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Abstract

Background: Identification of reliable, affordable, and easy-to-use strategies for detection of dementia is sorely
needed. Digital technologies, such as individual voice recordings, offer an attractive modality to assess cognition
but methods that could automatically analyze such data are not readily available.

Methods and findings: We used 1264 voice recordings of neuropsychological examinations administered to
participants from the Framingham Heart Study (FHS), a community-based longitudinal observational study. The
recordings were 73 min in duration, on average, and contained at least two speakers (participant and examiner). Of
the total voice recordings, 483 were of participants with normal cognition (NC), 451 recordings were of participants
with mild cognitive impairment (MCI), and 330 were of participants with dementia (DE). We developed two deep
learning models (a two-level long short-term memory (LSTM) network and a convolutional neural network (CNN)),
which used the audio recordings to classify if the recording included a participant with only NC or only DE and to
differentiate between recordings corresponding to those that had DE from those who did not have DE (i.e., NDE
(NC+MCI)). Based on 5-fold cross-validation, the LSTM model achieved a mean (±std) area under the receiver
operating characteristic curve (AUC) of 0.740 ± 0.017, mean balanced accuracy of 0.647 ± 0.027, and mean
weighted F1 score of 0.596 ± 0.047 in classifying cases with DE from those with NC. The CNN model achieved a
mean AUC of 0.805 ± 0.027, mean balanced accuracy of 0.743 ± 0.015, and mean weighted F1 score of 0.742 ±
0.033 in classifying cases with DE from those with NC. For the task related to the classification of participants with
DE from NDE, the LSTM model achieved a mean AUC of 0.734 ± 0.014, mean balanced accuracy of 0.675 ± 0.013,
and mean weighted F1 score of 0.671 ± 0.015. The CNN model achieved a mean AUC of 0.746 ± 0.021, mean
balanced accuracy of 0.652 ± 0.020, and mean weighted F1 score of 0.635 ± 0.031 in classifying cases with DE from
those who were NDE.

Conclusion: This proof-of-concept study demonstrates that automated deep learning-driven processing of audio
recordings of neuropsychological testing performed on individuals recruited within a community cohort setting can
facilitate dementia screening.
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Introduction
Impairment in cognition is a common manifestation
among all the individuals suffering from dementia, of
which Alzheimer’s disease (AD) is the most common.
Despite the rising dementia epidemic accompanying a
rapidly aging population, there remains a paucity of cog-
nitive assessment tools that are applicable regardless of
age, education, and language/culture. Thus, there is an
urgent need to identify reliable, affordable, and easy-to-
use strategies for the detection of signs of dementia.
Starting in 2005, the Framingham Heart Study (FHS)
began digitally recording all spoken responses to neuro-
psychological tests. These digital voice recordings allow
for precise capture of all responses for verbal tests. Ac-
curate documentation of these studies allowed for novel
application of the Boston Process Approach (BPA) [1], a
scoring method that emphasizes how a participant
makes errors to differentiate between participants with
similar test score results. With the emergence of speech
recognition and analysis tools, there was a realization
that these recordings used for quality control were now
data in of themselves because speaking is a complex cog-
nitive skill. Virtually all voice recognition software re-
quires speech-to-text transcription from which to
extract linguistic measures of speech, and manual tran-
scription is often required to reach high levels of accur-
acy. This manual work not only is tedious, but also to
ensure high levels of accuracy often requires some level
of training in speech-to-text transcription and quality
control to document transcription accuracy. Such ex-
pertise is not readily available at all locations around the
globe. Developing a computational tool that can simply
take a voice recording as an input and automatically as-
sess the dementia status of the individual has broad im-
plications for dementia screening tools that are scalable
across diverse populations.
Promising solutions to tackle such datasets may be

found in the field of deep learning, an approach to data
analysis that has increasingly been used over the past
few years to address an array of formerly intractable
questions in medicine. Deep learning [2], a subfield of
machine learning, is based upon specific models known
as neural networks which decompose the complexities
of observed datasets into hierarchical interactions among
low-level input features. Once these interactions are
learned, refined, and formalized by exposure to a train-
ing dataset, fully trained deep learning models leverage
their “experience” of prior data to make predictions
about new cases. Thus, these approaches offer powerful
medical decision-making potential due to their ability to
rapidly identify low-level signatures of disease from large
datasets and quickly apply them at scale. This hierarch-
ical approach makes deep learning ideally suited to de-
rive novel insights from high volumes of audio/voice

data. Our primary objective was to develop a long short-
term memory network (LSTM) model and a convolu-
tional neural network (CNN) model, to predict dementia
status on the FHS voice recordings, without manual fea-
ture processing of the audio content. As a secondary ob-
jective, we processed the model-derived salient features
and reported the distribution of time spent by individ-
uals on various neuropsychological tests and these tests’
relative contributions to dementia assessment.

Methods
Study population
The voice data consists of digitally recorded neuro-
psychological examinations administered to participants
from the Framingham Heart Study (FHS), which is a
community-based longitudinal observational study that
was initiated in 1948 and consists of several generations
of participants [3]. FHS began in 1948 with the initial re-
cruitment of the Original Cohort (Gen 1) and added the
Offspring Cohort in 1971 (Gen 2), the Omni Cohort in
1994 (OmniGen 1), a Third Generation Cohort in 2002
(Gen 3), a New Offspring Spouse Cohort in 2003 (NOS),
and a Second Generation Omni Cohort in 2003 (Omni-
Gen 2). The neuropsychological examinations consist of
multiple tests that assess memory, attention, executive
function, language, reasoning, visuoperceptual skills, and
premorbid intelligence. Further information and details
can be found in Au et al. [4], including the lists of all the
neuropsychological tests included in each iteration of
the FHS neuropsychological battery [5].

