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Abstract

Background: To help clinicians provide timely treatment and delay disease progression, it is crucial to identify
dementia patients during the mild cognitive impairment (MCI) stage and stratify these MCI patients into early and late
MCI stages before they progress to Alzheimer’s disease (AD). In the process of diagnosing MCI and AD in living patients,
brain scans are collected using neuroimaging technologies such as computed tomography (CT), magnetic resonance
imaging (MRI), or positron emission tomography (PET). These brain scans measure the volume and molecular activity
within the brain resulting in a very promising avenue to diagnose patients early in a minimally invasive manner.

Methods: We have developed an optimal transport based transfer learning model to discriminate between early and
late MCI. Combing this transfer learning model with bootstrap aggregation strategy, we overcome the overfitting
problem and improve model stability and prediction accuracy.

Results: With the transfer learning methods that we have developed, we outperform the current state of the art MCI
stage classification frameworks and show that it is crucial to leverage Alzheimer’s disease and normal control subjects
to accurately predict early and late stage cognitive impairment.

Conclusions: Our method is the current state of the art based on benchmark comparisons. This method is a
necessary technological stepping stone to widespread clinical usage of MRI-based early detection of AD.

Keywords: Transfer learning, Optimal transport, Bootstrap aggregation

Background
AD is an irreversible, degenerative brain disorder, affect-
ing over six million Americans and is the sixth leading
cause of death in the USA [1]. AD is hallmarked by
neuron loss [2], inflammation [3], amyloid plaques [4],
and tau deposition [5], which lead to progressive tissue
loss in the brain and cognitive decline in the patient [6].
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Diagnosing AD is largely based on tests of cognitive
impairment combined with technologies such as CT,MRI,
or PET but can only be verified after death on the post-
mortem brain [7]. Patients who have not yet progressed
to AD may be diagnosed with mild cognitive impair-
ment (MCI). The direct definition of MCI has undergone
recent changes. Due to these changes, the diagnostic qual-
ity of the MCI designation is only becoming more well
refined with improved research into patient stratification
[8] and diagnostic guidelines [9]. Despite the fact that
MCI is not a prodromal stage of AD, it is a transitional
phase between normal cognitive aging and AD in which
individuals demonstrate objective cognitive impairment
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and report subjective complaints but have relatively intact
functional abilities [8]. Since early and late stage MCI (E-
MCI and L-MCI) have different survival rates and rates
of developing AD [9], to help clinicians to provide timely
treatment and delay disease progression, it is crucial to
identify E-MCI and L-MCI patients with higher rates of
biomarker abnormalities and progression to AD [8]. In
the process of diagnosing MCI and AD in living patients,
brain scans are collected using neuroimaging technolo-
gies such as CT, MRI, and PET to rule out other potential
causes of the disease. These brain scans measure the vol-
ume and molecular activity within the brain resulting in a
very promising avenue to diagnose patients.
Specifically, neuroimaging techniques enable us to iden-

tify regions of interests related to AD [10] and extract
sensitive markers for AD. It has been demonstrated that
features extracted from structural MRI and PET can help
us investigate the neurophysiological feature of AD and
MCI [11, 12]. These features can be utilized to diagnose
the early stage of AD patients and predict whether an
MCI patient will progress to AD [13]. We seek to utilize
these features for distinguishing E-MCI versus L-MCI and
formulate this problem as a classification task.
Recent progress in machine learning (ML) and pattern

recognition methods shed light on the diagnosis of AD
patients with the help of neuroimaging features. Despite
the wide applications of ML models in biomedical prob-
lems, there are two major challenges in classifying MCI
stages, namely that the collection of multiple-modality
datasets is costly and time consuming, and that the effect
size observed between E-MCI and L-MCI is too small
compared with the feature dimension. This may lead to
the overfitting issue, which occurs when the model per-
forms well on training samples while lacks generalizability
on unseen data. We seek to enlarge the training sam-
ple size to overcome the overfitting problem and improve
model stability.
Accordingly, it is of great interest to develop ML mod-

els that utilize samples from easier-to-train tasks that are
related and have more readily available data. In dementia,
the AD patient versus NC patient task can be leveraged
to transfer knowledge to the more challenging task of
predictingMCI stage. Some previous works [13, 14] intro-
duced auxiliary tasks such as the AD andNC classification
task to identify disease related features and construct the
decision function for classification. Transferring knowl-
edge from different but related auxiliary tasks to increase
the prediction accuracy on a more difficult target task is
a widely used ML strategy called transfer learning (TL).
TL uses heterogeneous data and has to face the chal-
lenging ML dilemma as the decision function learned
from the source (auxiliary) task cannot be directly applied
to the target domain. Two heterogeneous datasets will
occupy different distributions in the feature spaces, which

