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Abstract 

Background:  Analysis of functional brain networks in Alzheimer’s disease (AD) has been hampered by a lack of 
reproducible, yet valid metrics of functional connectivity (FC). This study aimed to assess both the sensitivity and 
reproducibility of the corrected amplitude envelope correlation (AEC-c) and phase lag index (PLI), two metrics of FC 
that are insensitive to the effects of volume conduction and field spread, in two separate cohorts of patients with 
dementia due to AD versus healthy elderly controls.

Methods:  Subjects with a clinical diagnosis of AD dementia with biomarker proof, and a control group of subjec-
tive cognitive decline (SCD), underwent two 5-min resting-state MEG recordings. Data consisted of a test (AD = 28; 
SCD = 29) and validation (AD = 29; SCD = 27) cohort. Time-series were estimated for 90 regions of interest (ROIs) in 
the automated anatomical labelling (AAL) atlas. For each of five canonical frequency bands, the AEC-c and PLI were 
calculated between all 90 ROIs, and connections were averaged per ROI. General linear models were constructed to 
compare the global FC differences between the groups, assess the reproducibility, and evaluate the effects of age and 
relative power. Reproducibility of the regional FC differences was assessed using the Mann-Whitney U tests, with cor-
rection for multiple testing using the false discovery rate (FDR).

Results:  The AEC-c showed significantly and reproducibly lower global FC for the AD group compared to SCD, in the 
alpha (8–13 Hz) and beta (13–30 Hz) bands, while the PLI revealed reproducibly lower FC for the AD group in the delta 
(0.5–4 Hz) band and higher FC for the theta (4–8 Hz) band. Regionally, the beta band AEC-c showed reproducibility for 
almost all ROIs (except for 13 ROIs in the frontal and temporal lobes). For the other bands, the AEC-c and PLI did not 
show regional reproducibility after FDR correction. The theta band PLI was susceptible to the effect of relative power.

Conclusion:  For MEG, the AEC-c is a sensitive and reproducible metric, able to distinguish FC differences between 
patients with AD dementia and cognitively healthy controls. These two measures likely reflect different aspects of 
neural activity and show differential sensitivity to changes in neural dynamics.
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Introduction
Cognitive functioning requires coordinated interaction 
between neurons within and across specialized brain 
areas [1]. In order to achieve this coordination, neuronal 
populations need to be functionally connected, which 
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is defined as a statistical dependency between (remote) 
neurophysiological signals being present [2]. The sig-
nals recorded from neuronal populations often consist 
of oscillations that cover a broad frequency spectrum. In 
order to assess the connectivity within and between the 
oscillatory systems, a degree of synchronization must 
be present (often measured through amplitude or phase 
correlation). Phase or amplitude correlation allows for 
effective neuronal coordination and therefore normal 
cognitive functioning [3–5].

Alzheimer’s disease (AD), the most common form of 
dementia, is characterized by pathologically accumulat-
ing amyloid-β and hyperphosphorylated tau in the brain, 
leading to synaptic dysfunction [6–8]. Synaptic pertur-
bation as present in AD patients is thought to disturb 
neuronal synchronization. As a result, communication 
within and between the brain areas is disrupted, leading 
to cognitive impairment. In previous studies, resting-
state functional networks have indeed been shown to be 
altered in AD patients [9–12]. In order to better under-
stand the disease process—and find novel therapeutic 
targets—it is of importance to gain an improved under-
standing of the role of disrupted synaptic function in AD.

Both electroencephalography (EEG) and magne-
toencephalography (MEG) are attractive modalities to 
address these challenges; both techniques carry low-risk 
as well as low-burden to patients and are non-invasive. 
Both directly measure neuronal activity with millisecond 
temporal resolution, allowing for the reconstruction of 
oscillatory neuronal activity, and functional brain net-
works [13, 14]. An added benefit of MEG is the lack of 
need for a reference, aiding interpretability. Additionally, 
while skull and scalp tissue perturb EEG potentials, they 
do not affect magnetic fields [13]. Finally, recent studies 
have demonstrated that MEG can detect signals origi-
nating from the deeper brain regions by projecting data 
into ‘source space’ [15–20], thereby offering insight into 
neuronal functioning at both the cortical and subcortical 
levels.

While M/EEG-derived metrics show potential as mark-
ers of neurodegeneration, such markers are only useful 
if they have a high reproducibility (in the context of this 
paper defined as reproducing a given pattern of AD ver-
sus elderly healthy control functional connectivity (FC) 
differences) and sensitivity (discriminatory value between 
AD and elderly healthy controls). Previous studies have 
already established the connection between reduced cog-
nitive performance and (sub)cortical oscillatory slowing 
in MEG and EEG [17, 21, 22], reflected by higher relative 
power in the lower (delta and theta) frequency bands, 
lower relative power in the higher (alpha and beta) fre-
quency bands, and lower peak frequency. However, 
when it comes to the analysis of FC or networks in AD, 

the lack of reproducible metrics of functional connec-
tivity has led to conflicting results [23, 24]. Nonetheless, 
the importance of reproducible estimates of FC in M/
EEG literature is increasingly recognized [25], with sev-
eral studies having provided significant insights. Mar-
quetand and co-workers assessed the reliability (defined 
as test-retest reliability, as well as methodological and 
technical influencing factors) of the imaginary part of 
coherency and the weighted phase-lag index and found 
a strong increase of reliability with more trials (10-s data 
segments). For MEG, global reliability for both metrics 
was excellent in the alpha band, as well as high-density 
EEG, with the delta band being the worst. Finally, they 
found lower reliability for both metrics in a vertex-based 
regional analysis, compared to global reliability [26]. 
Additionally, Colclough and colleagues tested 12 metrics 
of MEG functional connectivity against the criteria of 
individual- and group-level reproducibility again using a 
test-retest design [27]. Overall, phase-based metrics and 
imaginary partial coherence performed worst, while the 
leakage-corrected amplitude envelope correlation (AEC-
c) showed reproducible results. Recently, we evaluated 
the reproducibility of disease-associated effects for sev-
eral functional connectivity metrics in two EEG cohorts 
of AD dementia patients and subjective cognitive decline 
(SCD) subjects [24]. The AEC-c (in the alpha and beta 
band) was the most reproducible metric, and it also cor-
related with disease severity and was not influenced by 
relative band power, demographic variables, (co)morbidi-
ties, or interfering medication. Important advantage of 
the current study is MEG’s high spatial resolution com-
pared to EEG and the opportunity to investigate repro-
ducibility on regional cortical and subcortical levels.