Cognitive status determination
The cognitive status of the participants over time was di-
agnosed via the FHS dementia diagnostic review panel [6,
7]. The panel consists of at least one neuropsychologist
and at least one neurologist. The panel reviews neuro-
psychological and neurological exams, medical records,
and family interviews for each participant. Selection for
dementia review is based on whether participants have
shown evidence of cognitive decline, as has been previously
described [4].
The panel creates a cognitive timeline for each partici-

pant that provides the participant’s cognitive status on a
given date over time. To label the participants’ cognitive
statuses at the time of each recording, we selected the
closest date of diagnosis to the recording that fell on or
before the date of recording or after the recording within
180 days. If the closest date of diagnosis was more than
180 days after the recording, but the participant was de-
termined to be cognitively normal on that date, we la-
beled that participant as cognitively normal. Dementia
diagnosis was based on criteria from the Diagnostic and
Statistical Manual of Mental Disorders, fourth edition
(DSM-IV) and the NINCDS-ADRDA for Alzheimer’s
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dementia [8]. The study was approved by the Institu-
tional Review Boards of Boston University Medical Cen-
ter and all participants provided written consent.

Digital voice recordings
FHS began to digitally record the audio of neuropsycho-
logical examinations in 2005. Overall, FHS has 9786
digital voice recordings from 5449 participants. It must
be noted that not all participants underwent dementia
review and repeat recordings were available on some
participants. For this study, we selected only those par-
ticipants who underwent dementia review, and their
cognitive status was available (normal/MCI/dementia).
The details of how participants are flagged for dementia
review have been previously described [9]. In total, we
obtained 656 participants with 1264 recordings, which
are 73.13 (± 22.96) min in duration on average. The
range is from 8.43 to 210.82 min. There are 483 record-
ings of participants with normal cognition (NC; 291 par-
ticipants), 451 recordings of participants with mild
cognitive impairment (MCI) (309 participants), 934 re-
cordings of non-demented participants (NDE; 507 par-
ticipants), and 330 recordings of participants with
dementia (DE; 223 participants) (Tables 1 and S1). Of
the 656 participants, one participant may have several
recordings with different cognitive statuses. For example,
one participant could have NC at their first recording,
MCI at their second recording, and DE at their third re-
cording. This implies that participants with a recording
associated with either NC, MCI, or DE are not mutually
exclusive and will not necessarily add up to the overall
656 participants. The recordings were obtained in the
WAV format and downsampled to 8 kHz.
We observed that the FHS participants on average

spent different amounts of time to complete specific
neuropsychological tests, and these times varied as a
function of their cognitive status for most of the tests
(Fig. 1). For example, almost all participants spent the
highest amount of time while completing the Boston
Naming Test (BNT). During this test, participants who
were DE spent significantly more time (611.1 ± 260.2 s)
than the participants who are not demented (NDE; 390.7
± 167.4 s). This observation was also valid when the time
spent by participants with DE was compared specifically
with those with NC (405.9 ± 176.8 s), or with the ones
who had MCI (321.2 ± 93.8 s). However, there was no
statistical significance between the times taken for BNT
by participants with NC and MCI. A similar pattern was
observed for a few other neuropsychological tests includ-
ing “Visual Reproductions Delayed Recall,” “Verbal
Paired Associates Recognition,” “Copy Clock,” “Trails
A,” and “Trails B” (Table 2). We also observed no statis-
tically significant differences in the times taken for the
participants with NC, MCI, DE, and NDE on a few other

neuropsychological tests including “Logical Memory Im-
mediate Recall”, “Digit Span Forward,” “Similarities,”
“Verbal Fluency (FAS),” “Finger Tapping,” “Information
(WAIS-R)”, and “Cookie Theft” (Table 2).

Data processing
To preserve as much useful information as possible, the
Mel-frequency cepstral coefficients (MFCCs) were ex-
tracted during the data processing stage. MFCCs are the
coefficients that collectively make up the Mel-frequency
cepstrum, which serves as an important acoustic feature
in many speech processing applications, particularly in
medicine [10–15]. Leveraging the nonlinear Mel scaling
makes the response much closer to the human auditory
system and therefore renders it an ideal feature for
speech-related tasks. Each FHS audio recording was first
split into short frames with a window size of 25 ms (i.e.,
200 sample points at 8000-Hz sampling rate) and a
stride length of 10 ms. For each frame, the periodogram
estimate of the power spectrum was calculated by 256-
point discrete Fourier transformation. Then, a filterbank
of 26 triangle filters evenly distributed with respect to
the Mel scale was applied to each frame. We then ap-
plied a discrete cosine transformation of the logarithm
of all filterbank energies. Note that the 26 filters corres-
pond to 26 coefficients, but in practice, only the 2nd–
13th coefficients are believed to be useful; we loosely
followed this convention while replacing the first coeffi-
cient with total energy that might contain helpful infor-
mation on the entire frame.