is termed distributional drift. Traditional TL techniques
adopt sample weighting strategies and feature alignment
strategies [15] to overcome the distributional drifting
problem. Recently, Optimal Transport (OT) theory has
been successfully introduced in TL problems [16, 17].
Since OT has shown great promise in tackling the data
drifting (target shifting) issue, we adopt it in our model to
address the difficulty of utilizing AD and NC samples for
tackling our L-MCI and E-MCI stratification problem.
Our model consists of three main components: feature

selection, TL, and bootstrap aggregation. We will first use
the robust multi-label transfer feature learning rMLTFL
[13] framework, which can be used for feature selection
as well as the traditional one-way ANOVA to select rep-
resentative features from MRI and PET data modalities.
Then, we will develop the OT TL strategies to train clas-
sifiers for stratifying L-MCI and E-MCI with the help of
AD and NC samples. Finally, we will apply the Bootstrap
Aggregation (BAg) strategy to overcome the overfitting
problem and improve stability and accuracy.

Methods
Data collection and preprocessing
The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
provides researchers with multi-modal longitudinal data
for subjects as they work to define the progression of AD.
The ADNI-1 dataset contains 202 subjects with MRI and
PET brain images. The updated dataset ADNI-2 assessed
participants from the ADNI-1 phase besides new par-
ticipant groups including elderly controls and subjects
with significant memory concern, E-MCI, and L-MCI.We
summarize the samples used in our study in Table 1.
The feature extraction process includes image regis-

tration, region of interests selection, and feature quan-
tification. We specifically use the morphometry fea-
tures extracted from voxel-based measures of structural
MRI (VBM-MRI) and fluorodeoxyglucose positron emis-
sion tomography (FDG-PET) images and denote the two
classes of features as VBM and FDG features (Additional

Table 1 The values are expressed as mean ± standard deviation

NC E-MCI L-MCI AD

Number 211 273 187 160

Gender (M/F) 190/101 153/119 108/76 95/65

Age 76.1±6.5 71.5±7.1 73.9±8.4 75.2±7.9

Education 16.4±2.6 16.1±2.6 16.4±2.8 15.9±2.8

MMSE 29.0±1.2 28.4±1.5 27.7±1.7 24.0±2.6

CDR 0.0±0.1 0.5±0.1 0.5±0.1 0.7±0.3

AD Alzheimer’s disease, NC normal control, E-MCI early mild cognitive impairment,
L-MCI late mild cognitive impairment,MMSE Mini-Mental State Examination, and
CDR clinical dementia rating
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files 1 and 2). The details of feature extraction can be
found in the Materials and workflow section of [18].

Feature selection
To reasonably utilize informative features from the two
data modalities, we used the robust multi-label transfer
feature learning (rMLTFL) model [13] to filter out fea-
tures that are irrelevant to the classification task. In the
study by Cheng et al. [13], this model was applied to select
features to train a support vector machine (SVM) model
for distinguishing Progressive MCI (P-MCI) and Stable
MCI (S-MCI). This framework can help identify features
related to the target task (L-MCI vs E-MCI) that ben-
efit from auxiliary tasks (AD vs NC, AD vs MCI, MCI
vs NC). However, it faces a difficult situation that sepa-
rating E-MCI and L-MCI samples using linear SVM and
logistic regression (LR) is not effective, even with multiple
kernels. Therefore, we only adopted it as a feature selec-
tionmethod and compared it with the traditional one-way
analysis of variance (ANOVA) feature selection technique.
We denote the dataset on the target task (L-MCI vs

E-MCI) as (X1,X2, yt). X1,X2 ∈ R
460×116 represent the

FDG and VBM features respectively while yt ∈ {−1,+1}
is the class label correspond to E-MCI and L-MCI
respectively. We also construct three auxiliary domains
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2) denotes the FDG and

VBM features along with labels for AD (+1) and NC (-
1) patients. To construct a multi-bit label coding matrix
for the TL task, we firstly trained three logistic regres-
sion models on three auxiliary domains. Then, we used
these three models to independently estimate three labels
for each patient on the target domain. Finally, we concate-
nated the true label with three predicted labels to form
a multi-bit label for each patient and obtain a multi-bit
label matrix Y =[ yt , yp1, y

p
2, y

p
3]∈ R

460×4 (one true label,
three predictions). The goal of the rMLTFL algorithms is
to learn a weight matrix W =[wt ,w1,w2,w3]∈ R