In this study, we evaluated two metrics of FC, in 
source space, in two clinically derived MEG cohorts of 
AD dementia and elderly control subjects, using the 
AEC-c and the phase lag index (PLI). These metrics were 
selected based on their performance in previous work 
[24, 27, 28], and their use in AD literature [11, 29–35]. 
These two measures likely reflect different aspects 
of neural activity and show differential sensitivity to 
changes in neural dynamics [36]. Power envelope corre-
lations have shown a good correlation to BOLD signals, 
which, in turn, have been matched with known structural 
connectivity [5]. Phase-based measures seem less deter-
mined by structural connectivity and more related to 
stimulus context, task, or cognitive setting. Spatially, an 
MEG study using the phase lag index revealed patterns of 
highly connected regions that differed across frequency 
bands [37]. In the alpha band, the most strongly con-
nected regions were the visual and posterior cingulate 
cortex. In the beta band, this involved the sensorimotor 
and parietal cortex, and in the gamma band, the temporal 
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and parietal areas showed high functional connectivity. 
In contrast, analysis of orthogonalized power envelope 
correlations showed prominent hubs in the dorsolateral 
prefrontal, lateral parietal, and temporal cortex for the 
beta band, while theta band interactions involved major 
hubs in the medial temporal lobe and gamma band hubs 
in the sensorimotor cortex [38]. Both metrics are insensi-
tive to the effects of volume conduction and field spread. 
We chose only to use metrics that are immune to these 
effects, because there is increasing evidence that inter-
pretable connectivity estimation is only possible when 
zero-lag connections are removed or ignored [27]. Signal 
leakage has a profound impact on FC estimates, result-
ing in spurious connections that in turn causes inflated 
measures of consistency. Interpretation of FC estimates 
is therefore problematic when metrics are used that do 
not address this problem. We first assessed sensitivity, i.e. 
which metric could identify significant group FC differ-
ences and patterns in a test cohort with sufficiently large 
effect size, both on a global and regional levels. If the 
effect size is adequately large in a cohort with relatively 
large contrasts (AD versus SCD), it may also be suit-
able to capture smaller contrasts (i.e. MCI versus SCD) 
in future studies. Secondly, we repeated the analysis in a 
second independent cohort to see if these effects would 
reproduce. Thirdly, we assessed whether covariates age 
and relative power significantly influenced the observed 
group differences. Finally, to see which metric correlated 
with global cognitive performance, correlations with 
Mini-Mental State Examination (MMSE) scores were cal-
culated. Based on previous findings, we expected that the 
AEC-c would provide the most robust results, mainly for 
the alpha and beta bands.

Methods
Participants
Subjects were recruited from the Amsterdam Demen-
tia Cohort (ADC), consisting of patients who visited the 
memory clinic in the Alzheimer Centre VUmc, Amster-
dam UMC, between May 2015 and March 2018. Sub-
jects followed a standard dementia screening protocol 
which consisted of history taking, neurological exami-
nation, blood tests, neuropsychological tests, magnetic 
resonance imaging (MRI), EEG or MEG recording, and, 
if possible, lumbar punction to obtain cerebrospinal fluid 
(CSF) and/or positron emission tomography (PET) [39]. 
The local Medical Ethics Committee has approved a gen-
eral protocol for biobanking and use of the clinical data 
for research purposes. All subjects gave written informed 
consent for the use of their data for research purposes.

Subjects were included if they had received a clini-
cal diagnosis of probable Alzheimer’s Dementia (AD) or 
SCD during a multidisciplinary meeting consisting of a 

neurologist, radiologist, neuropsychologist, clinical neu-
rophysiologist, nurse, and psychiatrist [40]. SCD subjects 
were included as elderly controls. The presence of Alzhei-
mer’s disease pathology was subsequently verified using 
CSF and/or amyloid-PET, if available. In order to classify 
as amyloid-positive, subjects had to have either positive 
CSF Aβ 1–42 and/or positive amyloid-PET. For CSF Aβ 
1–42, drift-corrected values were used; the cut-off was 
set at 813 pg/ml [41]. When both amyloid-PET and CSF 
data were available, amyloid-PET was decisive. For posi-
tive tau pathology, p-tau values were used; the cut-off was 
set at 52 pg/ml. Potential AD subjects were excluded if 
they were amyloid- and tau-negative. Potential SCD sub-
jects were excluded if they were positive for amyloid and 
tau pathology according to the aforementioned criteria. 
In case there was no biomarker information available, 
follow-up visits were examined (if available) to see if the 
diagnosis had remained unchanged. For the purpose of 
internal validation, subjects were randomly allocated to 
either of the two cohorts, thus creating a test and vali-
dation cohort of approximately equal size. Although the 
allocation of subjects was random, care was taken to 
select a sample where there was as little difference as pos-
sible between the diagnostic groups, in order to retain 
equal conditions for reproducibility.

Data acquisition
MEG recordings
MEG data were acquired with a 306-channel whole-head 
MEG system (Elekta Neuromag Oy, Helsinki, Finland), 
while subjects were in the supine position in a magneti-
cally shielded room (VacuumSchmelze GmbH, Hanua, 
Germany). For each subject, two 5-min mainly eyes-
closed resting-state recordings were made. Subjects were 
instructed to open and close their eyes several times on 
cue during the recordings for clinical purposes (i.e. to 
assess the reactivity of the alpha rhythm). Magnetic fields 
were recorded at a sample frequency of 1250 Hz, with 
an anti-aliasing filter of 410 Hz and a high-pass filter of 
0.1 Hz. The subjects’ head position in relation to the MEG 
sensors was recorded using signals from four or five head 
localization coils.

Pre‑processing of MEG data
Raw MEG data were visually inspected for malfunc-
tioning and noisy channels, which were subsequently 
removed, after which, the temporal extension of Signal 
Space Separation (tSSS) in the MaxFilter software (Elekta 
Neuromag Oy, version 2.2.15) [42] was applied, as well as 
a broad-band filter (0.5–100 Hz).

Subjects’ MEG data were co-registered with a best-
matching template MRI using surface matching, with 
an estimated resulting accuracy of 4 mm [43]. The MRI 
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templates were custom-built using 3D T1-weighted MRI 
images and sized extra small, small, medium, and large. 
A single sphere was fitted to the outline of the scalp as 
obtained from the co-registered MRI, which was used as a 
volume conductor model for the atlas-based beamformer 
approach [37] that was used in order to reconstruct neu-
ronal activity in cortical and subcortical regions. Based 
on the automatic anatomical labelling (AAL) atlas [44, 
45], 78 cortical and 12 deep grey matter regions of inter-
est (ROIs) were defined in a subject’s co-registered MRI, 
using the centroid voxel for each ROI [46]. For each of 
these centroid voxels, time-series (i.e. virtual electrodes) 
of neuronal activity were reconstructed by projecting 
sensor signals to source space using beamforming [47, 
48]. The broadband data were used for the estimation 
of the beamformer weights, in order to avoid overesti-
mation of covariance between channels [49] as well as 
a unity noise covariance matrix, and an equivalent cur-
rent dipole as source model. On average, 302 s of data 
(range 270–343 s) were used for the estimation of the 
data covariance matrix, which was regularized using sin-
gular value truncation with the default setting of 1e−06. 
The optimum orientation of the equivalent current dipole 
was found using singular value decomposition [50]. The 
broadband sensor-level data were subsequently projected 
through the normalized beamformer weights [51] result-
ing in a time series of neuronal activity for each ROI.

