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Abstract

Background: Alzheimer's disease, cardiovascular disease, and other cardiometabolic disorders may share
inflammatory origins. Lipid mediators, including oxylipins, endocannabinoids, bile acids, and steroids, regulate
inflammation, energy metabolism, and cell proliferation with well-established involvement in cardiometabolic
diseases. However, their role in Alzheimer’s disease is poorly understood. Here, we describe the analysis of plasma
and cerebrospinal fluid lipid mediators in a case—control comparison of ~150 individuals with Alzheimer's disease
and ~135 healthy controls, to investigate this knowledge gap.

Methods: Lipid mediators were measured using targeted quantitative mass spectrometry. Data were analyzed
using the analysis of covariates, adjusting for sex, age, and ethnicity. Partial least square discriminant analysis
identified plasma and cerebrospinal fluid lipid mediator discriminates of Alzheimer's disease. Alzheimer's disease
predictive models were constructed using machine learning combined with stepwise logistic regression.

Results: In both plasma and cerebrospinal fluid, individuals with Alzheimer’s disease had elevated cytochrome
P450/soluble epoxide hydrolase pathway components and decreased fatty acid ethanolamides compared to
healthy controls. Circulating metabolites of soluble epoxide hydrolase and ethanolamides provide Alzheimer's
disease predictors with areas under receiver operator characteristic curves ranging from 0.82 to 0.92 for
cerebrospinal fluid and plasma metabolites, respectively.

Conclusions: Previous studies report Alzheimer's disease-associated soluble epoxide hydrolase upregulation in the
brain and that endocannabinoid metabolism provides an adaptive response to neuroinflammation. This study
supports the involvement of P450-dependent and endocannabinoid metabolism in Alzheimer's disease. The results
further suggest that combined pharmacological intervention targeting both metabolic pathways may have
therapeutic benefits for Alzheimer’s disease.
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Introduction

Risk factors for Alzheimer’s disease (AD) include cardio-
metabolic disorders, low-grade systemic inflammation,
and altered lipid and energy metabolism [1-3]. Lipid
mediators are lipid-derived signaling molecules that
regulate both acute and low-grade systemic inflamma-
tion and energy metabolism along with other processes
[4]. Circulating lipid mediators have been implicated in
the pathogenesis of cardiometabolic diseases [5—7]; how-
ever, their involvement in AD is still not well described.

Four important families of such lipid mediators readily
detected in the circulation are the oxygenated polyunsat-
urated fatty acids (i.e., oxylipins), the endogenous canna-
binoid receptor activators and their structural
equivalents (i.e., endocannabinoids, including monoacyl-
glycerols and ethanolamides), bile acids, and steroids.
Oxylipins are mainly oxygenated products of polyunsat-
urated fatty acids (PUFAs) generated via 4 main path-
ways: cyclooxygenases (COX), generating mainly
prostaglandins; lipoxygenases (LOX), generating mainly
hydroxy-fatty acids, including pro-inflammatory leuko-
trienes and pro-resolving lipoxins, resolvins, and mare-
sins [8]; cytochrome P450 (CYP) and soluble epoxide
hydrolase (sEH), generating epoxy-fatty acids and dihy-
droxy fatty acids, respectively [4]; and reactive oxygen-
mediated formation of prostanoids and hydroxy-fatty
acids [9]. Products from these pathways exhibit both
pro- and anti-inflammatory actions [4]. Endocannabi-
noids are mainly fatty acids esters and amides, which are
ligands for the cannabinoid receptors CB1 and CB2, the
transient potential vanilloid receptor TRPVI1, and G-
protein-coupled receptor GPR55 [10], all highly
expressed in the central nervous system [11]. Endocan-
nabinoids regulate energy metabolism [10] and are gen-
erally considered anti-inflammatory [12]. Bile acids
(BAs) are generated by the liver as primary bile acids
and secreted into the gut to aid in lipid digestion, and
they are further metabolized by the gut microbiome to
form secondary bile acids [13]. After reabsorption from
the gut into the blood stream, BAs regulate energy me-
tabolism with different potency between primary and
secondary species [14].

Changes in circulating lipid mediators in relation to
AD were previously reported. Particularly, several oxyli-
pins of the acute inflammation pathway were reportedly
elevated in AD [15, 16] and pro-resolving (quenching ac-
tivated inflammatory signal) lipid mediators have been
suggested as potential treatment for AD [17]. Specific
changes in bile acid metabolism, including a decrease in
primary and an increase in secondary metabolites, were
also observed in AD subjects [18], and differences in bile
acid clearance for cholesterol pathway were reported in
AD [19]. Notably, bile acids and some steroids manifest
neuroprotective functions through activation of steroid
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receptors [20]. However, a comprehensive analysis of the
AD-related changes in circulating lipid mediators is lack-
ing and reports of lipid mediators in cerebrospinal fluid
(CSF) are minimal. In the current work, we utilize
plasma and CSF samples of AD patients and cognitively
normal controls from the Emory Goizueta Alzheimer’s
Disease Research Center (ADRC). Using a case—control
approach, we provide a comprehensive analysis of AD-
associated changes in both circulating and CSF lipid me-
diators, including major classes of oxylipins, endocanna-
binoids, bile acids, and some steroids, covering multiple
aspects of inflammatory cascades and regulators of en-
ergy metabolism. Moreover, to minimalize the bias
caused by postprandial fluctuation in plasma lipids, the
fasting state of opportunistically collected samples was
estimated using a novel predictive model that uses levels
of circulating lipid mediators [21].