116×4

which can be decomposed into two components P and
Q for feature selection and domain identification respec-
tively. Specifically, the objective function is formulated a
following:

min
W,P,Q
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s.t.W = P + Q

(1)

The first term is to ensure the similarity between the
multi-bit labels Y and its prediction XW. In the second
and the third term, we use the 2,1 norm to capture the

shared features across all tasks and filter out the unre-
lated tasks. The 2,1 norm forces some rows of P and some
columns ofQ to be all zero. Non-zeros rows in P and non-
zero columns in Q corresponds to informative features
and tasks respectively. The last term indicates that the dis-
tance from predicted target domain label Xwt to multi-bit
label Xwp

i should be similar to the distance from the true
label yt to the estimated multi-bit label ypi .
The above rMLTFL framework to select feature can be

illustrated in Fig. 1. After we obtained the multi-bit label
matrix Y, we used the accelerate gradient descent algo-
rithm to optimize the target function (1). Then, we filtered
out domains that corresponded to all zero columns in Q.
After that, we repeated the same process as above with-
out these useless domains. Finally, we selected rows that
corresponded to non-zero rows in P as features related
to the target task. When implementing rMLTFL and one-
way ANOVA to select features, we applied each method
to the two data modalities separately and simultaneously.
Hence, we obtained six sets of sample features. After
examining the prediction performance of these feature
sets, we chose the most relevant feature sets and achieved
higher prediction accuracy by applying model aggregation
techniques.

Optimal transport for transfer learning
In previous work of MCI stage classification, i.e., classi-
fying P-MCI vs S-MCI [13] and MCI converters versus
MCI non-converters [14], a common assumption is that

Fig. 1 The learnable weight matrixW can be decomposed into two
matrices, Q and P. They are responsible for selecting target problem
related tasks (AD vs NC, AD vs MCI, MCI vs NC) and features. By
enforcing the l2 − l1 norm of QT and P to be small, these group lasso
penalty terms on rows on P and columns of Q encourage the rows of
P and columns of Q in (1) to have all zero (rows and columns in gray)
or non-zero elements. The first column of Q corresponds to the L-MCI
vs E-MCI stratification task and the rest of them correspond to three
auxiliary tasks. We could observe from the plot that the AD v NC and
the AD vs MCI tasks are two related domains while the MCI vs NC task
could not provide helpful information. Similarly, non-zero rows of P
capture the shared features among useful domains
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introducing auxiliary tasks (ie. AD vs NC) can improve
the accuracy of classification. It is assumed that at least
some of these auxiliary domains can help us understand
the target domain, even without feature transformation.
From the t-distributed stochastic neighbor embedding (t-
SNE), boxplot of principal components, and violin plot of
features we conclude that the feature distribution of L-
MCI and E-MCI is similar to the pattern of those in the
AD and NC subjects. However, the difference between
early and late stage MCI is much more subtle than the
difference between AD and NC samples. Therefore, we
must adopt TL strategies to reduce the inter-task discrep-
ancy between AD vs NC task and E-MCI vs L-MCI task
while maximizing the intra-task differences. Traditional
TL methods using sample weighting or feature alignment
strategies to adapt source data samples (i.e. AD and NC
samples) to the target domain (i.e., L-MCI and E-MCI
samples)[15]. Compared with these previous works, the
OT for TL frameworks can capture the intrinsic geome-
try structure difference of two feature spaces and address
the distributional drift problem more efficiently. We illus-
trate in our experiments that our proposed method based
on OT outperforms the current state-of-the-art methods.
OT maps samples from one domain to another by min-

imizing the earth mover’s distance [16, 19] between sam-
ple distributions in two domains. To better understand
the feature distribution within and across classes and to
estimate a better transformation, [16, 17, 20] added dif-
ferent regularization terms such as L1l2 and Lpl1 terms
to achieve group sparsity. By adding the group sparsity
regularization terms, the OT feature mapping strategy
only projects L-MCI training samples to the AD sam-
ples and E-MCI training samples to the NC samples. For
computational efficiency, most of the state-of-the-art OT
models incorporate an entropy regularization term. This
regularized version of earth mover’s distance [21] is call
Sinkhorn distance (SD). In this study, we implemented
three OT mapping strategies defined by SD, SD with Lpl1
regularization term, and SD with L1l2 regularization term
respectively.
Before introducing the experiment setting of using OT