Hierarchical long short-term memory network model
Recurrent neural networks (RNN) have long been used
for capturing complex patterns in sequential data. Be-
cause the durations of the FHS recordings averaged
more than 1 h and corresponded to hundreds of thou-
sands of MFCCs, a single RNN may not be able to
memorize and identify patterns across such long se-
quences. We therefore developed a two-level hierarchical
long short-term memory network (LSTM) model [16],
to associate the voice recordings with dementia status
(Fig. 2A). Our previous work has shown how the unique
architecture of the LSTM model can tackle long se-
quences of data [17]. Also, as a popular variation in the
RNN family, the LSTM model is well suited to overcom-
ing issues such as vanishing gradients and long-term de-
pendencies compared to other RNN frameworks.
A 1-h recording may yield hundreds of thousands of

temporally ordered MFCC vectors, while the memory
capacity of the LSTM model is empirically limited to
only a few thousand vectors. We first grouped every
2000 consecutive MFCC vectors into segments without
overlap. For each segment, the low-level LSTM took 10
MFCCs at a time and moved onto the next 10 MFCCs
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until the end. We then collected the last hidden state as
the low-level feature vector for the segment. After pro-
cessing all those segments one by one, the collection of
the low-level feature vectors formed another sequence,
which was then fed into the high-level LSTM to gener-
ate a high-level feature vector summarizing the entire re-
cording. Note that the hierarchical design ensured that
the two-level LSTM architecture was not overwhelmed
by longer sequences beyond their practical limitation.
For the last step of the LSTM scheme, a multilayer per-
ceptron (MLP) network was used to estimate the prob-
ability of dementia based on the summarized vector.
Both the low-level and the high-level LSTM shared the
same hyperparameters where the hidden state dimension
was 64 and the initial states were all set to zeros. The
MLP was combined with a 64-dimensional hidden layer
and an output layer along with a nonlinear activation

function. The output layer was then followed by a soft-
max function to project the results onto the probability
space.

Convolutional neural network model
For comparison with the LSTM model, we designed a
one-dimensional convolutional neural network (CNN)
model for dementia classification (Fig. 2B). The stem
structure of the CNN model consisted of 7 stacked con-
volutional blocks. Within each block, there were 2 con-
volutional layers, 1 max-pooling layer, and 1 nonlinearity
function. All the convolutional layers had a filter size of
3, stride size of 1, and a padding size of 1. For the pool-
ing layers in the first 6 blocks, we used max pooling with
a filter size of 4 and a stride size of 4. The last layer used
global average pooling to tackle audio recordings of vari-
able lengths. By applying global average pooling, all the

Table 1 Demographics and participant characteristics. For each participant, digital voice recordings of neuropsychological
examinations were collected. A, B and C show the demographics of the participants with normal cognition, mild cognitive
impairment, and dementia, respectively, at the time of the voice recordings. Here, N represents the number of unique participants.
The mean age (± standard deviation) is reported at the time of the recordings. Mean MMSE scores (± standard deviation) were
computed closest to the time of the voice recording. For cognitively normal participants, ApoE data was unavailable for one
Generation 1 (Gen 1) participant and eight Generation (Gen) 2 participants; MMSE data was not collected on Generation (Gen) 3
participants. For MCI participants, ApoE data was unavailable for one Gen 1 participant, six Gen 2 participants, and one New
Offspring Spouse Cohort (NOS) participant; MMSE data was also not collected for OmniGen2 and NOS participants and was not
available for one Gen 1 participant. For demented participants, ApoE data was unavailable for six Gen 1 participants and three Gen 2
participants; MMSE data was not collected for Gen 3, OmniGen2, and NOS participants and not available for one Gen 1 participant

Cohort N Female ApoE4+ Recordings Age (years) Mean MMSE

(A) Normal cases

Gen 1 42 28 6 75 90.9 ± 3.0 27.5 ± 2.0

Gen 2 238 117 40 392 73.9 ± 7.8 28.1 ± 2.0

Gen 3 4 1 0 7 60.4 ± 11.5 NA

OmniGen 1 7 2 2 9 71.4 ± 9.3 26.6 ± 2.6

Total 291 148 48 483 76.3 ± 9.8 27.9 ± 2.0

(B) MCI cases

Gen 1 64 47 13 85 91.4 ± 3.1 26.0 ± 2.4

Gen 2 235 124 67 353 79.3 ± 6.8 27.2 ± 2.2

Gen 3 1 0 0 1 60.0 ± 0.0 NA

OmniGen 1 6 1 1 7 73.1 ± 6.8 25.3 ± 2.3

OmniGen 2 1 1 1 1 74.0 ± 0.0 NA

NOS 2 1 0 4 86.5 ± 5.3 NA

Total 309 174 82 451 81.5 ± 8.0 26.9 ± 2.3

(C) Dementia cases

Gen 1 78 56 16 99 92.2 ± 3.1 21.3 ± 5.7

Gen 2 139 84 40 224 82.1 ± 6.7 23.3 ± 5.5

Gen 3 1 0 0 1 80.0 ± 0.0 NA

OmniGen 1 3 1 0 4 71.5 ± 1.7 24.8 ± 1.5

OmniGen 2 1 1 1 1 77.0 ± 0.0 NA

NOS 1 1 0 1 80.0 ± 0.0 NA

Total 223 143 57 330 84.9 ± 7.6 22.7 ± 5.6
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information gets transformed to a fixed-length feature
vector, making it straightforward for classification. The
CNN stem structure was then followed by a linear classi-
fier which was comprised of 1 convolutional layer and 1
softmax layer. Note that the filter size of the convolu-
tional layer was set to be the exact size of the output fea-
ture vector.

Saliency maps
We derived the saliency maps based on the intermediate
result right before the global average pooling step of the
CNN model. The intermediate result was composed of
two vectors which signified DE[+] and DE[−] prediction,
respectively. For simplicity, we only used the DE[+]

vector. Since the recording-level prediction was deter-
mined by the average of the saliency map which also
preserved temporal structure, it allowed us to observe
finer aspects of the prediction by revealing the values
assigned to each short period. For our CNN model
settings, each value corresponded to roughly 2 and a
half minutes of an original recording. Note that the
length of the periods is implied by the CNN model
parameters; altering the stride size, the kernel size,
the number of stacked CNN blocks, etc. may result
in different lengths. To align the saliency map with
the original recording for further analysis, we ex-
tended its size to the total number of seconds via
nearest neighbor interpolation.