Time‑series analyses
The time series for these ROIs were downsampled by a 
factor of 4 and used for further analysis. For each subject, 
10 non-overlapping, artefact-free, eyes-closed epochs of 
4096 samples (13.1072 s) were selected, based on care-
ful visual inspection by an experienced assessor (AG). 
First, all epochs received a quality score of 1 to 4: 1 = no 
eye movement, muscle artefacts, signs of drowsiness, or 
other artefacts; 2 = minimal presence of artefacts; 3 = 
moderate presence of artefacts; and 4 = strong presence 
of artefacts. For a more detailed description of the selec-
tion method, see also [52]. A second assessor (DS) subse-
quently selected ten epochs with the highest quality score 
for each subject. The optimal epoch length was based on 
previous work, which established a minimum length of 6 
s for the AEC and 10 s for the PLI as the onset of stabil-
ity for estimates of functional connectivity at the source 
level [53]. Inspection and further analyses were done 
using the in-house software package Brainwave (version 
0.9.152.12.26), available from http://​home.​kpn.​nl/​stam7​
883/​brain​wave.​html.

The time series were digitally filtered using a discrete 
fast Fourier transform, to calculate the relative power 
for each of five canonical frequency bands: delta (0.5–4 
Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), 

and gamma (30–48 Hz) and the peak frequency (defined 
in the range 4–13 Hz), as a mean over 90 ROIs. PLI and 
AEC-c were estimated for the aforementioned five fre-
quency bands in each cortical ROI (n = 78) and deep 
grey matter ROI (n = 12), and as a mean overall (n = 
90) ROIs (referred to here as global FC). Analyses were 
run for each frequency band and epoch separately. The 
results over the 10 epochs were averaged for each subject.

Functional connectivity metrics
The PLI [54] is calculated from the asymmetry of the 
distribution of instantaneous phase differences between 
the time series from two brain regions, rendering it 
insensitive to shared signals at zero phase lag:

where Δφ(tk) is the phase difference at time point tk 
between two time series, calculated for all time-points 
per epoch; sign stands for signum function; < > denotes 
the mean value; and || indicates the absolute value. PLI 
values range between 0 and 1, where 0 indicates no 
(non-zero-lag) coupling and 1 refers to perfect (non-
zero-lag) phase locking. The phases (and amplitude 
envelopes) were estimated using the Hilbert transform.

The amplitude envelope correlation [55] is an ampli-
tude-based metric which estimates the coupling between 
two time series by estimating the Pearson correlation 
between the envelopes of the amplitudes of these time 
series. The corrected amplitude envelope correlation 
(AEC-c) overcomes the effects of spatial leakage by using 
pair-wise orthogonalisation prior to the AEC estimation 
for each pair of time series (i.e. the amplitude envelopes 
computed using the Hilbert transform, after band-pass 
filtering of the signals). The correction is performed by 
orthonogolization separately for each pair of time/series 
(i.e. the power envelopes, computed using the Hilbert 
transform, after band-pass filtering of the signals) in two 
directions by means of linear regression, meaning time-
series X is regressed out from time-series Y and time-
series Y is regressed out from time-series X, and the AEC 
values (Pearson’s correlation between the orthogonalized 
envelopes) for both directions are averaged [38]. A value 
of 1 was added to all AEC-c values and then divided by 
two in order to obtain values in the range [0 1].

The pair-wise correlations for all combinations of 
ROI time series were computed for the AEC-c and PLI 
in each band, resulting in a symmetric 90 × 90 connec-
tivity matrix, and subsequently averaged over rows (i.e. 
resulting in 1 connectivity value for each ROI, denoting 
the connectivity strength of that ROI with the rest of 
the brain).

(1)PLI =
∣

∣

〈

sign [sin (�ϕ(tk))]
〉∣

∣

http://home.kpn.nl/stam7883/brainwave.html
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Statistical analyses
Normality of the variables was checked by histograms 
and Q-Q plots (IBM SPSS Statistics, version 26), and if 
violated, they were log-transformed. ANOVA on ranks 
[56] was performed for variables that could not be suc-
cessfully log-transformed. Demographic differences and 
epoch quality between the AD and SCD groups, as well 
as the test and validation cohorts, were analysed using 
independent samples t-tests, Mann-Whitney U tests, or 
chi-square tests where appropriate. A p < 0.05 was con-
sidered statistically significant.

Sensitivity
To evaluate which FC metric and which bands were most 
sensitive to group differences between AD and HC sub-
jects, we created general linear models (GLMs). GLMs 
were chosen as they give an estimate of the effect size 
(standardized beta). As mentioned in the ‘Introduc-
tion’ section, due to inconsistencies and variability in 
reported FC group differences between AD and controls, 
our main aim was to evaluate whether it was possible to 
obtain results that would reproduce in a second cohort 
(reproducibility, see the ‘Reproducibility’ section), with 
sufficiently large effect size (sensitivity). Additionally, 
this facilitated comparison with later models in which 
covariates were added. The FC metric (AEC-c and PLI 
in each band) was added as a dependent variable, and 
the diagnosis was entered as a predictor. In order to rule 
out the effect of possible neurodegeneration on our find-
ings, the analysis was repeated excluding SCD subjects 
without biomarkers. To evaluate whether the observed 
group differences were region-specific, a Mann-Whitney 
U test was performed for the FC value in each 90 ROIs 
separately. False discovery rate (FDR) [57] correction 
was applied to p-values of the regional Mann-Whitney U 
group comparisons.

Reproducibility
To evaluate the reproducibility of the observed global 
differences between the groups using each metric, the 
GLMs were repeated in the validation cohort. In order to 
investigate whether the main results did not simply rep-
resent a ‘lucky draw’ that did not replicate to other splits 
of the cohort, we repeated the global analysis, splitting 
the sample randomly for five additional iterations, and 
tested whether reproducibility between the two subsets 
remained. FC values and effect sizes were averaged over 
all samples. Regionally, we repeated the Mann-Whitney 
U tests in the validation cohort to assess reproducibility. 
To assess the reproducibility of functional connectivity 
matrices within the patient groups (i.e. between AD sub-
jects in the test and validation cohort), correlations were 
calculated using Spearman’s rho (Matlab R2012a, version 

7.14.0.739), between the test and validation cohort for 
both FC metrics and in each band. Only the upper tri-
angle of the symmetric FC matrices was used, and again 
FDR correction was applied.

Effects of covariates
Two GLMs were constructed to examine the effect of 
covariates age and the relative power of the frequency 
band for which the functional connectivity was esti-
mated. Age was selected as a covariate because SCD 
subjects tended to be younger than AD patients. Relative 
power was added to evaluate the possibility that observed 
group effects were (partly) correlated to spectral infor-
mation. Since adding covariates in a model reduces sta-
tistical power, the two cohorts were combined into one 
cohort to retain statistical robustness.

Correlation with global cognition
Finally, correlations between the global FC metrics for 
each band and the MMSE score were estimated using 
Spearman’s rho. We selected MMSE because it is a gen-
eral estimate of cognitive functioning that is widely used 
in dementia research. The correlations were only esti-
mated in the AD group of the test and validation cohort 
combined, in order to avoid inflated correlations due to 
the diagnosis effect.