to train classifiers, we want to emphasize the difference
between our proposed method and traditional OT meth-
ods for TL that are used as benchmarks in this study.
Traditionally, the source domain (AD vs NC) features are
mapped to the target domain (L-MCI vs E-MCI) via an
OT strategy. Then, AD and NC labels as well as the trans-
formed features can be used to train a classifier on the
target domain that will be directly applied to the L-MCI vs
E-MCI stratification task. This strategy is powerful when
dealing with the condition that few labels are available on
the target domain and the decision boundary for the target
task is easy to learn. In our problem, the intrinsic diffi-
culty is that the decision boundary is difficult to learn even

after using kernel methods. Fortunately, we have plenty of
samples (187 L-MCI, 273 E-MCI) on the target domain,
which enable us to separate them into training and test-
ing sets. Therefore we instead map training samples on
the target domain(L-MCI vs E-MCI) to the source domain
(AD vs NC) where the classification boundary is more
clearly defined. During this process, we learn a non-linear
OT mapping strategy T. Then, we train classifiers to use
AD and NC samples as well as E-MCI and L-MCI samples
transformed byT. After that, we use the OTmappingT to
project testing samples to the source domain and use the
classifier to stratify E-MCI and L-MCI samples. Finally,
we evaluate the classification performance using accuracy
and area under the receiver operating curve (AUC) score.
Figure 2 illustrates the effects of using OT to obtain more
distinguishable features in synthesized data.
In our experiments on real AD data, we investigate dif-

ferent OTmapping strategies as well as different classifiers
on the source domain. In Fig. 3, we illustrate how to adapt
MCI samples onto the AD and NC domain. In Fig. 5
panel (A), we demonstrate how to combine different OT
mapping strategies with different classifiers. Since logis-
tic regression achieves higher prediction accuracy than
SVM, we adopt it as a benchmark classifier and combine
it with linear and polynomial kernel functions to form
kernel based classifiers.

Bootstrap aggregation to improve model stability
Bootstrap aggregation (BAg) is an algorithm proposed
in [22] for both regression and statistical classification.
By randomly sampling training sets (bootstrapping) with
replacement, one can train several classifiers using the
same algorithm. By aggregating model predictions based
on the majority voting strategy or aggregating prediction
probabilities, we raise the stability of our models by reduc-
ing inter-model variability from overfitting. When we
implemented the BAg strategy, we first need to decide the
number of “bags” to use. Since our study only contained a
few hundreds samples, We used 5 bags to train five sub-
models. Then, we aggregated the model using a majority
vote strategy. The prediction probability was obtained by
calculating the mean prediction probability across each
sub-model. We illustrated the pipeline in Fig. 3.

Feature selection comparison
Using one-way ANOVA, we calculated the p value for
each feature individually. Using the p value threshold 0.05,
we selected 47 out of 116 features from the FDG and the
VBM data modality respectively. The rMLTFL method
captures features by training a model and selecting fea-
tures based on that trained model. We need to verify the
stability of this feature selection procedure. To determine
which hyper-parameters to use and whether the collec-
tion of useful features were dependent on the training set,
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Fig. 2We use a synthetic Gaussian distributed dataset to demonstrate our method. In panel A, we generate three clusters of gaussian distributed
samples. Their clusters are distinct, hence simple decision boundaries can separate them clearly. This example corresponds to the AD vs NC
classification task. In panel B, we also generate three clusters which are not distinctive from one another. In fact, the E-MCI and L-MCI clusters are
much less distinct than the samples in panel B. In panel C, we use OT to map the source domain samples onto the target domain. In the last panel
(D), we use our proposed method adopting OT to map target samples onto the source domain by utilizing sample labels

we used five-fold cross-validation to verify the robustness
of the rMLTFL method. We took a grid search approach
for the three hyper-parameters over 1000 combinations
of these parameters and chose the hyper-parameter com-
bination with the highest average prediction accuracy.
Using the optimal hyper-parameters, we ran the rMLTFL
algorithm on the FDG data modality to filter out use-
less features and obtained 96 features by merging selected
features respectively across five folds. For the VBM data
modality, the model only filtered out one useless features
over all hyper-parameter combinations. Therefore, we
kept 115 feature from the VBMdatamodality. To combine
the two data modalities, we concatenated the two feature
vectors and repeated the same process as described above.
We visualized the selected features ability to stratify NC,
E-MCI, L-MCI, and AD individually and aggregated via
PCA and tSNE plots.