Materials and methods

Subjects

All participants from whom plasma and CSF sam-
ples were collected provided informed consent
under protocols approved by the Institutional Re-
view Board at Emory University. Cohorts included
the Emory Healthy Brain Study (IRB00080300), Cog-
nitive Neurology Research (IRB00078273), and
Memory @ Emory (IRB00079069). All protocols
were reviewed and approved by the Emory Univer-
sity Institutional Review Board. All patients received
standardized cognitive assessments (including Mon-
treal Cognitive Assessment (MoCA)) in the Emory
Cognitive Neurology clinic, the ADRC, and affiliated
Emory Healthy Brain Study (EHBS) [22]. All diag-
nostic data were supplied by the ADRC and the
Emory Cognitive Neurology Program. CSF was col-
lected by lumbar puncture and banked according to
2014 ADC/NIA best practice guidelines. All CSF
samples collected from research participants in the
ADRC, Emory Healthy Brain Study, and Cognitive
Neurology clinic were assayed using the INNO-BIA
AlzBio3 Luminex assay at AKESOgen (Peachtree
Corners, GA). AD cases and healthy individuals
were defined using established biomarker cutoff cri-
teria for AD for each assay platform [23, 24]. In
total, plasma samples were available for 148 AD pa-
tients and 133 healthy controls and CSF samples
were available for 150 AD patients and 139 healthy
controls. Plasma and CSF sample collection overlap
(both plasma and CSF collected at the same day)
was 145 for the AD group and 133 for the control
group. Cohort summary statistics for gender, age,
MoCA, AB42, tTau, pTau, ApoE genotype, and eth-
nicity are provided in Table S1.



Borkowski et al. Alzheimer's Research & Therapy (2021) 13:149

Quantification of lipid mediators

Plasma concentrations of non-esterified PUFA, oxylipins,
endocannabinoids, a group of non-steroidal anti-
inflammatory drugs (NSAIDs) including ibuprofen, na-
proxen, acetaminophen, a suite of conjugated and un-
conjugated bile acids, and a series of glucocorticoids,
progestins, and testosterone were quantified in 50uL of
plasma by liquid chromatography tandem mass spec-
trometry (LC-MS/MS) after protein precipitation in the
presence of deuterated metabolite analogs (i.e., analytical
surrogates) [25]. CSF analyses were performed with 100-
uL samples prepared as previously reported for the ana-
lyses of sweat [26] and analyzed as reported for plasma.
All samples were processed with rigorous quality control
measures including case/control randomization, and the
analysis of batch blanks, pooled matrix replicates, and
NIST Standard Reference Material 1950 — Metabolites
in Human Plasma (Sigma-Aldrich, St Louis, MO). Ex-
traction batches were re-randomized for acquisition,
with method blanks and reference materials and calibra-
tion solutions scattered regularly throughout the set. In-
strument limits of detection (LODs) and limits of
quantification (LOQs) were estimated according to the
Environmental Protection Agency method (40 CER, Ap-
pendix B to Part 136 revision 1.11, U.S. and EPA 821-R-
16-006 Revision 2). These values were then transformed
into sample nanomolar concentrations by multiplying
the calculated concentration by the final sample volume
and dividing by the volume of sample extracted. A
complete analyte list with plasma LODs and LOQs has
been reported [25]. The majority of analytes were quan-
tified against analytical standards with the exception of
eicosapentaenoyl ethanolamide (EPEA), palmitoleoyl
ethanolamide (POEA), and the measured PUFAs [ie.,
linoleic acid (LA), alpha-linolenic acid (aLA), arachi-
donic acid (AA), eicosapentaenoic acid (EPA), docosa-
hexaenoic acid (DHA)]. For these compounds, area
counts were recorded and adjusted for deuterated-
surrogate responses, and the relative response factors
were expressed as the relative abundance across all ana-
lyzed samples. Reported monoacylglycerols (MAGs) are
the sum of 1- and 2-acyl isomers, due to isomerization
during sample processing.

Fasting state assessment and sample selection

Many of the CSF and plasma samples from AD patients
were collected following additional research consent in
the course of patients’ clinical evaluations. Lumbar
puncture procedures were nearly all scheduled in the
morning, but fasting was not mandated in these individ-
uals. Therefore, the fasting state of the samples was esti-
mated using a previously published predictive equation
[21]. A high probability of the fasted state was described
by low levels of the LA-derived CYP metabolite [12(13)-
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EpOME], low levels of the primary conjugated bile acid
glycochenodeoxycholic acid (GCDCA), and elevated
levels of the glycine-conjugated oleic acid (NO-Gly).
Fasting probability was calculated using Egs. 1 and 2.

1
(1 4+ Exp(-Lin.prob.fasted))

(1)

Equation 1. Probability of the fasted state. Where
“Lin.prob.fasted” is defined by Eq. 2:

Probability for fasted =

Lin.prob fasted = 10.01-(2.82 X a)
+(1.94 x b)—(1.35 x ¢) (2)

Equation 2. Lin. prob. fasted: a = Log[12(13)-EpOME];
b = Log(NO-Gly); ¢ = Log(GCDCA). Concentrations
expressed in nanomolar.

Only subjects with the probability of the fasting state >
60% were used for the plasma analysis. All subjects were
used to compare lipid mediator levels in CSF. CSF was
reported not to manifest postprandial lipid fluctuations
[27]; additionally, comparing predicted fasted to pre-
dicted non-fasted AD subjects reveals minimal differ-
ences in only 2 metabolites (Table S2).

Statistical analysis

All statistical tests were performed using JMP Pro 14
(JMP, SAS Institute, Carry, NC). Prior to analysis, data
were tested for outliers using the robust Huber M test
and missing data were imputed using multivariate nor-
mal imputation for variables which were at least 75%
complete. The imputed numbers constitute less than 3%
of the data for both plasma and CSF. Imputation facili-
tated multivariate data analysis and non-imputed data
were used for univariate approaches. Additionally, vari-
ables were normalized, centered, and scaled using John-
son’s transformation, with normality verification using
the Shapiro—Wilk test. The difference between the con-
trol and the AD group was assessed using a t-test with
gender, age, and race as covariates. Additionally, two-
way ANOVA was used to test for the gender x group
and race x group interactions. In case of significant
interaction, the group effect was tested separately for the
interacting factor. Correlations between MoCA score
and lipid mediators were assessed using Spearman’s rank
order correlation, to account for non-linear associations.
This analysis was performed using only AD subjects,
stratified by the assessed fasting state for plasma. CSF
samples were analyzed without fasting state stratifica-
tion. Multiple comparison control was accomplished
with the false discovery rate (FDR) correction method of
Benjamini and Hochberg with a ¢ = 0.2 [28].
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Predictive models for AD were prepared using a com-
bination of bootstrap tree and stepwise logistic regres-
sion modeling. Prior to analysis, subjects were randomly
split into training (70%) and validation (30%) cohorts.
Variables most frequently appearing in the models were
identified by bootstrap tree: number of layers = 50, split
per tree = 3, and bootstrap sampling rate for variables
and subjects = 1. A variable contribution scree plot was
generated using variable rank and the likelihood ratio of
chi-square. The scree plot was used to determine a like-
lihood ratio of chi-square cutoff value for variables con-
tributing to the model. Selected variables were then
subjected to stepwise logistic regressions. A stepwise
analysis was performed with the maximal validation 7>
as the model stopping criteria, or if an additional step
increased the Bayesian information criteria (BIC). Vari-
ables selected by the stepwise approach were then used
to build the model using logistic regression. Metabolites
that the model contribution p-value < 0.05 were ex-
cluded, to ensure the strongest model with the minimal
number of predictors.