Fig. 1 Time spent on the neuropsychological tests. Boxplots showing the time spent by the FHS participants on each neuropsychological test.
For each test, the boxplots were generated on participants with normal cognition (NC), those with mild cognitive impairment (MCI), and those
who had dementia (DE); those who were non-demented (NDE) combined the NC and MCI individuals. We also indicated the number of
recordings that were processed to generate each boxplot. We also computed pairwise statistical significance between two groups (NC vs. MCI,
MCI vs. DE, NC vs. DE, and DE vs. NDE). We evaluated the differences in means of the durations of all three cognitive statuses using a pairwise t-
test. The symbol “*” indicates statistical significance at p < 0.05, the symbol “**” indicates statistical significance at p < 0.01, the symbol “***”
indicates statistical significance at p < 0.001, and “n.s.” indicates p > 0.05. Logical Memory (LM) tests with a (†) symbol denote that an alternative
story prompt was administered for the test. It is possible that one participant may receive a prompt under each of the LM recall conditions (one
recording). Because many neuropsychological tests were administered on the participants, we chose a representation scheme that combined
colors and hatches. The colored hatches were used to represent each individual neuropsychological test and this information was used to aid
visualization in subsequent figures
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Salient administered fractions
The CNN model tasked with classifying between partici-
pants with normal cognition and dementia was tested on
81 participants who have transcripts for 123 recordings
out of their 183 total recordings. Those 60 recordings

without transcripts were excluded from the saliency ana-
lysis but were included in the test dataset. Of the record-
ings with transcripts, there were 44 recordings of
participants with normal cognition and 79 recordings of
participants with dementia. The recordings that were

Table 2 Time spent on the neuropsychological tests. Average time spent (± standard deviation) by the FHS participants on each
neuropsychological test is shown. For each test, average values (± standard deviation) were computed on participants with normal
cognition (NC), those with mild cognitive impairment (MCI), and those who had dementia (DE); the no dementia group (NDE)
combined the NC and MCI individuals. All reported time values are in minutes. Logical Memory (LM) tests with a (†) symbol denote
that an alternative story prompt was administered for the test. It is possible that one participant may receive a prompt under each
of the LM recall conditions (one recording)

NC MCI NDE DE

Demographics 244.4 ± 151.0 178.7 ± 106.4 231.0 ± 144.4 295.5 ± 163.2

Logical memory immediate recall 135.0 ± 28.6 116.9 ± 19.5 131.6 ± 27.8 128.9 ± 38.5

Logical memory immediate recall (†) 123.0 ± 19.3

Visual reproductions immediate recall 219.3 ± 79.2 190.8 ± 37.9 213.9 ± 73.8 236.1 ± 67.9

Verbal paired associates learning 367.6 ± 80.4 366.4 ± 65.3 367.4 ± 77.3 414.3 ± 155.1

Digit span forward 115.9 ±31.4 100.1 ± 32.3 113.0 ± 31.9 107.5 ± 36.7

Digit span backward 109.0 ±42.5 128.2 ± 44.7 112.6 ± 43.1 132.6 ± 52.6

Logical memory delayed recall 86.3 ± 37.8 57.1 ± 20.2 80.8 ± 36.8 54.0 ± 25.3

Logical memory delayed recall (†) 33.0 ± 7.1

Logical memory multiple choice 89.4 ± 18.3 103.8 ± 31.2 91.9 ± 21.4 138.9 ± 62.3

Logical memory multiple choice (†) 159.5 ± 14.8

Visual reproductions delayed recall 140.6 ± 73.2 114.8 ± 28.3 136.0 ± 67.9 79.1 ± 48.2

Visual reproductions multiple choice 63.5 ± 26.5 60.9 ± 27.8 63.0 ± 26.5 77.5 ±37.1

Verbal paired associates recall 66.2 ± 23.5 85.6 ± 43.7 69.5 ± 28.4 90.3 ± 48.7

Verbal paired associates recognition 75.8 ± 21.6 90.0 ± 26.4 78.3 ± 22.9 126.0 ± 52.2

Similarities 227.8 ± 89.6 217.3 ± 79.5 225.9 ± 87.3 228.0 ± 120.4

Command clock 80.9 ± 31.2 83.3 ± 29.1 81.3 ± 30.5 133.0 ± 82.2

Verbal fluency 325.5 ± 39.0 330.0 ± 29.2 326.3 ± 37.2 336.1 ± 65.4

Boston Naming Test 405.9 ± 176.8 321.2 ± 93.8 390.7 ± 167.4 611.1 ± 260.2

Copy clock 70.1 ± 33.5 54.7 ± 14.0 67.0 ± 31.1 90.9 ± 44.4

Trails A 115.4 ± 58.3 105.3 ± 23.7 113.5 ± 53.3 199.0 ± 107.1

Trails B 219.2 ± 107.6 241.0 ± 117.5 223.4 ± 108.5 431.2 ± 278.0

WRAT-3 reading 119.7 ± 36.8 115.1 ± 52.3 118.8 ± 39.7 142.8 ± 70.4

Hooper visual organization test 398.5 ± 182.1 284.1 ± 90.8 376.6 ± 173.7 424.6 ± 187.4