Transfer learning benchmark comparison
First we benchmarked different OT mapping strategies
via ten-fold cross-validation on each data modality indi-
vidually and the combined data modalities. Specifically,
we applied three different OT mapping regularization
strategies: SD (OT regularized by an entropy regulariza-
tion term), SD regularized by Lpl1 norm, and SD reg-
ularized by L1l2 norm to map samples from the target
domain to the source domain. The usage of these regu-
larization norms is to enforce intra-class similarity and
improve computational efficiency. When we mapped L-
MCI and E-MCI samples to the domain of AD and NC
samples, we utilized the labels of training samples, i.e.
E-MCI and L-MCI. Using these transformed samples as
well as AD and NC samples, we evaluated the perfor-
mance on the source domain via accuracy and AUC
scores.

Fig. 3 Our novel OT TL framework and pipeline were used to train the patient stratification model. Using the pre-processing workflow, we extract
VBM and FDG features from the manually labeled regions-of-interest (ROIs) in MRI and FDG images respectively. Then, we use the rMLTFL
framework as well as one-way ANOVA to select features from two modalities (FDG and VBM) both separately and simultaneously. We then separate
the target dataset into training (80%) and testing (20%) sets. After that, we sample subsets of training samples, use the regularized OT to mapping
selected samples to the AD vs NC data domain, and train classifiers using labeled AD, NC, and transformed samples. Finally, we aggregate these
models to form a robust BAg model and make predictions on OT transformed testing samples



Liu et al. Alzheimer’s Research & Therapy            (2022) 14:4 Page 6 of 12

Besides two baseline methods and the rMLTFL frame-
work, we also compared our model with other TL bench-
marks and multiple kernel learning strategies. For TL
benchmarks, we compared our method with: Importance-
weighting with logistic discrimination (IW) [23], Trans-
fer Component Analysis (TCA) [24], Semi-supervised
Subspace Alignment (SUBA) [25], Feature-Level Domain
Adaptation (FLDA) [26], and Boosting for Transfer learn-
ing (TrAdaBoost)[27]. We also compared with multiple
kernel learning strategies including: the simple average of
base kernels (AverageMKL), margin-based combination
of kernels (EasyMKL) [28], radius-margin ratio optimiza-
tion for dot-product boolean kernel learning (GRAM)
[29], margin and radius based multiple kernel learning
(RMKL) [30], simple but effective methods for combining
kernels in computational biology (PWMK) [31], and cen-
tered kernel alignment optimization in closed form (CKA)
[32]. Since we use the decision tree as a basic classifier
for some of these benchmarks, e.g. TrAdaBoost, we can’t
obtain the AUC score directly. To evaluate the model per-
formance, we use ten-fold cross-validation and calculate
the average and standard deviation of the accuracy score.

Bootstrap aggregation comparison
We separated the dataset into training and testing sets
(80% and 20%). On the training set, we implemented the
bootstrap strategy in a slightly different manner. During
the stage of bootstrapping, we randomly split the train-
ing set into five folds and picked four folds each time to
train a classifier using our OTTL strategy. To demonstrate
that our OT alignment improves the stratification per-
formance, we also compared our method with different
versions of BAg using traditional SVM, logistic regression,
and rMLTFL models as classifiers.

Results
Diagnostic value of MRI features
We visualized the selected VBM features in Fig. 4. Pan-
els A and B show the t-SNE plots of features selected
by ANOVA and rMLTFL respectively. In panel A, we
observed that AD patients mainly concentrated on the
upper right corner where L-MCI patient is also denser
than other areas while E-MCL and NC samples are denser
at the lower left corner. We concluded that the pattern of
AD vs NC may help us delineate the distributions of L-
MCI versus E-MCI. The same pattern can be observed in
panel B. Panel C and E illustrate distributions of first two
principle components of ANOVA and rMLTFL features.
From these plots we concluded that the distributional
differences between the first principle components of
L-MCI and E-MCI patients are more subtle than the dif-
ferences between AD and NC patients. AD and L-MCI
patients tended to have lower PC 1 while E-MCI and NC
tend to have higher values of PC 1.We also visualized part

of features selected by ANOVA and rMLTFL in D and F.
From them we observed the same pattern as the boxplots.