Partial least square discriminant analysis (PLA-DA)
was used to integrate AD-related differences in metabol-
ite levels between plasma and CSF. The PLS-DA model
was built using the non-linear iterative partial least
squares algorithm with K-fold variation method (k = 7)
and included 235 variables from plasma and CSF, in-
cluding metabolite levels and informative metabolite ra-
tios. For the clarity purpose, only variables with a
variable importance in projection (VIP) score > 1.4 were
displayed on the loading plot.

Correlation between CSF and plasma metabolites was
assessed using Spearman’s rank order correlation.

Results

Fasting state assessment

Epoxy linoleate, glycine-conjugated oleic acid, and bile acid
Analysis of opportunistically collected samples brings
a challenge of the unknown fasting state. The control
cohort contained samples collected in the fasted state
per ADRC and EHBS protocols, but the AD cohort
included many who had no collected fasting state in-
formation and consist of samples collected in both
fasted and non-fasted states. Therefore, to allow a dir-
ect comparison of the control and AD groups, we
assessed the estimated subject fasting state using our
previously published predictive model [21]. It should
be noted that due to natural variation in postprandial
metabolism, the fasting state predictions used here
should not be considered as a binary classification
(i.e., either fasted or non-fasted), but rather as a 3
group set consisting of a classical fasted profile, a
classical non-fasted profile, and a mixed group of
“low”-fasted profiles and “high”-non-fasted profiles
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that cannot be distinguished. As expected, the control
group was predicted to contain mostly fasted subjects
(Fig. 1). Out of 133 control subjects, 105 (i.e., 79%)
were predicted as fasted, while 17 (i.e., 12%) as non-
fasted, with a probability of > 60%, and 11 (i.e., 8%)
had a fasting state probability of <60%. Out of 148
AD subjects, 60 (i.e, 40%) were predicted as fasted
and 81 (i.e., 55%) as non-fasted, with a probability of
>60%, and 7 (5%) had a fasting state probability of <
60%. Fifty percent of detected metabolites manifested
differences between predicted fasted and non-fasted
AD subjects in plasma and only minimal differences
were observed in CSF (Table S2). These differences in
plasma metabolites were in agreement with the pub-
lished consensus regarding postprandial fluctuation in
key metabolites, including fatty acids [29] and bile
acids [30].
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Cytochrome P450/soluble epoxide hydrolase metabolism
is elevated in AD subjects

Hydroxy and dihydroxy fatty acids, prostaglandins, and
fatty acid ethanolamides

We compared plasma and CSF lipid mediator concen-
trations between the control and the AD groups, using
only estimated fasted subjects with probability > 60% for
plasma. In plasma, we detected 42 oxylipins (85 mea-
sured), 5 PUFAs (5 measured), 17 endocannabinoids (22
measured), 3 NSAIDs (4 measured), 19 bile acids (23
measured), and 8 steroid hormones (8 measured). The
mean values and p-values for ¢-tests and two-way
ANOVA interactions for all detected metabolites are
provided in Table S3. Plasma group-fold differences in
the oxylipin, endocannabinoids, and PUFAs, projected
onto their metabolic pathway, are presented in Fig. 2.
The largest differences were observed in the long-chain
omega-3 PUFA metabolism. Both EPA and DHA
enzyme-derived mono-alcohols (5-LOX-derived 5-HEPE
and 4-HDoHE and 12-LOX-derived 12-HEPE and 14-
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HDoHE) were lower (1.5-fold in average) in the AD
group, when compared to the control. On the other
hand, the sEH EPA metabolite 17,18-DiHETE was 3-fold
higher in the AD group. In the AD group, the AA path-
way manifested lower levels of the COX-derived prosta-
glandins PGF2a and PGD2 (1.6-fold average).
Additionally, the AD group showed lower levels of acy-
lethanolamides (1.5-fold in average) derived from
dihomo-gamma-linolenic acid (DGLEA), AA (AEA),
docosatetraenoic acid (DEA), DHA (DHEA), and oleic
acid (OEA). Notable are also lower levels of autooxida-
tion markers, particularly the EPA-derived 9-HEPE (2-
fold), linoleic acid (LA)-derived TriHOMEs (1.65-fold),
and AA-derived isoprostanes (1.3-fold) in the AD group.

Fewer lipid mediators were detected in CSF than in
plasma. Detected CSF lipid mediators included 17 oxyli-
pins, 5 PUFAs, 3 endocannabinoids, 14 bile acids, and 6
steroids. The mean values and p-values for t-tests and
two-way ANOVA interactions are provided in Table S4.
CSF significant group-fold differences in the level of
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oxylipin, endocannabinoids, and PUFAs, projected onto
their metabolic pathway, are presented in Fig. 3. In this
matrix, the largest differences were observed in the LA
CYP metabolic pathway, where both epoxy and dihy-
droxy FA, products of CYP and subsequent sEH metab-
olism, were higher in the AD group when compared to
the control: epoxide average 1.5-fold and diol average
1.3-fold. All PUFAs from both omega-3 and omega-6
pathways were lower in the AD group, although the dif-
ference was only 1.2-fold on average. Additionally, the
AD group manifested 1.5-folds lower level of OEA and a
1.3-fold lower level of the EPA-derived 14,15-DiHETE.