Results
Cohort characteristics
The initial sample consisted of 118 subjects. Five subjects 
were excluded: 2 AD subjects of whom no biomarker 
information was available, 1 SCD subject positive for AD 
pathology, and 2 SCD subjects with an unreliable SCD 
diagnosis due to concomitant disease (epilepsy, elabo-
rate psychiatry). The final sample consisted of 113 sub-
jects, randomly split over two cohorts. The test cohort 
consisted of 29 SCD subjects and 28 AD subjects, and 
the validation cohort consisted of 27 SCD and 29 AD 
subjects. Because these cohorts were derived from clini-
cal practice, biomarker confirmation was unavailable for 
10 SCD subjects (3 in the test cohort, 7 in the validation 
cohort) due to failure or unwillingness to undergo lumbar 
punction and/or PET scan. Five of these subjects received 
at least one clinical follow-up, where the SCD diagnosis 
was upheld. Biomarker confirmation was available for all 
AD patients.

Within both the test and validation cohorts, the SCD 
groups were significantly younger than the AD groups. 
Additionally, the groups differed significantly (by design) 
on average MMSE score, amyloid positivity, CSF Aβ 
1–42, CSF t-tau, and p-tau levels (see Table 1).

Between the two cohorts, significant differences were 
found between the MMSE scores; the test AD group 
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had a lower average score than the validation AD group 
(median (IQR) 20 (12–28); 22 (15–29); p = 0.010 respec-
tively) (see Table  1). No other differences were found 
between the cohorts. Importantly, the quality score of 
the selected epochs did not differ between both groups 
within the cohorts, nor between the cohorts.

Global
Global sensitivity
Global FC differences between AD and SCD subjects 
in the test cohort can be found in Table 2. The analysis 
excluding the subjects without biomarkers can be found 
in Table S2. For the AEC-c, the AD group showed signifi-
cantly higher functional connectivity than the SCD group 
in the delta band (mean ± SD 0.517 ± 0.013; 0.509 ± 
0.007; p = 0.007, respectively). In contrast, compared to 
the SCD group, the AD group had significantly lower FC 
in the alpha (mean ± SD 0.521 ± 0.014; 0.530 ± 0.019; 
p = 0.038 ) and beta (mean ± SD 0.514 ± 0.006; 0.524 
± 0.017; p = 0.004) bands. For the PLI, significant group 
differences were found in the delta frequency band; how-
ever, contrary to the AEC-c, the AD group showed lower 
functional connectivity than the SCD group (0.111 ± 
0.004; 0.113 ± 0.003; p = 0.038). The PLI was higher in 
the theta band and lower in the beta band for AD patients 
compared to the SCD group (0.101 ± 0.005; 0.098 ± 
0.004; p = 0.013 and 0.052 ± 0.002; 0.053 ± 0.003; p = 
0.026, respectively).

The effect sizes were small to medium for both the 
AEC-c and PLI, with the largest effect sizes in the beta 

band for the AEC-c test and validation cohort (β = 
− 0.379; β = − 0.431, respectively) and in the theta band 
for the PLI test and validation cohort (β = 0.327; β = 
0.452, respectively).

Global reproducibility
When repeating the analyses in the validation cohort, 
the group differences remained significant for the AEC-c 
alpha and beta band (Table  2). Similarly, the PLI again 
showed significant group differences for the delta and 
theta bands. While no significant group difference was 
found for the beta band PLI for the validation cohort, a 
statistically significant difference was observed in the 
alpha band with lower PLI for the AD group (0.094 ± 
0.007; 0.100 ± 0.009; p = 0.009) compared to the SCD 
group. The results for the additional splits can be found 
in the Supplementary Information Table S3. The AEC-c 
beta band was consistently reproducible across all six 
splits. Four out of six splits gave reproducible differences 
for the PLI theta band; the AEC-c alpha band reproduced 
in three out of six splits. Finally, both the AEC-c and PLI 
delta band were reproducible across two splits. The other 
FC measures consistently did not reproduce.

Regional
Regional sensitivity and reproducibility
The regions with significant FDR-corrected group dif-
ferences for both FC measures can be seen in Fig. 1 for 
AEC-c and 3 for PLI. The results uncorrected for multi-
ple comparisons can be found in Supplementary Figs. S1, 

Table 1  Baseline cohort characteristics

n.a. not available
a Time between the start of symptoms and diagnosis
b Education level according to Verhage score (range 1–7). Depicted are the mean values ± SD or median with the interquartile range (IQR) where appropriate
* Significant (p < 0.05) group differences between AD and SCD
† Significant (p < 0.05) group differences between the test and validation cohorts

Baseline characteristics Test cohort (n = 57) Validation cohort (n = 56)

SCD (n = 29) AD (n = 28) SCD (n = 27) AD (n = 29)

Age (years) 56.7 ± 8.4 66.3 ± 7.4* 56.3 ± 10.6 64.0 ± 6.8*

Sex (female, (%)) 11 (38) 16 (57) 11 (41) 16 (55)

Symptom duration (years)a 3.5 ± 2.6 3.3 ± 2.3 3.3 ± 2.4 2.7 ± 1.6

Education level (median, (IQR))b 6 (3–7) 5 (3–7) 5 (3–7) 5 (3–7)

MMSE score (median, (IQR)) 28 (26–30) 20 (12–28)*† 27 (24–30) 22 (15–29)*†

Cerebrospinal fluid n = 19 n = 23 n = 18 n = 26
  Aβ 1–42 (mean ± SD) 1250 ± 159 544 ± 122* 1158 ± 224 568 ± 112*

  t-tau (mean ± SD) 302.1 ± 92.0 831.4 ± 465.0* 295.6 ± 176.4 661.9 ± 337.2*

  p-tau (mean ± SD) 48.9 ± 11.7 96.6 ± 37.3* 46.2 ± 12.3 81.2 ± 28.2*

Amyloid-PET n = 16 n = 14 n = 5 n = 7
  Positive PET (%) 0% 100% 0% 100%

  Epoch quality (median, IQR) 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3)
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S2, and S3 and are further discussed in the Supplemen-
tary Information.

For the AEC-c beta band, FDR-corrected group dif-
ferences were found in almost every ROI for the test 
and validation cohort, except for 13 ROIs in the frontal 
and temporal lobes (for specific details see Table  S4). 
The most reproducible region was the occipital lobe, 
more specifically all occipital ROIs revealed highly (p < 
0.01) significant group differences in both cohorts, with 
the parietal lobe as the second most reproducible. AD-
related regions, such as the left and right precuneus, 
left and right hippocampi, and the cingulate gyri, were 
equally highly reproducible, with the exception of the 
left and right anterior cingulate (Figs. 1 and 2, Table S4). 
Of the subcortical regions, the hippocampi and right 
thalamus were reproducibly highly significant, although 
all subcortical regions showed reproducible group 
differences.

For the AEC-c alpha band, after FDR correction, the 
significant group differences in the validation cohort 
disappeared, such that the significant alpha band results 
in the test cohort did not reproduce. A similar effect 
was seen for the delta band, where all regions in the 
validation cohort lost significance after FDR correction, 

and therefore, the results from the test cohort did not 
reproduce.