Transfer learning benchmark comparison results
The results of cross-validation for FDG and VBM data
modalities in Tables 2 and 3 demonstrate that our frame-
work outperformed all baseline methods and the orig-
inal rMLTFL model by increasing prediction accuracy
and reducing variability. Based on FDG features, our
model achieved 68.76 ± 7.53% accuracy and 0.66 ±
0.08 AUC score across ten-fold cross-validation. The
SVM and logistic regression baseline methods achieved
61.20 ± 7.22% and 64.40 ± 7.60% accuracy respec-
tively. Our model also outperformed them on the VBM
data modality. Comparing the performance of features
selected by rMLTFL and ANOVA, we observed that the
rMLTFL features are always superior than ANOVA fea-
tures. This indicates that even features that are not sig-
nificant statistically may be helpful to model complex
nonlinear differences between sample classes. Combin-
ing two data modalities by directly concatenating features
did not help us in distinguishing L-MCI and E-MCI
patients.
Based on the TL benchmark experiments, our method

proved superior to all of these benchmarks (Table 3,
Fig. 5). One notable fact is that most of them did
not even beat the baseline method logistic regression
with linear kernel function. Therefore, traditional TL
techniques such as sample weighting and feature align-
ment strategies may not be effective for us to delin-
eate the distribution patterns of L-MCI and E-MCI.
Since our method compared distributions directly, we
could glean more information from AD and NC patients
as well as MCI patients in the training set. We also
found that Easy MKL, average KL, and PWMK meth-
ods yielded relatively high performance on both domains.
We concluded that combining multiple kernel functions
in an appropriate manner can improve the classification
performance.

Bootstrap aggregation comparison results
In Table 4, we list the aggregated model performance
of the testing set for different models and different
data modalities. Besides our OT mapping strategies, we
also implemented the BAg using two baseline meth-
ods and the rMLTFL benchmark method. The perfor-
mance of our model was significantly superior than SVM,
logistic regression, and rMLTFL (Figs. 6 and 7). By
choosing different training sets, our model captured
heterogeneous patterns. When we aggregated them using
a voting strategy, most models could correctly prediction
the testing samples. Hence, the accuracy as well as AUC
score was much higher than the single model case. On
the other hand, the logistic regression, SVM, and rMLTFL
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Fig. 4 A and B represent t-SNE plots and their marginal distributions for VBM features selected by ANOVA and rMLTFL respectively. C and E are
box-plots for first two principle components of these selected features. We also visualize the distribution of feature contributions (input feature
values after preprocessing to [0,1] scale) selected by ANOVA (D) and rMLTFL (F)

models were quite stable with regard to the training set
(Figs. 6 and 7). The patterns they learned are quite homo-
geneous. We conclude that learning sub-models does not
improvemodel performance for these baseline and bench-
mark methods.
In order to evaluate the reproducibility of our proposed

method, we further split the dataset into three subsets,

namely training (80%), validation (10%), and testing (10%)

datasets. By training and aggregating models based on
training samples and testing on the validation and testing
datasets, we obtain AUC curves in Fig. 8. It implies that
our model can yield plausible and stable results (highest
AUC score = 0.77 on the validation dataset and 0.78 on
the testing dataset) regardless how do we split the dataset.

Table 2 Accuracy (ACC) and AUC score of models based on features selected by rMLTFL and ANOVA (p value threshold=0.05)
respectively

Sinkhorn distance Sinkhorn distance + L1l2 Sinkhorn distance + Lpl1

ACC AUC ACC AUC ACC AUC

FDG rMLTFL 68.76 ±7.53 0.66 ±0.08 66.04 ±7.53 0.65 ±0.08 65.48 ±5.04 0.64 ±0.07

ANOVA 66.07 ±6.96 0.65 ±0.07 63.63 ±6.01 0.64 ±0.07 59.50 ±6.53 0.62 ±0.08

VBM rMLTFL 62.37 ±6.88 0.62 ±0.11 62.74 ±0.08 0.62 ±0.11 57.86 ±6.32 0.60 ±0.07

ANOVA 58.94 ±7.82 0.59 ±0.12 58.68 ±0.08 0.58 ±0.12 56.79 ±0.11 0.58 ±0.13

FDG + VBM rMLTFL 62.26 ±6.48 0.63 ±0.05 66.61 ±6.29 0.65 ±0.06 66.05 ±5.91 0.65 ±0.08

ANOVA 61.44 ±6.23 0.64 ±0.05 63.87 ±5.75 0.63 ±0.06 61.15 ±8.01 0.64 ±0.07

The values are denoted as mean±standard deviation. We investigated different OT mapping strategies, e.g., using Sinkhorn distance, Sinkhorn Distance
with Lpl1 regularization term, and Sinkhorn distance with L1 l2 regularization term. Accuracy and AUC scores are calculated by averaging over perfor-
mances of ten-fold cross-validation on the training set. We exam the model performance on FDG and VBM features separately and simultaneously.
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Table 3 Accuracy of baseline, transfer learning and Multi-kernel
benchmark methods