Bile acids

While few differences were observed in plasma and
CSF bile acid levels between control and AD subjects,
numerous differences were present in the specific bile
acid ratios (Table 1). Figure S1 shows the bile acid
metabolic pathway together with their median plasma
levels to help understand the biological aspects of
specific bile acid ratios. In plasma, the AD group was
characterized by lower levels of cholic acid (CA), a
product of the neutral bile acid synthesis pathway,
while chenodeoxycholic acid (CDCA), a product of
the acidic pathway, was unchanged. This difference
becomes even more pronounced when looking at the
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CA/CDCA ratio. On the other hand, the difference
between neutral and acidic pathways was not present
in downstream metabolites, when comparing the sec-
ondary unconjugated bile acid ratio, like deoxycholic
acid/(lithocholic acid + ursodeoxycholic acid) (DCA/
(LCA+UDCA)) or the most abundant primary conju-
gated derivatives glycocholic acid/glycochenodeoxy-
cholic acid (GCA/GCDCA) (Table S3). Of note, small
differences between the neutral and acidic pathways
were observed in the low abundance taurine conju-
gates of the secondary bile acids taurodeoxycholic/
taurolithocholic acid (TDCA/TLCA). A difference in
conjugation ratio (more conjugates than the substrate)
was observed in the neutral synthesis pathway
(GDCA/DCA and GCA/CA) but not in the acidic
synthesis pathway. Differences between the neutral
and acidic synthesis pathways were also observed in
the conversion of the primary to secondary bile acids.
The ratio of downstream products to their precursor
in the neutral pathway was higher in the AD group
in the case of DCA/CA, TDCA/CA, and GDCA/CA,
but not in parallel acidic pathway metabolites (i.e.,
LCA/CDCA, UDCA/CDCA).

CSF manifested few differences in bile acids and their
ratios. The AD group had 1.3-fold higher levels of GLCA
and 1.4-fold higher level of T-a-MCA. Additionally, the
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Table 1 Differences in bile acid metabolites and their specific ratios between control and AD groups. Means are expressed in
nanomolar or as a ratio of the concentrations. Metabolites and their ratio are stratified by the metabolic affiliations. All tested bile

acids and their ratios are presented in Table S3

Metabolite p Mean [95% Cl]
value Control AD

Neutral vs acidic synthesis pathway
CA 0.0321 274 [20.8-36.2] 193 [13.6-27.4]
CDCA 0.978 38.7 [29.2-51.5] 46.7 [32.6-66.9]
CA/CDCA 0.0008 0.707 [0.571-0.876] 0.363 [0.271-0.487]
GCDCA/GDCA 0.5 2.08 [1.66-261] 1.97 [1.51-2.57]
TDCA/TLCA 0.0114 133 [1.1-1.62] 1.81 [1.49-2.21]

Conjugation, neutral synthesis pathway

GDCA/DCA 0.0031
TDCA/DCA 0.1
GCA/CA 0.0104
TCA/CA 0.076
Conjugation, acidic synthesis pathway
GUDCA/UDCA 0.7
TUDCA/UDCA 0.746
GCDCA/CDCA 0491
TCDCA/CDCA 0.644
TLCA/LCA 0.961
GLCA/LCA 0.721
Conversion of primary to secondary. Gut metagenome activity
DCA/CA 0.0459
TDCA/CA 0.0056
GDCA/CA 0.0007
LCA/CDCA 0451
UDCA/CDCA 0.691
TUDCA 0.0275

0.719 [0.604-0.856]
0.0605 [0.0467-0.0783]
252 [1.86-3.39]

0.506 [0.358-0.716]

0.546 [0.341-0.876]
2.83[1.93-4.17]
8.15 [6.21-10.7]
0.734 [0.53-1.01]
0.282 [0.2-0.396]
0.711 [0.53-0.955]

801 [58-11.1]
0.469 [0.309-0.711]
5.76 [401-8.27]
0.66 [0419-1.04]
1.39 [0.815-2.36]
1.07 [0.78-1.48]

1.05 [0.836-1.33]
0.0777 [0.0556-0.109]
4.13 [2.84-6.01]

0.711 [0434-1.16]

0.515 [0.334-0.793]
204 [1.33-3.13]
8.36 [5.68-12.3]
0.687 [0.433-1.09]
0.252 [0.182-0.347]
0.749 [0.552-1.02]

12 [7.89-18.1]
0.906 [0.517-1.59]
125 [7.71-20.2]
0.589 [0.42-0.825]
1.94 [1.23-3.07]
1.92 [1.53-241]

AD group had a lower ratio of GCDCA/GLCA (1.3-
folds, Table S4).

Steroids

Of those measured, only a few steroid hormones showed
different levels between AD and the control. In plasma,
dehydroepiandrosterone sulfate (DHEAS) and progester-
one were lower in the AD group (1.9- and 1.7-folds, re-
spectively).  Additionally,  testosterone and the
testosterone/progesterone ratio showed significant gen-
der x group interaction. Female AD subjects showed
1.4-fold lower testosterone, when compared to female
controls, but no differences were observed in males. On
the other hand, the testosterone/progesterone ratio was
2-fold higher in AD male subjects compared to male
controls. Testosterone/progesterone ratio differences
were not observed in females.

In CSF, only corticosterone showed a significant differ-
ence between AD and the control group; however, the
magnitude of the fold difference was only ~1.1.

Relation between CSF and plasma AD markers
In the current study, matched plasma and CSF samples
were collected, allowing an assessment of the relation-
ships between metabolites in these pools. Spearman’s p
rank order correlation between plasma and CSF lipid
mediator levels is shown in Table 2. The associations
were distinct by metabolite classes, with oxylipins show-
ing only 2 of 15 significant correlations, while bile acids
and steroids showing 14 of 18 significant correlations.
Correlations within PUFA and PUFA ethanolamide were
also apparent for the long-chain omega 3 species (DHA
EPA and DHA ethanolamide) but not others.