Both the AEC-c theta and gamma bands displayed no 
overlap between the cohorts.

After FDR correction, the PLI showed no reproduc-
ible regional group differences for any bands (see Fig. 3). 
For the uncorrected results, see again the Supplementary 
Information.

Connectivity matrices
Figure  4 shows the average FC matrices for every fre-
quency band for the AEC-c and for the AD and SCD 
groups in the test and validation cohorts. Figure 5 shows 
the resultant matrices for the PLI with a different col-
our scale for each band, because visual inspection of the 
matrices was hampered when using a similar colour scale 
across bands. The matrices with the same colour scale 
across bands can be found in Fig. S4.

On visual inspection, the matrices obtained with the 
AEC-c showed high reproducibility of the FC pattern 
for both the AD and SCD groups, for all bands except 
gamma. The AEC-c SCD groups showed a strongly 
reproducible FC pattern in the alpha band (and to 
some extent in the beta band), which was absent in the 

Table 2  Global analysis

The difference in functional connectivity (FC) between SCD and AD subjects as estimated by GLM, for the test and validation cohorts. Shown are the mean FC values 
with standard deviations and the effect sizes as represented by the standardized beta. Green depicts a positive effect size, while red depicts a negative effect size

AD Alzheimer’s disease, SCD subjective cognitive decline, GLM general linear model, AEC-c corrected amplitude envelope correlation, PLI phase lag index, SD standard 
deviation

The AEC-c in the gamma band was analysed using ANOVA on ranks
* Bold print indicates a significant (p < 0.05) group difference
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AD test and validation cohorts. Instead, the AD groups 
showed a more pronounced connectivity pattern in the 
delta band. In the SCD alpha band, especially the pari-
etal regions showed higher values for off-diagonal 
entries corresponding to FC between homologous ROIs 
(left parietal connects with right parietal). Quantifying 

FC reproducibility on the matrix level, the correlation 
between matrices from the test and validation cohort 
was highest in the beta band for the AD group (rs (88) 
= 0.87; p < 0.001, see also Table  3) and alpha band for 
the SCD group, although the beta band also performed 
well (rs (88) = 0.87; p < 0.001 and rs = 0.82 (88); p < 0.001 

Fig. 1  AEC-c significant regional group differences. Regions of interest where significant group differences, as determined using Mann-Whitney U 
testing and FDR-corrected for multiple comparisons, between the AD and SCD groups were found, shown as a colour-coded map on a template 
mesh. Each row represents a different frequency band (delta, theta, alpha, beta, and gamma), and the columns show the results for the test cohort 
(left) and validation cohort (right). Orange indicates p < 0.05, and red indicates p < 0.01
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respectively). For both groups, the gamma band showed 
the lowest correlations.

For matrices computed using the PLI, a reproduc-
ible within-group pattern was found for the alpha and 
beta band, for both patient groups. The delta, theta, and 
gamma bands showed low reproducibility between the 
test and validation cohorts. This is reflected by the corre-
lations between matrices from the two cohorts, where for 
both AD and SCD groups, the alpha band had the highest 
correlation coefficients (rs (88) = 0.41; p < 0.001 and rs 
(88) = 0.49; p < 0.001 respectively, see Table 3), although 
the correlation strength was lower than for the AEC-c. 
The delta and theta bands showed a higher correlation 
for AD than for SCD, although correlations were weak. 
The gamma band again performed worst for both groups.

Influence of covariates (age/relative power)
We repeated the GLM without covariates on the com-
bined test and validation cohort, creating a pool of 57 AD 
patients and 56 SCD subjects. In the combined model 
without covariates, we confirmed significant group dif-
ferences for the AEC-c in the delta, alpha, and beta bands 
(see also Table 4). For the PLI, we found significant differ-
ences for the delta, theta, and beta bands.

To investigate whether the observed group differences 
were influenced by the age differences between the AD 
and SCD groups, a second GLM with age as a covariate 

was created (see again Table 4). Adding age did not sig-
nificantly influence the results.

A third model with relative power in the corresponding 
frequency band as a covariate was created. For the AEC-
c, all results remained significant. For the PLI, the delta 
band result remained significant (β = − 0.222, p = 0.015), 
but the theta and beta bands lost significance (β = 0.158, 
p = 0.118; β = − 0.185, p = 0.71, respectively).

Correlation with cognitive performance
Spearman’s rho values were calculated between the 
AEC-c/PLI and the MMSE score for the combined 
AD group (n = 55, as there were two missing values 
for MMSE scores). Only the AEC-c in the alpha band 
showed a significant positive correlation with cognitive 
functioning (rs (53) = 0.309, p = 0.022), see also Table 5.

Discussion
The aim of this study was to identify which functional 
connectivity metrics could reproduce a given pattern of 
FC differences, in two clinically derived MEG-cohorts of 
patients with AD dementia and cognitively healthy con-
trol subjects. We specifically focused on two measures 
that are insensitive to the effects of volume conduction/
field spread: the AEC-c and the PLI.

Our most important finding is that reproducible dif-
ferences were found for the global AEC-c in the alpha 

Fig. 2  Reproducibility of regional group differences AEC-c beta band. A colour-coded map on a template mesh showing the reproducibility of 
significant group differences as overlapping regions of interest between the test and validation cohorts, as determined using the Mann-Whitney U 
tests and FDR-corrected for multiple comparisons, shown in green colour. See also Fig. 1
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and beta bands and for the global PLI in the delta and 
theta bands. The AEC-c effects were independent of 
relative power and age, and the alpha band AEC-c 
correlated with MMSE scores. For the PLI, the theta 
band was independent to the effect of age, but this was 
not the case for relative band power. The high spatial 

resolution of MEG compared to EEG, allowed for the 
exploration of group differences on a regional level, 
which showed reproducible effects in almost all ROIs 
for the AEC-c in the beta band, and also in AD-specific 
regions such as the precunei, the hippocampi, and the 

Fig. 3  PLI significant regional group differences. Regions of interest where significant group differences, as determined using Mann-Whitney U 
testing and FDR-corrected for multiple comparisons, between the AD and SCD groups were found, shown as a colour-coded map on a template 
mesh. Each row represents a different frequency band (delta, theta, alpha, beta, and gamma), and the columns show the results for the test cohort 
(left) and validation cohort (right). Orange indicates p < 0.05, and red indicates p < 0.01
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cingulate gyri. Regionally, the PLI showed no repro-
ducible group differences after FDR correction. Finally, 
connectivity matrices were highly reproducible within 
patient groups, with especially high correlations (rs (88) 
0.82–0.87) for the AEC-c beta band.