Methods FDG VBM

SVM 61.20 ±7.22 57.64 ±5.89

Logistic Reg 64.40 ±7.60 58.72 ±6.98

rMLTFL 63.33 ±9.02 62.53 ±9.08

IW 60.10 ±8.41 59.56 ±7.49

TCA 59.83 ±6.02 57.02 ±8.27

SUBA 64.68 ±4.34 52.44 ±8.33

RBA 61.46 ±8.21 58.17 ±8.02

FLDA 63.90 ±10.00 60.11 ±9.05

TrAdaBoost 61.45 ±8.56 58.98 ±7.43

Easy MKL 64.72 ±9.75 60.38 ±7.46

Average MKL 63.34 ±9.08 60.11 ±7.14

PWMK 64.19 ±9.80 60.11 ±7.14

GRAM 64.72 ±9.75 /

RMKL 63.91 ±9.53 60.11 ±7.14

CKA 59.56 ±7.49 59.56 ±7.49

The values are denoted as mean±standard deviation

Due to the limitation of ADNI patient labels, we cannot
perform experiments on other interesting tasks such as P-
MCI versus S-MCI. But we added two more experiments
on AD vs MCI and MCI vs NC to illustrate the effective-
ness of our framework. We demonstrate our results and
benchmark studies in the supplementary material (Table
S1 and S2).

Discussion
We present our novel method which uses optimal trans-
port to improve the performance discriminating between
(E-MCI vs L-MCI) using MRI and PET images. We found
that by using OT theory to project the more difficult task,
E-MCI vs L-MCI, onto the easier task of distinguishing
AD and NC, we were able to achieve higher performance
than by usingMCI samples alone. This represents not only
a significant advance in OT and TL methods but also has
clear clinical implications.
Indeed, identifying cognitively impaired individuals

early will likely their health outcomes because of early
access to treatment and monitoring [33, 34]. These
early detection systems are most frequently focused

Fig. 5 Results of ten-fold cross-validation using our method and other benchmark methods on FDG features. Panel A is the working pipeline of our
OT TL model. We combine linear and polynomial kernelized logistic regression classifier with different OT mapping strategies. In B, we represent the
accuracy score of different OT and kernel combinations. The blue and red horizontal lines represent the average accuracy of our best model and the
logistic regression model respectively. In panel C, we demonstrate the performance of two baseline methods, e.g. logistic regression and SVM, and
the rMLTFL model. In D and E, we visualize the performance of TL benchmarks and Multi-kernel learning strategies. In F, we plot the AUC curve of
our model across ten folds
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Table 4 Accuracy (ACC) and AUC score of BAg results

Methods FDG VBM FDG + VBM

ACC AUC ACC AUC ACC AUC

SD/l 72.82 0.79 68.48 0.67 70.65 0.74

SD/p 73.91 0.76 64.13 0.67 69.56 0.71

SD L1 l2/l 75.00 0.77 67.39 0.67 69.56 0.77

SD L1 l2/p 71.74 0.76 63.04 0.67 65.21 0.70

SD Lpl1/l 71.74 0.76 59.78 0.68 73.91 0.76

SD Lpl1/p 71.74 0.74 67.39 0.69 66.30 0.71

SVM 57.61 0.47 57.61 0.29 57.61 0.55

logistic 68.47 0.67 58.70 0.70 67.39 0.66

rMLTFL 63.04 0.69 60.87 0.70 63.04 0.67

The OT method and kernel function combination is denoted as OT method/kernel
function. l and p represent linear and polynomial kernel respectively

on the readily available and minimally invasive medi-
cal imaging procedures like MRI and PET scans. Ide-
ally, at risk patients could regularly be tested for AD
and MCI by their physicians. These imaging technolo-
gies offer a potential avenue to a minimally invasive
test for cognitive impairment. These clinical tests how-
ever are dependent on accurate ML models which
can effectively discriminate between cognitively nor-
mal, end stage Alzheimers, and the entire spectrum in
between.
By using OT to map E-MCI and L-MCI samples to the