Next, we used partial least square discriminant analysis
(PLS-DA) to illustrate the relationship between plasma
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Table 2 Spearman’s rank order correlation between plasma and
CSF metabolites. Significant p values are bolded

Metabolite class Metabolite Spearman's p p value
Oxylipins PGF2a -0.2 0.0746
F2-IsoP 0.34 0.0019
12_13-DiIHOME 0.26 0.0223
9_10-DiIHOME 0.15 0.1810
15_16-DiHODE 0.21 0.0625
14_15-DiHETrE 0.062 0.5830
11_12-DiHETrE 0.11 0.3340
17_18-DIiHETE 033 0.0027
19_20-DiHDoPE 0.16 0.1450
13-HODE 0.029 0.7970
9-HODE -0.054 0.6380
13-HOTE -0.014 0.9010
9-HOTE —0.051 06520
12(13)-EpOME 0.0089 0.9380
9(10)-EpOME —-0.028 0.8070
Acyl-EA OEA —0.031 0.7820
LEA 0.062 0.5860
DHEA 051 0.0001
PUFA LA 0.15 0.1860
ALA 0.2 0.0826
AA —0.049 06670
EPA 045 0.0001
DHA 042 0.0001
Bile acids CDCA 051 0.0001
UDCA 0.78 0.0001
DCA 0.71 0.0001
TCA 0.62 0.0001
TCDCA 043 0.0001
TUDCA 0.16 0.1570
TDCA 0.54 0.0001
GCA 036 0.0012
GCDCA 0.19 0.0925
GUDCA 047 0.0001
GDCA 0.54 0.0001
GLCA -0.083 04670
Steroids 170H-PROG 0.58 0.0001
Cortisol 03 0.0071
Cortexolone 0.089 04340
corticosterone 0.51 0.0001
Testosterone 0.81 0.0001

and CSF AD markers (Fig. 4). That discrimination be-
tween control and AD was dominated by the plasma
metabolites. Fifteen plasma metabolites (and their ratios)
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manifested variable importance in projection (VIP) score
> 1.4 compared to only 4 CSF metabolites. The discrim-
ination between AD and the control group was charac-
terized by higher plasma 17,18-DiHETE (VIP = 2.16)
and CSF EpOMEs (VIP = 1.95 and 1.58 for the 12(13)
and 9(10) isoforms, respectively) and lower levels of the
acylethanolamide ratios including both DHEA/LEA and
DEA/LEA in plasma and both plasma and CSF OEA/
LEA. Plasma and CSF OEA/LEA manifest similar dis-
criminatory power based on their proximity on the load-
ing plot. On the other hand, plasma 17,18-DiHETE and
CSF EpOMEs occupied distinct parts of the loading plot,
suggesting distinct discriminatory properties. The VIPs
for each metabolite are provided in Table S5.

Fatty acid ethanolamides and CYP/sEH metabolites are
strong AD predictors in both plasma and CSF

We used predictive modeling to investigate how well
plasma and CSF metabolites can report AD status.
Plasma lipid mediators generated stronger models than
those in CSF with area under the receiver operator char-
acteristic curves (ROC AUC) of 0.924 vs. 0.824, with the
two models consisting of distinct metabolites (Fig. 5).
However, in both matrices, the strongest predictors
belonged to the same two metabolic pathways, the acyl
ethanolamides and CYP/sEH pathway. Plasma predictors
included ethanolamides (OEA and DEA normalized to
the LEA level), the 12,13-DiHOME/EpOME an indicator
of sEH activity [31], and sEH metabolite of AA (14,15-
DIiHETrE). In CSF, the strongest predictors included
OEA/LEA and the linoleate-derived epoxides 12(13)-
EpOME and 9(10)-EpOME. When plasma and CSF
markers were combined in predictive model efforts, the
resulting model consisted uniquely of ethanolamides, in-
cluding plasma long-chain PUFA ethanolamides (DEA/
LEA and DHEA/LEA) and CSF OEA/LEA. This model
resulted in the ROC AUC of 0.889.

For all 3 models, ethanolamides OEA, DEA, and
DHEA were stronger predictors when used as a ratio to
LA-derived ethanolamide—LEA. LEA itself was not dif-
ferent between AD and the control group in either
plasma or CSF (Figs. 2 and 3) unlike OEA, DEA, and
DHEA. Therefore, LEA likely serves as a surrogate for
the general acyl ethanolamide level and adjustment of
other ethanolamides by LEA lowers intra-individual
variability.

To investigate the relevance of identified metabolites
to the progression of AD pathology, components of the
predictive models were applied to a linear model for
log(t-Tau/AB42), as a marker of AD pathology. The AD
predictive model components produced strong linear re-
gression models with log(t-Tau/AB42) in both plasma
(r* = 0.37, p value < 0.0001) and CSF (+* = 0.22, p value
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< 0.0001) shown in Figure S2, further supporting our ap-
proach towards fasting state stratification.

Lipid mediator-cognitive score associations in AD

The AD cohort is characterized by a high log(t-Tau/
AP42) ratio and MoCA scores ranging from normal cog-
nitive function to severe cognitive impairment (Figure
S3). Taking advantage of the broad MoCA range, we in-
vestigated lipid mediator associations with cognitive
function in this group pathological levels of t-Tau/Ap42.
Additionally, since the AD cohort was represented by
subjects in both fasted and non-fasted states, we strati-
fied the analysis by fasting state for plasma samples
(Table 3). In the fasting state, PUFA oxidation markers,
5,15-DiHETE and 9-HETE, were negatively associated
with the MoCA score (although only 5,15-DiHETE
passed FDR correction). 5,15-DiHETE can have an

enzymatic or autooxidative origin, whereas 9-HETE is
strictly an autooxidative product. 5,15-DiI[HETE corre-
lated with 9-HETE in fasted subjects with an R* = 0.415
(n = 60; p < 0.001). In non-fasted AD subjects, a strong
positive association between the MoCA score and EPA-
derived ethanolamide (EPEA) as well as the levels of
EPA and DHA were observed. Additionally, a positive
correlation was detected between MoCA and the EPA-
derived 17,18-DIiHETE, the DHA-derived 14-HDoHE,
and the 18 carbon PUFAs (LA and ALA); however, these
did not pass FDR correction.