Global FC
The results of the global analysis show the AEC-c to be 
a consistent metric when it comes to group-level repro-
ducibility. Even across additional samples, only the 
AEC-c beta band was consistently reproducible across all 
six splits, while the AEC-c alpha band reproduced three 
out of six splits. This is in line with previous studies that 

Fig. 4  Connectivity matrices of AEC-c. Connectivity matrices averaged across all epochs and subjects. Each row represents a different frequency 
band (delta, theta, alpha, beta, and gamma), and each column shows the results for the AEC-c, for the test and validation cohorts in the AD and SCD 
groups. All bands and groups show the matrices with the same scale. The ROIs are obtained from the AAL atlas. The matrices are ordered from the 
left to the right hemisphere in the following way: rows/columns 1–15 represent left frontal regions, 16–21 left parietal regions, 22–27 left occipital 
regions, 28–39 left temporal regions, 40–54 right frontal regions, 55–60 right parietal regions, 61–66 right occipital regions, 67–78 right temporal 
regions, and 79–90 subcortical regions (see also Table S1)
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identified the AEC-c as having high test-retest reliability 
[27, 28], specifically in the alpha and beta bands [38, 58]. 
Our study extends upon this previous work by evaluat-
ing the reproducibility of AEC-c differences between 
AD dementia and SCD in two independent cohorts, 
rather than a test-retest design of one patient group. We 
observed consistent decreases in AEC-c for the alpha 
and beta bands in AD dementia compared to SCD; these 

findings are again supported by previous MEG [11] and 
EEG [24, 30, 59] studies. Another previous study com-
pared subjects with mild cognitive impairment (MCI) to 
elderly controls, using uncorrected MEG-derived enve-
lope amplitude correlations as FC metric and structural 
connectivity based on diffusion imaging, and found that 
both functional connectivity in the alpha band and struc-
tural connectivity were decreased for the MCI compared 

Fig. 5  Connectivity matrices PLI. Connectivity matrices averaged across all epochs and subjects. Each row represents a different frequency band 
(delta, theta, alpha, beta, and gamma), and each column shows the results for the PLI, for the test and validation cohorts in the AD and SCD groups. 
Note that in this figure, the scale is different for each band but the same across the groups. The ROIs are obtained from the AAL atlas, ordered from 
the left to the right hemisphere, see Fig. 4 and Table S1 for a more detailed description. See also Fig. S4 for the same results displayed using the 
same colour scale
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Table 3  Correlations between connectivity matrices

Spearman’s rho coefficients (d.f. 88) correlating the connectivity matrices for the test and validation cohorts, for the AD and SCD groups. On the left side, the results for 
the AEC-c are displayed, and on the right, the results for the PLI
* Bold print depicts a significant (p < 0.05) correlation

AEC-c PLI

AD SCD AD SCD

Delta (0.5–4 Hz) rs = 0.74
p < 0.001*

Delta (0.5–4 Hz) rs = 0.60
p < 0.001*

Delta (0.5–4 Hz) rs = 0.13
p < 0.001*

Delta (0.5–4 Hz) rs = 0.11
p < 0.001*

Theta (4–8 Hz) rs = 0.70
p < 0.001*

Theta (4–8 Hz) rs = 0.71
p < 0.001*

Theta (4–8 Hz) rs = 0.23
p < 0.001*

Theta (4–8 Hz) rs = 0.09
p < 0.001*

Alpha (8–13 Hz) rs = 0.62
p < 0.001*

Alpha (8–13 Hz) rs = 0.87
p < 0.001*

Alpha (8–13 Hz) rs = 0.41
p < 0.001*

Alpha (8–13 Hz) rs = 0.49
p < 0.001*

Beta (13–30 Hz) rs = 0.87
p < 0.001*

Beta (13–30 Hz) rs = 0.82
p < 0.001*

Beta (13–30 Hz) rs = 0.21
p < 0.001*

Beta (13–30 Hz) rs = 0.37
p < 0.001*

Gamma (30–48 Hz) rs = 0.42
p < 0.001*

Gamma (30–48 Hz) rs = 0.25
p < 0.001*

Gamma (30–48 Hz) rs = 0.06
p < 0.001*

Gamma (30–48 Hz) rs = 0.03
p = 0.0910

Table 4  Covariates

The difference in functional connectivity (FC) between SCD and AD subjects after correcting for age (model 1) and relative power (model 2). The AEC-c in the gamma 
band was analysed using ANOVA on ranks

Green depicts a positive effect size, while red depicts a negative effect size
* Bold print represents a significant group difference
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to the control group [60]. Our current results are there-
fore in line with previous findings that AD is associated 
with a decrease in amplitude-based functional coupling 
of alpha and beta rhythms. Importantly, we have dem-
onstrated previously in an EEG study, which evaluated 
the reproducibility of several connectivity measures in 
a cohort of SCD versus AD subjects, that these findings 
are specific for Alzheimer’s disease using a population 
subset specifically selected on the presence of Alzhei-
mer’s pathology [24]. The effect sizes in our study were 
also comparable to this study, which found an effect size 
of − 0.5 for the AEC-c alpha and − 0.4 for the AEC-c beta 
band (compared to our ~ − 0.3 and − 0.4, respectively).

On a global level, higher PLI was observed in the theta 
band for the AD group, which was reproduced in the 
independent validation cohort. When evaluating whether 
our results would replicate to other splits of the cohort, 
four out of six splits gave reproducible differences for the 
PLI theta band. A previous high-density EEG study has 
shown good reliability of the global theta band PLI (with 
an intraclass correlation (ICC) of 0.72), although it was 
outperformed by the alpha 1 and 2 bands [61]. Impor-
tantly, this study examined test-retest reliability and did 
not focus on group differences. In our study, the PLI 
alpha band did not reproduce across splits. In another 
source-space test-retest MEG study, the PLI yielded low 
ICC over frequency bands in healthy subjects, includ-
ing the theta band [58]. In previous AD literature, PLI-
derived functional connectivity in AD patients has been 
characterized by an increase in the theta band, with a 
widespread decrease in alpha and beta band connectiv-
ity, especially in later stages [9, 32, 33]. Another study 

compared MCI subjects to healthy controls using another 
phase-based measure, the phase-locking value (PLV), and 
detected a parieto-occipital increase in connectivity in 
the theta band for the MCI group compared to the con-
trol group [62]. Although we did find subtly lower mean 
beta band FC for the AD group of the test cohort, this 
did not reproduce in the validation cohort. Vice versa, 
we found a subtly lower alpha band FC in the validation 
cohort which was not present in the test cohort. Impor-
tantly, Briels et al. also identified the theta band as most 
robust for the PLI (in sensor-level EEG), although, similar 
to our study, the PLI was not independent of changes in 
relative power. The effect size was also comparable to our 
findings; 0.6 for the PLI theta band, compared to 0.4 in 
our study.

An interesting observation is that the AEC-c and PLI 
found opposite group effects in the delta band; while 
the global AEC-c increased for the AD group compared 
to controls, the global PLI decreased. This phenomenon 
could also be observed visually for many of the indi-
vidual connections, i.e. in the connectivity matrices. A 
possible explanation is the sensitivity to different char-
acteristics of the oscillatory signal (amplitude-based 
versus phase-based), with phase coupling playing a role 
in neural communication on faster temporal scales than 
envelope correlations, which may be more involved in 
preparing neural populations for input [5]. Both meas-
ures likely play an important role in establishing func-
tional networks, capturing different aspects of functional 
connectivity and possibly cognition [5]. The phase of the 
oscillations is thought to represent the degree of excit-
ability of neuronal populations, while the amplitude rep-
resents the intensity of coherent neuronal activity [58]. 
Additionally, previous studies suggest that power enve-
lope correlations are more linked to the underlying struc-
tural connectome [5]. Therefore, the PLI decrease and 
AEC-c increase for the delta band could represent differ-
ent aspects of network pathology in AD. Whether ampli-
tude- and phase-based connectivity are two interacting 
modalities or are sensitive to different disease effects is as 
of yet uncertain, although recent work suggests that they 
may reflect at least partially distinct neuronal mecha-
nisms [63]. Possibly, these two measures might be sensi-
tive to disease effects at different stages of the trajectory, 
with phase synchrony changes in earlier stages compared 
to amplitude correlation changes [36]. While the current 
study is unable to answer this question, this is an interest-
ing consideration for future work.