Block design (WAIS) 357.3 ± 213.6 389.7 ± 145.0 360.9 ± 205.1 487.3 ± 214.3

Finger tapping 294.4 ± 106.9 323.8 ± 87.6 300.3 ± 102.3 289.0 ± 130.6

Information (WAIS-R) 392.7 ± 181.2 335.8 ± 156.9 385.1 ± 176.7 372.7 ± 153.6

Cookie theft 198.9 ± 75.3 244.6 ± 101.7 206.5 ± 79.6 186.9 ± 147.0

Digit symbol coding 204.6 ± 76.1 204.6 ± 76.1 269.5 ± 116.2

Digit symbol learning 125.0 ± 75.7 125.0 ± 75.7 90.6 ± 78.7

Digit symbol recall 67.4 ± 29.8 67.4 ± 29.8 91.4 ± 122.7

Clock drawing number placement 47.6 ± 40.6 51.8 ± 20.5 48.5 ± 37.2 81.6 ± 71.5

Clock drawing time setting 44.0 ± 26.9 37.9 ± 7.6 42.8 ± 24.5 75.3 ± 59.3

Math fluency 53.1 ± 66.0 53.1 ± 66.0 187.4 ± 84.2

Balance physical function test 341.2 ± 80.3 341.2 ± 80.3 202.5 ± 71.4
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transcribed were divided into subgroups based on the
time spent by the participant on each neuropsycho-
logical test. As a result, for each second of a given re-
cording, the DE[+] saliency value and the current
neuropsychological test are known. In order to calculate
the salient administered fraction (SAF) for a given

neuropsychological test, we counted the number of sec-
onds for that neuropsychological test that also had a
DE[+] saliency value greater than zero and then divided
it by the total number of seconds for that neuropsycho-
logical test. For example, if the Boston Naming Test
(BNT) has 90 s that had DE[+] saliency values greater

Fig. 2 Schematics of the deep learning frameworks. A The hierarchical long short-term memory (LSTM) network model that encodes an entire
audio file into a single vector to predict dementia status on the individuals. All LSTM cells within the same row share the parameters. Note that
the hidden layer dimension is user-defined (e.g., 64 in our approach). B Convolutional neural network that uses the entire audio file as the input
to predict the dementia status of the individual. Each convolutional block reduces the input length by a common factor (e.g., 2) while the very
top layer aggregates all remaining vectors into one by averaging them
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than zero and BNT was administered for 100 s, then the
SAF[+] would be 0.90. Similarly, we produced SAF[−] in
the same way, except for periods of time where the
DE[+] saliency value was less than or equal to zero. The
SAF[+] was calculated for every administered neuro-
psychological test for each recording that had a demen-
ted participant and that the model classified the
participant as demented (true positive). The SAF[−] was
calculated in the same way, except for recordings with
participants with normal cognition and the model classi-
fied to have normal cognition (true negative).

Data organization, model performance, and statistical
analysis
The dataset for this study includes digital voice record-
ings from September 2005 to March 2020 from the sub-
set of FHS participants who came to dementia review.
The models were implemented using PyTorch 1.4 and
constructed on a workstation with a GeForce RTX 2080
Ti graphics processing unit. The Adam optimizer with
learning rate = 1e−4 and betas = (0.99, 0.999) was ap-
plied to train both the LSTM and the CNN models. A
portion of the participants along with their recordings
were kept aside for independent model testing (Figure
S1). Note that manual transcriptions were available on
these cases, which allowed us to perform saliency ana-
lysis. Using the remaining data, the models were trained
using 5-fold cross-validation. We split the data on the
participant level for each fold and then all of a given par-
ticipant’s recordings were included in each fold. We ac-
knowledge that this does not exactly split the data into
even folds because a participant may have a different
number of recordings compared to another participant;
however, each participant generally had a similar distri-
bution of recordings, which mitigated this effect.
We also tested the model performance on audio seg-

ments of shorter lengths. From the test data, we ran-
domly extracted 5-min, 10-min, and 15-min recordings
from the participants and grouped them based on the
audio length. Both the LSTM and CNN models trained
on the full audio recordings were used to predict on
these short audio segments. Note that only one segment
(5 min or 10 min or 15 min) was extracted with replace-
ment per recording in one round of testing. This process
was repeated five times and results were reported.
We evaluated the differences in means of the dura-

tions of all three cognitive statuses using a pairwise t-
test. The performance of the machine learning models
was presented as mean and standard deviation over the
model runs. We generated receiver operating character-
istic (ROC) and precision-recall (PR) curves based on
the cross-validated model predictions. For each ROC
and PR curve, we also computed the area under curve
(AUC) values. Additionally, we computed model

accuracy, balanced accuracy, sensitivity, specificity, F1
score, weighted F1 score, and Matthews correlation coef-
ficient on the test data.

Results
Both the LSTM and the CNN models that were trained
and validated on the FHS voice recordings demonstrated
consistent performance across the different data splits
used for 5-fold cross-validation (Fig. 3). For the classifi-
cation of demented versus normal participants, the
LSTM model took 20 min to fully train (8 epochs and
batch size of 4) and took 14 s to predict on a test case;
the CNN model took 106 min to fully train (32 epochs
and batch size of 4) and took 13 s to predict on a test
case. For the classification of demented versus non-
demented participants, the LSTM model took 187 min
to fully train (32 epochs and batch size of 4) and took 20
s to predict on a test case; the CNN model took 427 min
to fully train (64 epochs and batch size of 4) and took 20
s to predict on a test case. In general, we observed that
the CNN model tested on the full recordings performed
better on most metrics for the classification problem fo-
cused on distinguishing participants with DE from those
that have NC (Table 3, Figure S). The only exception
was that the LSTM model mean specificity was higher
than the mean specificity of the CNN model. For the
classification problem focused on distinguishing partici-
pants with DE from those who were NDE, both models
performed evenly (Table 3, Figure S3). The LSTM
model’s sensitivity was higher, but the CNN model’s spe-
cificity was higher than its counterpart. Interestingly, in
some cases, the model performance on the shorter seg-
ments was higher than the full audio recordings. For the
classification problem focused on distinguishing partici-
pants with DE from those that have NC, we found im-
proved LSTM model performance on both 10- and 15-
min recordings, based on a few metrics. For the same
classification problem, the CNN model’s performance
on the full audio recordings is mostly the highest, with
the 5-min segment’s mean sensitivity being the excep-
tion. For the classification problem focused on distin-
guishing participants with DE from those who were
NDE, the LSTM model’s performance on the full record-
ings was the highest based on all the metrics. For the
same classification problem, the CNN model’s perform-
ance on the full audio recordings is mostly the highest,
with the 5-min segment’s mean sensitivity and the 10-
min mean F1 score being the exceptions.
We computed the average (± standard deviation) of