In CSF, the linoleic acid-derived epoxides 12(13)- and
9(10)-EpOMEs showed weak but significant positive cor-
relations with MoCA (p > 0.2, p < 0.005; Table 4). Add-
itionally, positive associations were observed between
MoCA and DHA and DHA-derived diol (19,20-DiH-
DoPE) and conjugated bile acids GCA (and the ratio of
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CSF

Effect Summary

Plasma CSF and plasma

Source LogWorth PValue Source LogWorth PValue Source LogWorth PValue
DEA/LEA 5701 0.00000 OEA/LEA 5.807  0.00000 Plasma DEA/LEA 4.598  0.00003
OEA/LEA 3907 0.00011 12(13)-EpOME 4.241  0.00006  CSF OEA/LEA 3.524  0.00030
12,13-DiIHOME/EpOME 3.627  0.00024 9(10)-EpOME 2290  0.00512  Plasma DHEA/LEA 2356  0.00441
14,15-DiHETrE 3.160  0.00069

Receiver Operating Characteristic
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parameters is provided in Table S7

Fig. 5 Predictive model for AD with plasma and CSF metabolites. Predictive model built independently for plasma (left) and CSF (middle) and
plasma + CSF (right). Effect summary shows metabolite model components, sorted by their contribution to the model, with key pathways
colored in yellow (fatty acid ethanolamides) and blue (cytochrome p450/soluble epoxide hydrolase pathway). The receiver operating
characteristic (ROC) curve for the training set, together with the area under the curve (AUC) and the n for the training (T) and the validation (V)
cohorts, are showed in the bottom panel. Metabolite selection through the stepwise logistic regression model together with validation cohort

GCA to GDCA and GCDCA), TCDCA, and the conju-
gated to unconjugated ratio for DCA and CDCA (GCA/
GCDCA, GCDCA/CDCA, and TCDCA/CDCA). How-
ever, only linoleic acid epoxides passed the FDR
correction.

Additionally, utilizing subjects from both AD patients
and healthy controls, we investigated associations of
other components of AD pathology, including log(t-

Tau/AB42), t-Tau, AB42, p-Tau, p-Tau/t-Tau, and
MoCA with plasma (Table S6) and CSF (Table S7)
metabolites.

Discussion

Metabolic disruptions influencing vascular physiology,
inflammation, and energy metabolism have been re-
ported to increase the risk of Alzheimer’s disease;

Table 3 Spearman’s p rank order correlation between MoCA score and plasma lipid mediators in AD patients. Analysis stratified by
predicted fasted state. Only correlations with the p < 0.05 are shown. p-values that passed FDR correction at g = 0.2 are bolded

Fasted Non-fasted

Metabolite Spearman p p value Metabolite Spearman p p value

5,15-DIiHETE —0.448 0.0005 EPEA 0424 0.0003

9-HETE -0.338 0.0102 EPA 0386 0.001

13-KODE -0.299 0.0238 DHA 0.338 0.0043

DCA -0.273 0.0398 17,18-DIHETE 03 0.0117
4-HDoHE 0.269 0.0246
LA 0.267 0.0254
ALA 0.249 0.0373
9-HETE —-0.246 0.0405
8-HETE -0.24 0.0459
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Table 4 Spearman’s p rank order correlation between MoCA
score and CSF lipid mediators in AD patients. Only correlations
with the p < 0.05 are shown. p-values that passed FDR
correction at g = 0.2 are bolded

Metabolite Spearman p p value
12(13)-EpOME 0279 0.0009
9(10)-EpOME 024 0.0047
19,20-DiHDoPE 0.21 0.0138
GCA 0207 0.0152
DHA 0.203 0.0174
GCA/GDCA 0.202 0.0182
GCDCA/CDCA 0.19 0.026
TDCA/DCA 0.19 0.0261
GCA/GCDCA 0.18 0.0352
TCDCA/CDCA 0.172 0.0441
TCDCA 0.17 0.0468

however, whether these changes are independent risk
factors or how they may interact has not been well
established. If novel biomarkers of AD can be identified
within these domains, they could not only provide useful
screening and risk assessment tools but may also provide
insight into connections between metabolism and neuro-
degenerative diseases. To this end, we performed a com-
prehensive analysis of plasma and CSF lipid mediators
and endogenous regulators of multiple processes includ-
ing inflammation and energy metabolism and described
their associations with AD and cognitive function. In the
process, we identify clear differences between AD and
healthy controls in two metabolic pathways, CYP/sEH
and fatty acid-derived ethanolamides, and subtle differ-
ences in bile acids and steroids. The potency of identi-
fied markers to predict AD is comparable with other
plasma [32] and CSF [32] proteomic biomarkers.
AD-associated differences in plasma bile acid were in
agreement with previously reported analyses of The Reli-
gious Orders Study and the Rush Memory and Aging
Project (ROS/MAP) cohort [18]. These included lower
levels of CA and the CA:CDCA ratio in AD, suggesting
that the neutral bile acid synthesis pathway could be af-
fected in AD. There are few studies regarding the shift
between neutral and acidic BA synthesis, one of them
reporting an increase in neutral/acidic pathway product
ratio in nonalcoholic steatohepatitis [33]. However, the
biological relevance of this difference in terms of AD is
yet to be determined. Interestingly, we previously re-
ported associations between postprandial bile acids and
cognition, with few associations in the fasting state [21].
Considering that the current manuscript focuses on AD-
related differences in the fasting state, further studies
probing postprandial bile acid metabolism and AD are
suggested. Interestingly, several bile acid and steroid
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differences in AD were gender specific. Few studies re-
port gender-specific action of TUDCA and UDCA on
ER stress markers in a rodent model for the prion dis-
ease [34]. These findings further support the importance
of gender-focused approaches when investigating
cholesterol-derived metabolism in the context of AD, as
established with regard to the links between ApoE4 and
AD risk in post-menopausal women [35].

With respect to fatty acid metabolism, our study iden-
tified substantial AD-associated elevations in CYP/sEH
pathway products and lower levels of acylethanolamides
in both plasma and CSF, although different elements of
these pathways were affected in plasma and CSF. Oxyli-
pin and endocannabinoid levels show no association be-
tween plasma and CSF, suggesting independent
regulation of these pools. Likewise, CYP/sEH metabo-
lites of plasma and CSF manifest distinct discriminatory
power in PLS-DA models of AD. On the other hand,
CSF and plasma acylethanolamides seem to manifest
similar AD discriminatory power and can be substituted
in the AD predictive model. These findings are consist-
ent with previous reports implicating both CYP/sEH me-
tabolites and acylethanolamides as important regulators
of inflammation in neurodegenerative disorders [12, 36,
37]. As some ethanolamides, like PEA, were reported to
be associated with cognition in AD patients in an ana-
lysis of a small (n = 40) cohort [38] and sEH reports are
based mainly on animal models and brain sEH gene ex-
pression [39], our study provides the first comprehensive
analysis of AD-associated alteration in the levels of the
array of these lipid mediators in plasma and CSF.

