated insulin receptor substrate 
with respect to the total phosphorylated insulin recep-
tor substrate, in the brain or peripheral tissues. A greater 
ratio indicates increased insulin resistance [9, 68]. This 
marker, together with ex vivo stimulation of brain tissue 
with insulin, was employed to demonstrate brain insulin 
resistance in AD patients [9, 69].

Peripheral insulin resistance (hyperinsulinemia) 
decreases glucose sensitivity in major target organs such 
as muscles, liver, and adipose tissue. In this context, there 
is an increase in the amount of insulin available in the 
bloodstream, which consequently increases tolerance 
to glucose [70]. Several findings suggest that the devel-
opment of these alterations would be associated with 
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mitochondrial dysfunction and/or ER stress due to aging 
[71, 72].

Hyperinsulinemia is a risk factor for the development 
of hyperglycemia and type II diabetes (DTII). It is asso-
ciated with a higher risks of neurodegeneration [15, 50, 
73–75], due to a decreased degradation of amyloid beta, 
because the augment in the insulin sequesters by the 
insulin degrading enzyme (IDE).

It is also associated with an increase in CDK5 activ-
ity and, with it, the hyperphosphorylation of tau that is 
involved in AD [15].

Currently, presenting AD is considered to have a higher 
risk of DTII [76] and vice versa [36]. It is very possible 
to go from mild cognitive impairment to AD if glucose 
metabolism is altered [58, 77]. This has been evidenced 
as the disease progresses [78–80]. Other studies suggest 
an association between abnormal tau phosphorylation 
and insulin resistance [81]. Both diseases are related to 
changes in the expression of glucose transporters and 
in particular AD with a decrease in available energy in 
neurons [82]. However, the latter is still controversial, as 
other studies showed no relation between diabetes TII 
and the formation of neurofibrillary tangles (NFT) and 
Ab peptide in diabetic postmortem brains [83]. Never-
theless, it should be considered that this study relates to 
the APOE genotype and not the sporadic AD. Thus, it is 
possible that although glucose metabolism impairment 
can relate to neurodegenerative diseases, the mechanism 
is still inconclusive.

In the CNS, glucose bioavailability is limited by 
crossing the blood-brain barrier (BBB), mediated by 
glucose transporters GLUT1-6 and GLUT-8 and sodium-
dependent transporters (SGLT1) to reach neurons and 
glia [82, 84–86]. Another energy source is lactate derived 
from astrocytes [87–89] and brain ketones [90].

In regard to the glucose transporters, the GLUT1 
transporter is expressed in the endothelial cells of the 
BBB [91, 92]; GLUT3, on the other hand, is expressed in 
neurons with high affinity to glucose [93, 94], and GLUT4 
is expressed in the BBB of the ventromedial hypothala-
mus [95] and temporal cortex; therefore, it participates in 
memory and cognition processes [96]. Both GLUT1 and 
GLUT3 are insulin independent for membrane translo-
cation [97]. GLUT3 and GLUT4 transporters decrease 
their expression with aging [98].

Impairments in glucose metabolism have been 
reported to cause memory impairment and hippocampal 
atrophy [99]. However, the exact molecular mechanisms 
that associate the origin of AD disease with glucose and 
insulin metabolic alterations are still unclear [36].

Several avenues regarding treatments for insulin 
resistance and TII diabetes have shown an effect on 
AD, for example, receptor agonists for incretin (IRA) 

such as semaglutide, which is shown not to cross the 
BBB. However, this compound is still one of the most 
promising single IRA in the treatment of AD and Par-
kinson’s disease, since it is one of the most stable IRA 
[100]. Metformin, on the other hand, is a biguanide 
used as an oral antidiabetic drug. In AD, it has been 
demonstrated that it can act as an activator of chaper-
one-mediated autophagy in a mouse AD model [101]. 
It should be noted that autophagy is a key process in 
neurodegenerative diseases, as it is considered a hunter 
of aggregates [102]. The latter opens new therapeutic 
approaches that seek to induce autophagy in neurode-
generative diseases [103]. Intranasal insulin is a novel 
treatment for TII diabetes, which has demonstrated 
promising results in AD, as it improves brain insulin 
signaling and, consequently, ameliorates the cognitive 
performance and metabolic integrity of the brain in 
patients with AD [104].