SAF[+] and SAF[−] derived from the CNN model
(Table 4). The positive SAFs were calculated for all
true positive recordings and the negative SAFs were
calculated for all true negative recordings. For ex-
ample, the SAF[+] for the “Verbal paired associates
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recognition” test was 0.88 ± 0.26. This indicates that
on average 88% of the duration of the “Verbal paired
associates recognition” tests administered in true posi-
tive recordings also intersected with segments of time
that the model found to be DE[+] salient. Also, the
SAF[−] for the “Verbal paired associates recognition”
test was 0.32 ± 0.42. This indicates that on average
32% of the duration of the “Verbal paired associates
recognition” tests administered in true negative re-
cordings also intersected with segments of time that
the model found to not be DE[+] salient. On the other
hand, the SAF[+] for the “Command clock” test was
0.39 ± 0.45, indicating that only about 39% of the dur-
ation of the “Command clock” tests administered in
true positive recordings also intersected with segments
of time that the model found to be DE[+] salient. Also,
the SAF[−] for the “Command clock” test was 0.76 ±
0.37. The rest of the average positive SAFs and average
negative SAFs were also reported for the remaining
neuropsychological tests as well as the number of true
positive or true negative recordings that contained an
administration of the given test (Table 4). We also

computed average SAF[+] and SAF[−] for additional
neuropsychological tests (Table S2), which were set
aside due to the low number of samples. A schematic
of the DE[+] saliency vectors used to generate SAF[+]
and SAF[−] can be seen in Fig. 4. Each value in the sa-
liency vector represented approximately 2 min and 30
s of a recording. Since the saliency vector covers the
entire recording, each second of every neuropsycho-
logical test within a recording can be assigned a sali-
ency vector value, which was then used to calculate
SAF[+] and SAF[−].

Discussion
Cognitive performance is affected by numerous factors
that are independent of underlying actual cognitive sta-
tus. Physical impairments (vision, hearing), mood (de-
pression, anxiety), low education, cultural bias, and test-
specific characteristics are just a few of the many vari-
ables that can lead to variable performance. Further-
more, neuropsychological tests that claim to test the
same specific cognitive domains (e.g., memory, executive
function, language, etc.) do not do so in a uniform

Fig. 3 Receiver operating characteristic (ROC) and precision-recall (PR) curves of the deep learning models. The long short-term memory (LSTM)
network and the convolutional neural network (CNN) models were constructed to classify participants with normal cognition and dementia as
well as participants who are non-demented and the ones with dementia, respectively. On each model, a 5-fold cross-validation was performed
and the model predictions (mean ± standard deviation) were generated on the test data (see Figure S1), followed by the creation of the ROC
and PR curves. Plots A and B denote the ROC and PR curves for the LSTM and the CNN models for the classification of normal versus demented
cases. Plots C and D denote the ROC and PR curves for the LSTM and CNN models for the classification of non-demented versus demented cases
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Table 3 Performance of the deep learning models. The long short-term memory (LSTM) network and the convolutional neural
network (CNN) models were constructed to classify participants with normal cognition and dementia as well as participants who are
non-demented and the ones with dementia, respectively. On each model, a 5-fold cross-validation was performed and the model
predictions (mean ± standard deviation) were generated on the test data (see Figure S1). A and B report the performances of the
LSTM and the CNN models for the classification of participants with normal cognition versus those with dementia. C and D report
the performances of the LSTM and the CNN models for the classification of participants who are non-demented versus those who
have dementia

(A) Normal vs. demented classification (LSTM model)

Model LSTM-5 min LSTM-10 min LSTM-15 min LSTM-full audio

Accuracy 0.581 ± 0.039 0.578 ± 0.037 0.593 ± 0.051 0.598 ± 0.035

Balanced accuracy 0.642 ± 0.029 0.641 ± 0.027 0.650 ± 0.035 0.647 ± 0.027

Sensitivity 0.420 ± 0.065 0.412 ± 0.067 0.442 ± 0.093 0.470 ± 0.077

Specificity 0.865 ± 0.022 0.871 ± 0.031 0.859 ± 0.034 0.824 ± 0.025

Precision 0.844 ± 0.019 0.849 ± 0.029 0.846 ± 0.025 0.824 ± 0.010

F1 score 0.558 ± 0.061 0.551 ± 0.062 0.575 ± 0.083 0.595 ± 0.063

Weighted F1 score 0.573 ± 0.046 0.569 ± 0.046 0.586 ± 0.061 0.596 ± 0.047

MCC 0.294 ± 0.050 0.294 ± 0.049 0.307 ± 0.060 0.294 ± 0.046

Precision-recall AUC 0.814 ± 0.016 0.819 ± 0.020 0.803 ± 0.029 0.805 ± 0.022

ROC AUC 0.742 ± 0.017 0.745 ± 0.011 0.737 ± 0.020 0.740 ± 0.017

(B) Normal vs. demented classification (CNN model)