In the CYP/sEH pathway, polyunsaturated fatty acids
are converted to anti-inflammatory and vasodilating
epoxy fatty acids by CYPs, which are further metabolized
to pro-inflammatory and vasoconstricting diols by sEH,
a process primarily recognized in cardiovascular disease
[40]. In the current study, we found a higher plasma
level of the EPA sEH metabolite 17,18-DiHETE in AD
patients, but only a slight difference in the parallel AA
metabolites was observed. Notably, EPA metabolites de-
rived from LOX pathways were lower in AD patients,
suggesting that the observed differences are not a result
of differential omega-3 fatty acid intake, but rather spe-
cific enhancement in sEH-dependent EPA metabolism.
Omega-3 sEH metabolites are particularly potent regula-
tors of the cardiovascular system, especially blood vessel
tone and vascular inflammation [41] and sEH inhibitors
have been suggested to improve outcomes for both car-
diovascular [42] and neurodegenerative diseases [43].
Clinical associations between cardiovascular disease and
AD have been reported, where the regulation of a vascu-
lar tone and blood flow play a role in both pathologies
[44]. Additionally, we previously reported plasma EPA
sEH metabolites to be negatively associated with
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perceptual speed in cognitively normal subjects [21].
Therefore, the current findings further support the in-
volvement of vascular dysfunction in AD, perhaps
through alterations to the blood-brain barrier and
vascular-related inflammatory signaling, with overlap-
ping molecular mechanisms leading to cardiovascular
and neurodegenerative pathologies. When considering
these shifts in oxylipin profiles, it is important to re-
member that an epoxide reservoir is generated by esteri-
fication into phospholipid membranes [45], whereas
diols are not readily reincorporated into the membranes
and rapidly appear in the free pool and are actively ex-
creted from cells [46]. Since tissue esterified lipid media-
tors were not evaluated in these samples, it is difficult to
know whether the observed difference in EPA diol was
due to an increased production of CYP/sEH metabolites
or increased clearance of membrane-bound EPA epox-
ides, and future studies are needed to resolve this issue.
In contrast to plasma, CSF showed higher levels of
LA-derived epoxides, along with a moderate increase
in LA diols, but not CYP/EH metabolites of longer
chain PUFAs. The source of the CSF metabolites is
likely tied to the central nervous system, and
linoleate-derived oxylipins have been identified as
the dominant form in the developing rat brain [47].
Like long-chain PUFAs, LA-derived epoxides and di-
ols can also modulate vascular tone [48] and mul-
tiple studies point towards their cytotoxic and pro-
inflammation nature. However, most of these studies
used concentrations greatly exceeding physiological
levels [49] and cytotoxic effects were sEH-dependent,
pointing towards LA diols as cytotoxic agents [50].
Interestingly, LA CYP/sEH metabolites elevated in
the spinal tissue of burn victims were shown to acti-
vate the transient vanilloid receptor type 1 (TRPV1)
[51]. Activation of the TRPV1 can rescue neuronal
function from AP-induce impairment [52] and can
alleviate cognitive and synaptic plasticity impair-
ments in the APP23/PS45 mouse model of AD [53].
Considering that acylethanolamides are also potent
activators of the TRPV1 [54], increased LA CYP me-
tabolites may compensate for the AD-related de-
crease in these ethanolamides. This hypothesis is
supported by positive correlation of CSF LA-
epoxides with the MoCA score in AD patients, sug-
gesting elevation of epoxy fatty acids in the central
nervous system being potentially beneficial in AD. It
is important to mention that the transportation of
oxylipins in CSF is poorly understood. In plasma,
the majority of oxylipins are transported as complex
lipid esters in lipoproteins, with different lipopro-
teins manifesting distinct oxylipin compositions [55].
Therefore, the potential for lipoprotein-dependent
oxylipin transport within CSF-specific HDL particles
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[56] is particularly intriguing and warrants further
investigation.

Together, the CSF and plasma results implicate
changes in both peripheral and central CYP/sEH me-
tabolism in association with AD and cognitive impair-
ment. These conclusions are consistent with previous
reports of single nucleotide polymorphisms (SNPs) in
the CYP2J2 promoter region that reduces gene ex-
pression by ~50% that appears to increase the
ApoE4-independent AD risk [57]. Several functional
SNPs are also known to influence sEH activity and/or
expression and influence disease risk [58]. Relevant to
AD-associated pathologies, loss of function sEH muta-
tions protect neurons from ischemia-induced death
[59] and may alter the risk of vascular cognitive im-
pairment [60]. Additionally, postmortem brains from
human subjects with AD show higher sEH levels,
when compared to the healthy controls, and sEH in-
hibitors can reverse microglia and astrocyte reactivity
and immune pathway dysregulation in mouse AD
models [36]. Additionally, brain sEH was positively
associated with AD in a replicated protein-wide asso-
ciation study of AD [61]. Therefore, reducing sEH
function appears to be protective and supports sEH
as a valuable therapeutic target for the treatment and
investigation of neuroinflammatory pathologies includ-
ing AD.

Both plasma and CSF acylethanolamides were lower
in AD, with both PLS-DA and predictive model iden-
tifying OEA as the strongest predictor of AD in the
current cohort. Acylethanolamides are generally con-
sidered anti-inflammatory [62] and neuroprotective
[63] and were previously implicated in neuroinflam-
matory processes [64, 65]. Their neuroprotective ac-
tion is mediated by activation of the CB1 and CB2
receptors [66] and TRPV1, involved in the acute and
inflammatory pain signals in the periphery [67]. Some
acylethanolamides, like OEA, are also peroxisome
proliferator-activated receptor (PPAR) a agonist [66]
and regulate satiety and sleep with both central and
peripheral anorexigenic effects. Notably, sleep distur-
bances themselves have been reported to be a risk
factor for AD [68], and the identified reductions in
CSF OEA would be consistent with such a physio-
logical manifestation [69]. A recent study also sug-
gested that the EPA-derived ethanolamide (EPEA) is a
potential PPAR y agonist [70], a transcription factor
known for its neuroprotective and anti-inflammatory
action [71]. Interestingly, non-fasting levels of EPEA
showed a positive association with MoCA in AD pa-
tients. This is in agreement with our previous findings
of acylethanolamides in non-fasted individuals, includ-
ing EPEA, being positively associated with perceptual
speed in cognitively normal elderly individuals [21].
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Literature provides conflicting results regarding both
the levels of acylethanolamides in biological fluids, as
well as the expression of CB1 and CB2 receptors in
the context of AD [72]. Nevertheless, the body of lit-
erature suggests that exogenous cannabinoids are po-
tent activators of the CB1 and CB2 receptors with
potential therapeutic benefit for AD treatment, due to
their neuroprotective and anti-inflammatory activity
[73]. Our data suggest acylethanolamide biology is al-
tered in relation to both AD pathology as well as
cognition. However, future studies are needed to fully
elaborate the role of these endocannabinoids in AD
pathology.