After removing SCD subjects without biomarkers from 
the analysis, most results were very similar between the 
two analyses (Table S2); however, the AEC-c alpha band 
group difference lost significance in both cohorts. Inter-
estingly, the exclusion of the subjects without biomarkers 

Table 5  Correlation with cognition (MMSE)

Spearman’s rho coefficients (d.f. 53) correlating functional connectivity to 
cognition as represented by MMSE (n = 55)
* Bold print depicts a significant (p < 0.05) correlation

Versus MMSE AD (n = 55)

rs (53) p-value

AEC-c

  Delta (0.5–4 Hz) − 0.104 0.451

  Theta (4–8 Hz) 0.175 0.201

  Alpha (8–13 Hz) 0.309 0.022*
  Beta (13–30 Hz) 0.262i 0.053

  Gamma (30–48 Hz) − 0.012 0.932

PLI

  Delta (0.5–4 Hz) 0.178 0.193

  Theta (4–8 Hz) − 0.010 0.945

  Alpha (8–13 Hz) 0.250 0.066

  Beta (13–30 Hz) − 0.010 0.943

  Gamma (30–48 Hz) 0.043 0.753
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resulted in significant (and therefore now reproducible) 
group differences in the PLI beta band. A possible expla-
nation might be that some of the SCD subjects without 
biomarker information do contain some neurodegenera-
tion; if such subjects were present, they may have already 
shown some phase disruption, which may have originally 
impacted our ability to detect group differences in phase-
based connectivity in this band. However, the AEC-c 
delta band also became reproducible. Importantly, 
excluding the SCD subjects without biomarkers consti-
tutes an almost 10% loss of power, allowing for limited 
conclusive statements.

Regional FC
In addition to the global analysis, the AEC-c beta band 
showed high regional consistency. Group differences 
were found for almost the entire cortex and subcortical 
areas, with some exceptions in the frontal and temporal 
regions. The most highly significant reproducible group 
differences (Fig. 1) were found in the occipital and pari-
etal regions. A previous MEG study that used a whole-
brain voxel-based analysis found significantly decreased 
beta band AEC-c in AD compared to elderly controls, 
which was mostly localized to bilateral inferior parietal 
and superior temporal areas [11]. Importantly, our study 
has shown for the first time that the AEC-c beta band can 
be used to measure FC differences on both a cortical and 
subcortical level. Notably, reproducibility was excellent 
in AD-related areas such as the precunei, hippocampi, 
and the cingulate gyri. For the AEC-c alpha band, while 
regional group differences remained significant after FDR 
correction in the test cohort, this was not the case for the 
validation cohort, resulting in poor reproducibility.

Looking at the extent of reproducible regional group 
differences between test and validation cohort, we 
expected the PLI theta band results to remain signifi-
cant after FDR correction. However, this was not the 
case. Previous work in healthy controls showed a strong 
dominance in the parieto-occipital regions for the PLI, in 
accordance with the topology of structural and functional 
connectomes derived from MRI studies [61].

An important fact to note is that because of our focus 
on identifying reproducible group differences, we only 
looked at true positives; true negatives were thus left 
out of consideration. The results in for instance both the 
AEC-c and PLI gamma bands, which consistently showed 
no (reproducible) group differences, must therefore not 
necessarily be interpreted as poor performance.

Analysis of the connectivity matrices yields three 
important conclusions: firstly, the patterns of strong 
AEC-c connections showed more spatial structure 
than the PLI, which have a noisier appearance. In the 
alpha band for both the AEC-c and PLI SCD group, 

the ‘four-block’ structure, which corresponds to higher 
connectivity between parietal and occipital ROIs and 
between homologous parietal and occipital ROIs, can 
be seen, although it is more pronounced for the AEC-c. 
Possibly, as the PLI might be sensitive to neuronal com-
munication on a faster temporal scale, this leads to more 
variability within an epoch and therefore lower PLI val-
ues. It might therefore be preferable to look at dynamic 
phase-based FC [30, 64]. Secondly, matrices were highly 
reproducible within groups, across two separate cohorts. 
Thirdly, both the AEC-c and PLI show a widespread loss 
of functional connectivity in the alpha and beta band for 
AD. Comparing AD with SCD, the loss of FC in the alpha 
band and increase in FC in the lower frequency bands 
can be observed for both measures, although for the 
AEC-c, it seems more pronounced in the delta band, and 
for the PLI in the theta band. Alzheimer’s disease is often 
considered to be a ‘disconnection syndrome’, character-
ized by a loss of network integrity and altered synchro-
nizability in the higher frequency bands [10, 23, 65]. Our 
results provide important evidence for widespread loss of 
connectivity in AD.

Influence of relative power
The effects observed in the AEC-c bands remained sta-
ble after correcting for relative power, while the theta 
band findings for the PLI disappeared; these findings are 
comparable to a previous EEG study [59]. The fact that 
the AEC-c has robustly shown itself to be independent 
of the effects of relative power provides evidence that the 
AEC-c can reliably be used as an independent measure 
of connectivity in AD and SCD, whether jointly or sepa-
rate from relative power. This does not, however, auto-
matically disqualify the PLI. Importantly, previous work 
by Tewarie and colleagues suggests that functional con-
nectivity and oscillatory activity might not be completely 
independent and that local modulations in neural oscil-
latory amplitude reflect modulations in connectivity 
between that region and the rest of the brain in resting-
state MEG, sensorimotor task MEG, and in simulated 
data based on a neuronal model [64]. Statistical correc-
tion for the effect of relative theta power on metrics such 
as the PLI should therefore be applied with caution.

Correlation with cognitive performance
We found that the MMSE score correlated with the 
alpha band AEC-c in the AD group, congruent with a 
previous finding by Briels and colleagues. These results 
were uncorrected for multiple comparisons due to their 
exploratory nature and should therefore be interpreted 
with some caution. We used MMSE as a measure of 
global cognition; future studies could evaluate whether 
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these measures of FC correlate more strongly with spe-
cific cognitive domains.

Strengths and limitations
The fact that we assessed FC sensitivity, and most impor-
tantly, reproducibility in clinical cohorts is an important 
strength of the current study. Most previous studies have 
performed a test-retest design, while the current study 
analyses differences between AD dementia patients and 
SCD in two independent cohorts. As mentioned before, 
the lack of research into this topic has hampered consen-
sus on the value of FC metrics in the research setting and 
in clinical practice. Another important strength is the fact 
that biomarker proof was available for the majority of our 
subjects. Additionally, the high spatial resolution of MEG 
compared to EEG allowed us to investigate reproducibil-
ity on a regional cortical and subcortical level and zoom 
in on AD-related areas.