Model CNN-5 min CNN-10 min CNN-15 min CNN-full audio

Accuracy 0.666 ± 0.035 0.674 ± 0.052 0.710 ± 0.021 0.740 ± 0.033

Balanced accuracy 0.587 ± 0.054 0.650 ± 0.035 0.698 ± 0.015 0.743 ± 0.015

Sensitivity 0.873 ± 0.079 0.738 ± 0.118 0.740 ± 0.045 0.735 ± 0.094

Specificity 0.300 ± 0.160 0.562 ± 0.095 0.656 ± 0.038 0.750 ± 0.083

Precision 0.691 ± 0.036 0.750 ± 0.025 0.792 ± 0.013 0.844 ± 0.034

F1 score 0.769 ± 0.028 0.738 ± 0.064 0.765 ± 0.023 0.780 ± 0.048

Weighted F1 score 0.623 ± 0.061 0.672 ± 0.047 0.712 ± 0.019 0.742 ± 0.033

MCC 0.207 ± 0.106 0.308 ± 0.077 0.389 ± 0.034 0.477 ± 0.026

Precision-recall AUC 0.743 ± 0.038 0.801 ± 0.024 0.837 ± 0.012 0.876 ± 0.028

ROC AUC 0.640 ± 0.054 0.716 ± 0.038 0.759 ± 0.019 0.805 ± 0.027

(C) Non-demented vs. demented classification (LSTM model)

Model LSTM-5 min LSTM-10 min LSTM-15 min LSTM-full audio

Accuracy 0.651 ± 0.016 0.659 ± 0.022 0.648 ± 0.023 0.675 ± 0.013

Balanced accuracy 0.651 ± 0.016 0.659 ± 0.022 0.648 ± 0.023 0.675 ± 0.013

Sensitivity 0.576 ± 0.048 0.565 ± 0.062 0.556 ± 0.059 0.578 ± 0.049

Specificity 0.726 ± 0.031 0.753 ± 0.024 0.740 ± 0.035 0.772 ± 0.027

Precision 0.677 ± 0.016 0.694 ± 0.012 0.680 ± 0.025 0.716 ± 0.011

F1 score 0.621 ± 0.027 0.621 ± 0.040 0.610 ± 0.038 0.638 ± 0.028

Weighted F1 score 0.649 ± 0.016 0.655 ± 0.024 0.644 ± 0.025 0.671 ± 0.015

MCC 0.306 ± 0.031 0.324 ± 0.040 0.302 ± 0.046 0.357 ± 0.022

Precision-recall AUC 0.685 ± 0.012 0.682 ± 0.019 0.670 ± 0.025 0.701 ± 0.016

ROC AUC 0.720 ± 0.013 0.726 ± 0.009 0.711 ± 0.019 0.734 ± 0.014

(D) Non-demented vs. demented classification (CNN model)

Model CNN-5 min CNN-10 min CNN-15 min CNN-full audio

Accuracy 0.555 ± 0.022 0.624 ± 0.030 0.628 ± 0.042 0.653 ± 0.020

Balanced accuracy 0.555 ± 0.023 0.623 ± 0.030 0.627 ± 0.042 0.652 ± 0.020
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manner. For example, when testing verbal memory, a
paragraph recall test taps into a different set of under-
lying cognitive processes compared to that of a list
learning task. Also, the presumption that a test measures
only a single cognitive domain is naively simplistic since
every neuropsychological test involves multiple cognitive
domains to complete. Thus, across many factors, there is
significant heterogeneity of cognitive performance that
makes it difficult to differentiate between those who will
become demented versus those who will not, especially
at the preclinical stage. Particularly, traditional paper
and pencil neuropsychological tests may not be suffi-
ciently sensitive to pick up when subtle change begins.
While cognitive complaints serve as a surrogate preclin-
ical measure of decline, there is an inherent bias of self-
report. Given this complex landscape, digital voice re-
cordings of neuropsychological tests provide a data
source of relative independence from those limitations.
To our knowledge, our study is the first to demonstrate
that a continuous stream of data is also amenable for
automated analysis for the evaluation of cognitive status.
Digital health technologies in general and voice in par-

ticular are increasingly being evaluated as potential
screening tools for depression [18–21] and various neu-
rodegenerative diseases such as Parkinson’s disease [22–
25]. Recently, potential opportunities for developing
digital biomarkers based on mobile/wearables for AD
were outlined [26, 27]. Our study is unique in focusing
on two deep learning methods that rely on a hands-free
approach for processing voice recordings to predict de-
mentia status. The advantage of our approach is three-
fold. The first is the limited need to extensively process
any of the voice recordings before sending them as in-
puts to the neural networks. This is a major advantage
because it minimizes the burden of generating accurate
transcriptions and/or handcrafted features that generally
take time to develop and rely on the availability of

experts who are not readily available. This aspect places
us in a unique position compared to previously pub-
lished work that depended on derived measures [28, 29].
Second, our approach can process audio recordings of
variable lengths, which means that one does not have to
format or select a specific window of the audio recording
for analysis. This important strength underscores the
generalizability of our work because one can process
voice recordings containing various combinations of
neuropsychological tests that are not bounded within a
time frame. Finally, our approach allows for the identifi-
cation of audio segments that are highly correlated with
the outcome of interest. The advantage of doing this is
that it provides a “window” into the machine learning
black box; we can go back to the recordings and identify
the various speech patterns or segments of the neuro-
psychological tests which point to a high probability of
disease risk,and understand their contextual significance.
The CNN architecture allowed us to generate the sali-

ency vectors by utilizing the parameters of the final clas-
sification layer. Simply put, a temporal saliency vector
for each specific case could be obtained by calculating
the weighted sum of the output feature vectors from the
last convolutional block in the CNN, indicating how
each portion of the recording contributed to either posi-
tive or negative prediction. We then aligned the saliency
vectors with the recording timeline to further analyze
the speech signatures to understand if there were any
snippets of the neuropsychological testing that often
were correlated with the output class label. From exam-
ining the transcriptions that exist for a portion of the
dataset, we were able to identify which neuropsycho-
logical tests were occurring during any given time in a
recording, and then calculate the positive SAFs. This im-
plies that the neuropsychological tests found in these
segments may be presenting a test in which the partici-
pant’s voice in their response has a signal related to their