All the latter are consistent with an association between 
glucose metabolism impairment and AD. Furthermore, 
use of fluoro (F18)-2-deoxy-d-glucose (FDG)-PET, 
which involves a glucose analog to evaluate carbohydrate 
metabolism in the brain, has been proposed as a poten-
tial biomarker [105].

Tau post‑translational modifications
Microtubule‑associate protein tau
Tau protein is a microtubule-binding protein described 
as a MAP that binds tubulin [106]. Due to the plasticity 
of its encoding gene (Chr. 17, region 17q 21 in humans), 
some of its exons (2, 3, 4A, 6, 8, 10, and 14) can be pro-
cessed by alternative splicing, thus generating several iso-
forms [107]. In humans, 6 isoforms have been described, 
which consists of two domains, an amino terminal 
domain and a carboxy-terminal domain [108]. The first 
one is denominated “projection domain,” which is rich in 
proline and it also has an acid region. The C-terminal is 
the principal binding domain of tau, and it contains three 
(3R) or four (4R) internal repeats [108].

In the central nervous system, tau under normal con-
ditions provides stability to the microtubules (MT) and 
articulates the transport system of signaling molecules 
and cellular components [109]. Those functions are dis-
rupted during the course of AD, due to several changes in 
the pattern of post-translational modifications.

Post‑translational modifications
Tau protein can suffer phosphorylations, methylations, 
ubiquitinations, and glycosylation/truncation, post-
translational modifications that generate different tau 
variants.
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Phosphorylation
Tau has over 30 aa that can be phosphorylated, which 
includes ser, thr, and tyr [110]. In AD, tau is hyperphos-
phorylated, which captures native tau and other micro-
tubules-associated proteins, causing the disassembly of 
microtubules [110].

Subsequently, there is a destabilization of the cytoskel-
eton, produced by the alteration of tau-dependent 
cellular functions, such as vesicular and organelle trans-
port, axonal growth, and nerve signal propagation. This 
anomaly is known as tauopathies and is present in many 
neurodegenerative diseases [111]. There are 20 diseases 
categorized as tauopathies, which are sub-divided into 
two groups, a primary and a secondary; Alzheimer dis-
ease is part of the secondary group, and it is also the most 
preponderant [111]. The secondary group is character-
ized for the presence of both intracellular tau pathology 
and extracellular amyloid plaque deposits [111]. The par-
ticularity of this tauopathy is the formation of insoluble 
deposits called neurofibrillary tangles (NFT) in the three 
(3R) and four (4R) isoforms [112]. The dysfunctionality 
caused by NFT is manifested from the soma to the den-
drites, and the most commonly affected regions of the 
brain are the entorhinal cortex, the hippocampus, and 
the neocortex [112].

Studies have demonstrated how an increased activity 
of kinases, such as CDK5, and downregulation of phos-
phatases influences tau hyperphosphorylation, leading 
to the oligomer formation of tau [113, 114]. The dereg-
ulation of CDK5 is due to the formation of CDK5/p25 
complex, product of p35 splitting, possibly as a result of 
oxidative stress and amyloid peptides to which the neu-
ron has been exposed [115, 116]. The latter leads to the 
proteolysis of p35, transforming into p25, a fragment of 
the protein that is neurotoxic and has an active and a 
totally extended conformation [115]. The conformational 
change that took place and the generation of p25 impacts 
the way CDK5 activates, given the fact that the latter 
activation lasts longer than p35 [115]. This conversion 
results in CDK5 hyperactivity and subsequently, a pos-
sible hyperphosphorylation of tau protein and neurofila-
ments, along with a cytoskeletal alteration and eventually 
neuronal death [117].

Their conformational structure changes from an a-helix 
to a b-sheet structure, which facilitates the formation of 
the oligomers [20].