There are some potential limitations that need to be 
considered. Firstly, because our cohort was derived from 
clinical practice, biomarker confirmation was unavail-
able for several SCD subjects. In order to uphold statis-
tical power, we decided not to exclude these subjects. It 
is therefore not impossible to rule out the presence of 
AD positive biomarkers in these subjects. However, we 
argue that this may not be a limitation as the focus of this 
project was to evaluate the FC metrics in a clinically rep-
resentative cohort. Notably, we repeated the results by 
Briels and colleagues, who already showed the value of 
these metrics when strictly applying the A/T/N research 
criteria [66].

Secondly, the frontal regions in MEG are more suscep-
tible to the presence of artefacts (e.g. eye movements), 
even after source reconstruction. Although we carefully 
selected the epochs used in the analysis, the delta band 
results found for frontal regions for the AEC-c test cohort 
should therefore be interpreted with some caution. The 
finding that these results could not be replicated in the 
validation cohort is already suggestive. Future studies 
should further evaluate these findings, especially since 
a recent MEG study provided putative evidence that 
the functional connectivity (as measured by imaginary 
coherence, an estimate of neural synchrony) in the delta 
band in frontal regions may indeed have clinical value in 
AD [67].

Thirdly, the AEC-c and PLI are insensitive to zero 
phase-lagged interaction (by construction) in order to 
reduce their sensitivity to the effects of volume conduc-
tion and field spread. As a consequence, physiological 
connectivity with zero phase-lag remains undetected, 
and the AEC-c and/or PLI may therefore have underesti-
mated true connections.

Fourthly, another limitation is the use of template 
MRI’s for the co-registration. Given the variability of 
individual brain atrophy levels that can be observed with 
age, coregistration with individual MRIs would improve 
source reconstruction accuracy. The subcortical results 
may therefore need to be interpreted with some caution. 
However, it has been shown by our group that the use of 
MRI templates, instead of native MRI scans, produces 
reliable source-space time series without (systematic) 
bias with regard to MEG spectral and functional connec-
tivity measures [68].

Finally, in the uncorrected results, a large difference 
was found between the number of regions that were 
found to reveal significant group differences in the PLI 
alpha band for the test cohort, compared to the valida-
tion cohort. The cohorts had similar demographic distri-
bution, clinical progression, and epoch quality; a possible 
explanation might be the slight difference in MMSE score 
between the two AD groups, since the two cohorts were 
randomly allocated at the start of the study. Future stud-
ies could attempt to elucidate these results. If anything, 
they highlight the importance of reproducibility in 
science.

Conclusion
We conclude that in two separate clinical MEG cohorts, 
the AEC-c is a sensitive, reproducible measure in the 
evaluation of FC differences between AD dementia and 
SCD on a global and regional level, with the beta band 
providing the most robust estimates of FC. The PLI was 
sensitive and reproducible on a global level in the theta 
band, but not on a regional level. Our results provide 
important evidence regarding the sensitivity and repro-
ducibility of functional connectivity changes in AD.
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Additional file 1: Fig. S1. AEC-c significant regional group differences. 
Regions of interest where significant group differences, as determined 
using Mann-Whitney U testing (p<0.05, uncorrected), between the 
AD and SCD groups were found, shown as a color-coded map on a 
template mesh. Results are uncorrected for multiple comparisons. Each 
row represents a different frequency band (delta, theta, alpha, beta and 
gamma), and the columns show results for the test cohort (left) and 
validation cohort (right). Orange indicates p<0.05 and red indicates p<0.01 
(uncorrected).

Additional file 2: Fig. S2. PLI significant regional group differences. 
Regions of interest where significant group differences, as determined 
using Mann-Whitney U testing (p<0.05, uncorrected), between the 
AD and SCD groups were found, shown as a color-coded map on a 
template mesh. Results are uncorrected for multiple comparisons. Each 
row represents a different frequency band (delta, theta, alpha, beta and 
gamma), and the columns show results for the test cohort (left) and 
validation cohort (right). Orange indicates p<0.05 and red indicates p<0.01 
(uncorrected).
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Additional file 3: Fig. S3. Reproducibility of regional group differences. A 
color-coded map on a template mesh showing reproducibility of signifi-
cant group differences as overlapping regions of interest between the test 
and validation cohort, as determined using Mann-Whitney U tests (p<0.05, 
uncorrected), shown in green colour. See also Figures S1 and S2. Each 
row represents a different frequency band (delta, theta, alpha, beta and 
gamma), and the columns show results for the AEC-c (left) and PLI (right).

Additional file 4: Fig. S4. Connectivity matrices PLI with same colour 
scale. Connectivity matrices averaged across all epochs and subjects. 
Each row represents a different frequency band (delta, theta, alpha, beta 
and gamma), and each column shows results for the PLI, comparing the 
test and validation cohort in the AD and SCD groups. All bands show the 
matrices with the same colour scale. The ROIs are obtained from the AAL 
atlas, ordered from left to right hemisphere, see Figure 4 and Table S1 for 
more detailed description.

Additional file 5: Table S1. AAL atlas regions [44]. Table S2. Global 
analysis excluding control subjects without biomarkers. Difference in 
functional connectivity (FC) between SC and AD subjects as estimated by 
GLM, for the test and validation cohort, excluding subjects with missing 
biomarkers. Shown are the mean FC values with standard deviations, 
and the effect sizes as represented by the standardized beta. The AEC-c 
in the gamma band was analysed using ANOVA on ranks. *bold print 
indicates a significant (p <0.05) group difference. Print in italics and 
underscored represents a deviation from the results that were obtained 
for the analysis that included all subjects. AD: Alzheimer’s disease; SCD: 
Subjective cognitive decline; GLM: general linear model; AEC-c: corrected 
amplitude envelope correlation; PLI: phase lag index; SD: standard devia-
tion. Table S3. Global analysis over 5 split-sample iterations + original 
sample. Difference in functional connectivity (FC) between SCD and AD 
subjects as estimated by GLM, for the test and validation cohort, for all 
iterations (five additional samples + original sample). Shown are the mean 
FC values with standard deviations, and the effect sizes as represented by 
the standardized beta. The AEC-c in the gamma band was analysed using 
ANOVA on ranks. *bold print indicates a significant (p <0.05) group dif-
ference. AD: Alzheimer’s disease; SCD: Subjective cognitive decline; GLM: 
general linear model; AEC-c: corrected amplitude envelope correlation; 
PLI: phase lag index; SD: standard deviation. ICC: Intra-class correlation. 
Table S4. FDR-corrected Mann-Whitney U outcomes for AEC-c beta band. 
Depicted are the regional Mann-Whitney U significance outcomes for the 
AEC-c in the beta band for both the test and validation cohort. The left 
column depicts the ROI number, while the subsequent columns depict 
the test outcomes. *signifies p<0.05, corrected.
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