Limitations

This study was conducted using opportunistically col-
lected samples with the fasting state estimated using a
previously developed predictive model [21] with an
~17% inherent misclassification rate. Additionally, con-
sidering the small size of the AD group (n = 60), the
finding of this study should be considered as preliminary
and validated using a bigger cohort. Additionally, a small
cohort prevented us from exploring the influence of fac-
tors like sex, ethnicity, and the ApoE genotype, which
should be evaluated using a bigger cohort. Moreover,
the results of the prediction models should be treated
with caution as a small number of subjects can poten-
tially cause overfitting.

Conclusions

In conclusion, the current study shows AD-related
differences in CYP/sEH and acylethanolamide metab-
olism observed in both plasma and CSEF. Strong pre-
dictive and discriminant models suggest their
potential as biomarkers of AD-associated metabolic
disruptions. This further supports the contention that
a combination therapy reducing sEH activity with
sEH inhibitors which have recently passed phase la
trials [74], while increasing acylethanolamide tone by
either exogenous supplementation or inhibiting their
degradation with fatty acid amide hydrolase inhibitors
[75], could be a more effective strategy than targeting
either pathway independently in treating multifactorial
inflammatory diseases like AD [36]. Important ques-
tions remain regarding the metabolic changes in the
lipid mediators preceding pathological changes in tau
and cognitive decline. We have previously reported
that plasma sEH metabolites of the long-chain
omega-3 PUFA were negatively associated and PUFA
ethanolamides positively associated with perceptual
speed [21], mimicking the currently described AD-
related associations. While these data suggest early al-
terations in these important regulatory pathways, a
comprehensive analysis of longitudinal metabolome
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changes in relation to cognition and tauopathies is
warranted. Combining assessments of dietary, lifestyle,
and genetic factors promoting these metabolic
changes offers the opportunity for novel risk factor
discovery and the development of targeted preventive
measures.
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Additional file 1 : Figure S1. Bile acids biosynthesis pathway. Node
colors represent primary (blue) and secondary (dark red) bile acids. Node
shape represent conjugated (diamond) and unconjugated (oval) bile
acids. Node size represents median concentration in the experimental
cohort. Cholesterol (top of the pathway) is converted to primary bile
acids along two pathways, neutral and acidic [1]. Further, primary bile
acids are secreted to gut, and portion of it being modify by the gut
bacteria to secondary bile acids. Primary and secondary bile acids are
reabsorbed into the blood stream and reenter the liver, where they are
conjugated with amino acids glycine or taurine. Conjugated bile acids
are then being secreted back to the gut along with primary bile acids.
Gut bacteria can cleave conjugated amino acids off bile acids [2], and
freed metabolites are recirculated. Therefore, plasma levels of conjugated
bile acids can me a reflection of both liver and gut bacteria activity.
Refference: 1.Pandak, W.M. and G. Kakiyama, The acidic pathway of bile
acid synthesis: Not just an alternative pathway(). Liver Res, 2019. 3(2): p.
88-98; 2. Ridlon, J.M,, et al, Consequences of bile salt biotransformations
by intestinal bacteria. Gut Microbes, 2016. 7(1): p. 22-39.

Additional file 2 : Figure S2. Multilinear regression of log(t-Tau/AB42)
and the components of AD predictive models, presented in the Figure 4.
Analysis performed separately for plasma (upper panel) and CSF (lower
panel) AD predictors. Association of individual components are shown in
the leverage plots, whereas effect summery contain descriptive statistics
for each individual metabolite in the model.

Additional file 3 : Figure S3. Control and AD group MoCA and log(t-
Tau/AR42).

Additional file 4 : Table S1. Cohort Characteristics.

Additional file 5 : Table S2. T-test of predicted fasted vs predicted
non-fasted in AD group for plasma and CSF metabolites.

Additional file 6 : Table S3. The mean values and t-test and two-way
ANOVA interaction p-values for all detected metabolites in plasma.

Additional file 7 : Table S4. The mean values and t-test and two-way
ANOVA interaction p-values for all detected metabolites in CSF. P-values
< 0.05 are colored red, p-values > 0.05 < 0.1 are colored orange.

Additional file 8 : Table S5. Variable importance in projection (VIP)
scores for all plasma and CSF variables used for partial least square
discriminant analysis (PLS-DA).

Additional file 9 : Table S6. Spearman's rank order correlation between
AD-related markers and plasma lipid mediators. Analysis performed utiliz-
ing only subjects predicted to be fasted with the probability >60%, in-
cluding 60 AD patients and 96 healthy controls. Only associations with
the p<0.05 are displayed. Associations colored based on Spearman's p
(values shown in the table), with blue color for negative and orange for
positive associations.

Additional file 10 : Table S7. Spearman's rank order correlation
between AD-related markers and CSF lipid mediators. Analysis performed
utilizing 151 AD patients and 142 healthy controls. Only associations with
the p>0.05 are displayed. Associations colored based on Spearman’s p
(values shown in the table), with blue color for negative and orange for
positive associations.

Additional file 11 : Table S8. Stepwise logistic model predicting AD

status using plasma, CSF or both plasma and CSF metabolites. Stepwise
analysis was performed with the maximal validation r* as the model
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stopping criteria, or if an additional step increased the BIC. Model
stopping point for each analysis is highlighted.
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