The latter is the basis of the neuroimmunomodulation 
theory, proposed by our laboratory [118–120]. Indeed, 
fragments from paired-helical filaments (PHF) (with 
hyperphosphorylated tau) and other molecules (such 
as Ab peptides and advanced glycation end products 
(AGEs)) may act as a “danger signal,” activating the rest-
ing microglia [120, 121]. Activated microglia increases 

the pro-inflammatory signaling through the NFkb path-
way, leading to the increased activation of several kinases, 
such as CDK5 and GSK3b [122]. The latter increases tau 
phosphorylation, in a cyclic course of events that even-
tually leads to chronic neuroinflammation and neurode-
generation [122].

It should be noted, however, that not only the hyper-
phosphorylation is pivotal on AD, but also which of the 
putative phosphorylation sites are target of the kinases. 
Furthermore, it was demonstrated in  vitro that oxida-
tive stress promotes tau dephosphorylation at the Tau1 
epitope in SHSY5Y cells [123]. The latter was dependent 
on the activity of the cdk5/p35 complex, since an increase 
in the substrate phosphorylation as well as for the com-
plex association was observed [123]. Also, oxidative 
stress induced a decrease in the amount of inhibitor-2 
bound to phosphatase PP1, associated to an increased 
phosphorylation of the inhibitor-2 protein.

Thus, hyperphosphorylation of tau relies in a shift of 
balance between the kinases and phosphatases, in which 
the upregulation of the kinases activity exceeds the phos-
phatase activity.

Methylation
Methylation is the enzymatic addition of methyl (CH3) 
groups to protein substrates [124]. In this case, methyl-
transferases transfers the methyl group from the s-aden-
osyl methionine to the target residues: lysine or arginine 
[124]. In tau protein, this post-translational modifica-
tion can play different roles during the pathological pro-
cesses leading to AD [22]. It has been described lysine 
methylation is an endogenous post-translational modi-
fication that modulates tau aggregation [22]. In  vitro 
studies showed that Lys methylation impaired total fila-
ment length in a stoichiometry-dependent manner [22]. 
Moreover, mono-methylation and di-methylation of tau 
are related to normal aging and AD, respectively [22]. It 
should be noted that several lys are next to ser/thr, which 
are the key aa involved in phosphorylation.

In a mass spectrometry analysis of PHFs derived from 
AD brains, several lysine residues were detected dis-
tributed in the projection domain and the microtubule-
binding domain (MBD), which are susceptible to be 
methylated [125]. Also, aggregated tau derived from AD 
brains is monomethylated at seven lysine residues in the 
proline-rich region and the R1/R2 repeats of the MBD 
[125]. Of these residues, the most frequently methyl-
ated ones are K180 and K267, in contrast to K290 which 
is has the lowest level of methylation [125]. Interestingly, 
in PHF-tau, phosphorylation of S262, which reduces tau 
affinity for microtubules, is found more frequently in the 
presence of methylated K267 [125].
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Also, in PHF-tau, another residue, K254, was found to 
be mainly methylated and, in a lesser extent, ubiquity-
lated [125]. The latter suggests that methylation may pre-
vent tau degradation by the proteasome.

All the latter suggests that tau lysine mono-methylation 
leads to a confirmation that allows self-assembly and 
aggregation. Considering lysine methylation is an apolar 
post-translational modification, it could be possible that 
the shift in the patter of methylation, from di-methylated 
to mono-methylated, exposes the residues susceptible for 
phosphorylation, blocking the residues for ubiquitination 
and, consequently, will be susceptible for self-assembly.

Ubiquitination
The quality control of the proteins realized by the ubiq-
uitin-proteasome system (UPS) is fundamental. Ubiq-
uitination is the specific binding of ubiquitin, a small 
8.6 kDa regulatory protein to tag proteins for degradation 
by the UPS. Proteins that will be eliminated are poly-
ubiquitinated and identified by the proteasome for their 
degradation [126].