auxiliary domain, we reduce the inter-task discrepancy
between AD vs NC task and E-MCI vs L-MCI task while
maximizing the intra-task differences. This TL technique
enable us to train LR classifiers which can stratify E-MCI
and L-MCI patients more accurately. We then aggregate
sub-TLmodels using amajority voting strategy to improve
the model stability and avoid the overfitting issue.
With the novel methods that we have developed, we

outperform the current state-of-the-art TL methods and
show that it is crucial to leverage AD and NC data to accu-
rately predict L-MCI and E-MCI patients. Such continued
improvements are necessary to improve the personal,

healthcare, and economic costs [35] associated with over
six million AD patients in the USA alone.
Limitations
When compared with other benchmark works, our model
yields a high prediction accuracy and AUC score. We also
acknowledge several limitations. Our feature selection
method rMLTFL depends on three hyper-parameters.
It’s of crucial importance to select correct combination
hyper-parameters. Although we grid search them over
1000 combinations, there is still lack of evidence that
the selected combination is an optimal choice. Further-
more, we have not considered its performance in other
challenging MCI classification tasks such as the P-MCI
and S-MCI classification task [13]. Finally, our frame-
work is developed based on the VBM and FDG features
extracted in [18], which have been exploited in some
related studies. Currently the reported performances of all
these studies are not good enough for clinical treatment.
Potential strategies for improving stratification perfor-
mance include (1) using more samples for training when
more samples are available in the ADNI dataset; (2) since
VBM and FDG features extracted by [18] may not be
representative enough for distinguishing different MCI
conditions, we could try to adopt more advance feature
extracting pipelines; and (3) combining image features
with genotype profiles for more accurate assessment.
Since genotype data may provide supplementary informa-
tion to image data, we could train more accurate and sta-
ble models based on combining these two heterogeneous
data modalities.
Conclusion
We have developed an optimal transport based trans-
fer learning model to discriminate between E-MCI and
L-MCI patients. Our methods are both novel and the
current state of the art based on benchmark comparisons.
This method is a necessary technological stepping stone
to widespread clinical usage of MRI based early detection
of AD.

Fig. 6 AUC curves of BAg of our OT transfer learning framework. Panels A, B, and C correspond to results on the FDG, VBM, and combination of two
data modalities respectively. The highest AUC curve is achieved by using SD combined with L1 l2 regularization term as OT mapping cost function
and linear kernel logistic regression as classifier
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Fig. 7 AUC curves of BAg of logistic regression, SVM, and rMLTFL (logsitic regression and SVM as classifier). Panels A, B, and C correspond to results
on the FDG, VBM, and combination of two data modalities respectively

Fig. 8 AUC curves of BAg of logistic regression, SVM, and rMLTFL (logsitic regression and SVM as classifier). Panels A and B, correspond to results on
the validation and testing datasets respectively
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AD: Alzheimer’s disease; MCI: Mild cognitive impairment; NC: Normal control;
L-MCI: Late stage mild cognitive impairment; E-MCI; Early stage mild cognitive
impairment; CT: Computed tomography; MRI: Magnetic resonance imaging;
PET: Positron emission tomography; VBM: Voxel-based measure; FDG:
fluorodeoxyglucosee TL: Transfer learning; ADNI: The Alzheimer’s Disease
Neuroimaging Initiative; MMSE: Mini-Mental State Examination; CDR: Clinical
dementia rating; BAg: Bootstrap aggregation; OT: Optimal transport; rMLTFL:
Multi-label transfer feature learning; SVM: Support vector machine; LR: Logistic
regression; ANOVA: Analysis of variance; t-SNE: t-distributed stochastic
neighbor embedding; SD: Sinkhorn distance; AUC: Area under the receiver
operating curve; IW: Importance-weighting; TCA: Transfer component analysis;
SUBA: Semi-supervised subspace alignment; FLDA: Feature-level domain
adaptation; TrAdaBoost: Boosting for transfer learning; MKL: Multiple kernel
learning; AverageMKL: sSmple average of base kernels; EasyMKL: Radius-based
combination of kernels; GRAM: Radius-margin ratio optimization for dot-
product boolean kernel learning; RMKL: Radius-based multiple kernel learning;
PWMK: Simple but effective methods for combining kernels in computational
biology; CKA: Centered kernel alignment optimization in closed form
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