As several other neurodegenerative diseases, a major 
trademark of AD is the accumulation of misfolded pro-
teins. In non-pathological conditions, tau is ubiquitinated 
and processed in the proteasome [127]. In AD, it has 
been demonstrated that the ubiquitin-proteasome path-
way is impaired and dysfunctional [128]. Since the ubiq-
uitin-proteasome system is pivotal in tau degradation, 
its impairment leads, consequently, to tau accumulation 
[129]. It should be noted that the first step in the ubiqui-
tin-proteasome system is the activation of ubiquitin in an 
ATP-dependent manner, mediated by the ubiquitin-acti-
vating enzyme (E1) [130]. Thus, if less intracellular ATP 
is generated due to the mitochondrial dysfunction, less 
ubiquitination will occur. This would explain, at least in 
part, the accumulation of aggregated tau proteins.

Glycosylation/truncation
These modifications include glycosylation and trunca-
tion, both of which occur in early stages of AD.

In regard to glycosylation, this post-translational modi-
fication is the covalent attachment of oligosaccharides to 
a protein, tau in this case. Glycosylation of tau protein 
was non-physiological in the brain of AD patients, and 
this abnormal pattern of glycosylation was not detected 
in control patients [131]. In other study, Liu et al. [132] 
have shown that abnormal in  vitro glycosylation modu-
lates the phosphorylation of tau by the kinases PKA, 
GSK-3, and CDK-5, which, in turn, inhibits dephos-
phorylation by the phosphatases PP2A and PP5 [133]. 
The latter is closely related to the negative correlation 
between O-glycosylation of tau and its phosphorylation 

[132, 134]; thus, interaction between many post-transla-
tional modifications may be necessary to induce the oli-
gomer tau formation.

Truncation is another post-translational modifica-
tion that enhance the capacity of tau to aggregate [135]. 
In AD patients’ brains, this process occurs in D13, E391, 
and D421 [136]. The latter leads to an accumulation of 
tau protein truncated at D13, E391, and D421, which cor-
relates with AD progression [136]. These truncated tau 
forms are found in PHFs [137], and tau cleavage occurs 
after its hyperphosphorylation [138]. Indeed, an in vitro 
model of ethanol-induced neuronal apoptosis, tau hyper-
phosphorylation, occurs before its cleavage, and both 
tau hyperphosphorylation and apoptosis are blocked by 
lithium [138].

Neuroinflammatory mechanisms involved 
in microglial activation
Extracellular ATP role
ATP is an intracellular signaling molecule, released into 
the extracellular medium when there is damage to the 
CNS from injured cells. Extracellular ATP activates the 
microglia through P2X (ionotropic) purinergic receptors 
[139] and induces cytokine release in the microglia [140]. 
In the CNS, ATP is released from glial cells and nerve 
terminals, functioning as a neurotransmitter or intracel-
lular signaling [139].

Microglia migrates to where the damage is by promot-
ing tissue repair but in turn propels excess inflammatory 
processes and can release neurotoxic factors that can 
increase neurodegeneration [141].

Extracellular ATP is a key player in the control of 
neuronal activity through a microglia-driven negative 
feedback [142]. Indeed, microglia suppresses neuronal 
activation through its capacity to sense and catabolize 
extracellular ATP, which is released upon neuronal acti-
vation by astrocytes and neurons [142]. ATP is catabo-
lized by the microglial hydrolyzing enzymes CD39 and 
CD73 into AMP and adenosine respectively. Adenosine, 
then, suppresses the neuronal activity via the adenosine 
receptor A present in neurons, thus establishing the 
microglia-mediated negative feedback mechanism [142].

In a β-amyloid (Aβ1-42)-based mouse model of early 
AD, it has been demonstrated an increased release of 
ATP from neurons coupled to an increased density and 
activity of ecto-5′-nucleotidase (CD73)-mediated for-
mation of adenosine selectively activating A2AR [143]. 
Moreover, CD73 inhibition impaired long-term potentia-
tion (LTP) in mouse hippocampal slices [143].

All the later suggests that extracellular ATPs, and more 
specifically, adenosine, are danger signals that might 
be involved in synaptic loss. Consistent with the lat-
ter, ATP release from nerve terminals is increased after 
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intracerebroventricular Aβ1-42 administration, together 
with CD73 and A2AR upregulation in hippocampal syn-
apses. Importantly, this increased CD73 activity is criti-
cally required for Aβ1-42 to impair synaptic plasticity 
and memory since Aβ1-42-induced synaptic and memory 
deficits were eliminated in CD73-KO mice [143]. These 
observations establish a key regulatory role of CD73 
activity over neuronal A2AR and imply CD73 as a novel 
target for modulation of early AD. On the other hand, a 

50% decrease in ATP production has been observed in 
late-onset AD [79]. The latter is also linked to decreased 
glucose uptake and decreased ubiquitination.

It should be noted, however, that all the mechanisms 
mentioned above are indirect effects and further studies 
are required to fully stablish the role of extracellular ATP 
in AD. For that, it would be relevant to evaluate the con-
centration of adenosine by fluorescence and the activity 
of the receptors by electrophysiology.

Fig. 1  Glucose metabolism and its involvement in AD. There are several mechanisms in which, directly or indirectly, glucose is involved in AD. (i) 
As a potential mechanism, a diagram with a general metabolic dysfunction that leads to an increased insulin resistance, and consequently, lower 
glucose uptake; (ii) in post-translational modifications in which glucose or glycans are required, such as methylation. These modifications also alter 
others post-translational modifications, such as phosphorylation and ubiquitination, which leads to tau aggregation and (iii) through the generation 
of ATP, that is released to the extracellular, where it can be sensed by microglia, and then transformed into adenosine. This adenosine suppresses 
neuronal activity and in the long term, causes synaptic dysfunction. ER, endoplasmic reticulum; ADP, adenosine di-phosphate; A2AR, adenosine 
receptor type 2; GLUT, glucose transporter ; PHF, paired helical filaments; CDK5, cyclin-dependent kinase type 5; CD73: 5′-nucleotidase; CD39, 
ectonucleoside triphosphate diphosphohydrolase-1
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Conclusions
The influence of glucose metabolism is evident in several 
aspects of AD. First is through insulin resistance and dia-
betes with ER stress supported by medical evidence. This 
is also consistent with the fact that ER stress is also part 
of the UPR when accumulation of misfolded proteins 
occurs, such as Aβ peptide, and tau protein in AD. A piv-
otal part of this mechanism is also the post-translational 
modifications as they are key regulators of protein folding 
and degradation. In the case of tau protein, methylation 
and phosphorylation are the main regulators of tau self-
assembly and aggregation. But other post-translational 
modifications, such as ubiquitination, are also relevant. 
The glucose metabolism is also involved in neuroinflam-
matory mechanisms regarding neurodegeneration and 
extracellular ATP, which is the source for adenosine gen-
eration. Adenosine, through its receptor in the neurons, 
stops neuronal activity, thus promoting neuronal decline 
and upregulation of apoptotic pathways.

Then, there are several mechanisms that overlap and 
fail, facilitating the aggregation of tau protein. One of 
them is the regulation of the glucose mechanism and 
the concomitant loss of insulin sensitivity. Both alter 
the capacity of the ER by decreasing the amount of 
energy available. Together with this, the mechanisms 
to avoid protein aggregation, driven by the chaperone 
proteins in the ER, are insufficient [144]. In addition, 
by decreasing the amount of energy, the ubiquitination 
that tags tau for degradation decreases. All alterations 
of the protein are related to dysmetabolism. Both tau 
hyperphosphorylation and metabolic alterations are 
situated in an inflammatory scenario that promotes 
neurodegenerative processes by activating microglia 
[145]. If we consider all the summarized above, during 
the course of AD, glucose metabolism is a key mediator 
that promotes a metabolic dysfunction, which lead to 
protein aggregation, and consequently, neuronal death 
is gradually reached (Fig.  1). In this review, we high-
light several mechanisms involving glucose metabolism 
impairment that act collectively in the etiology and 
progression of AD, which is why it is currently accepted 
that AD is a novel diabetes type 3.
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