Table 3 Performance of the deep learning models. The long short-term memory (LSTM) network and the convolutional neural
network (CNN) models were constructed to classify participants with normal cognition and dementia as well as participants who are
non-demented and the ones with dementia, respectively. On each model, a 5-fold cross-validation was performed and the model
predictions (mean ± standard deviation) were generated on the test data (see Figure S1). A and B report the performances of the
LSTM and the CNN models for the classification of participants with normal cognition versus those with dementia. C and D report
the performances of the LSTM and the CNN models for the classification of participants who are non-demented versus those who
have dementia (Continued)

Sensitivity 0.663 ± 0.224 0.546 ± 0.101 0.486 ± 0.076 0.457 ± 0.106

Specificity 0.447 ± 0.188 0.701 ± 0.065 0.769 ± 0.038 0.847 ± 0.068

Precision 0.543 ± 0.011 0.646 ± 0.034 0.674 ± 0.053 0.760 ± 0.049

F1 score 0.576 ± 0.120 0.587 ± 0.055 0.563 ± 0.063 0.560 ± 0.068

Weighted F1 score 0.528 ± 0.035 0.619 ± 0.030 0.619 ± 0.045 0.635 ± 0.031

MCC 0.128 ± 0.055 0.253 ± 0.062 0.265 ± 0.085 0.337 ± 0.024

Precision-recall AUC 0.597 ± 0.041 0.643 ± 0.033 0.655 ± 0.044 0.732 ± 0.015

ROC AUC 0.595 ± 0.043 0.663 ± 0.033 0.683 ± 0.037 0.746 ± 0.021
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cognition. For example, the SAF[+] is high for the “Ver-
bal paired associates recognition” test, which could mean
that the participants’ audio signals during this test highly
influenced the model performance. This result could
also imply that most participants diagnosed with demen-
tia may have had explicit episodic memory deficits. The
exact connections between the voice signals in the seg-
ments identified by the saliency maps and their clinical
relevance are worth exploring in the future.
All the FHS voice recordings contained audio content

from two distinct speakers of which one is the inter-
viewee (participant) and the other is the interviewer
(examiner). We did not attempt to discern speaker-
specific audio content as our models processed the

entire audio recording at once. This choice was
intentional because we wanted to first evaluate if deep
learning can predict the dementia status of the partici-
pant without having to perform detailed feature engin-
eering on the audio recordings. Future work could focus
on processing these signals and recognizing speaker-
related differences and interactions, periods of silence,
and other nuances to make the audio recordings more
amenable for deep learning. Also, additional studies can
be performed to integrate the audio data with other rou-
tinely collected information that requires no additional
processing (i.e., demographics) to augment model per-
formance. An important point to note is that studies as
proposed above need to be conducted with the goal of

Table 4 Salient administered fractions derived from the CNN model. The average salient administered fraction (SAF) and standard
deviation for true positive (SAF[+]) and true negative (SAF[−]) cases are listed in descending order based on the SAF[+] value. SAF[+]
is calculated by summing up the time spent in a given neuropsychological test that intersects with a segment of time that is DE[+]
salient and dividing by the total time spent in a given neuropsychological test. SAF[−] is calculated by summing up the time spent
in a given neuropsychological test that intersects with a segment of time that is not DE[+] salient and dividing by the total time
spent in a given neuropsychological test. The number of samples for SAF[+] and SAF[−] indicate the number of true positive and
true negative recordings that contain each neuropsychological test

Test SAF[+] SAF[−] SAF[+] samples SAF[−] samples

Verbal paired associates recognition 0.88 ± 0.26 0.32 ± 0.42 37 32

Verbal paired associates learning 0.83 ± 0.22 0.23 ± 0.22 51 33

Boston Naming Test 0.82 ± 0.18 0.30 ± 0.29 47 31

Digit span forward 0.78 ± 0.37 0.16 ± 0.33 53 33

WRAT-3 reading 0.76 ± 0.36 0.57 ± 0.43 30 27

Information (WAIS-R) 0.73 ± 0.28 0.36 ± 0.30 36 16

Verbal paired associates recall 0.72 ± 0.41 0.33 ± 0.41 38 32

Finger tapping 0.71 ± 0.33 0.47 ± 0.33 11 15

Digit span backward 0.70 ± 0.42 0.36 ± 0.43 53 32

Demographics 0.69 ± 0.33 0.22 ± 0.35 55 25

Trails B 0.68 ± 0.30 0.65 ± 0.35 34 28

Logical memory immediate recall 0.66 ± 0.42 0.72 ± 0.40 56 32

Verbal fluency (FAS) 0.66 ± 0.34 0.39 ± 0.27 49 31

Similarities 0.66 ± 0.38 0.56 ± 0.34 50 32

Clock drawing time setting 0.66 ± 0.48 0.48 ± 0.51 24 25

Logical memory delayed recall 0.65 ± 0.44 0.74 ± 0.36 50 32

Cookie theft 0.64 ± 0.41 0.65 ± 0.39 19 14

Block design (WAIS) 0.64 ± 0.27 0.70 ± 0.33 26 14

Clock drawing number placement 0.63 ± 0.45 0.49 ± 0.49 26 26

Visual reproductions multiple choice 0.60 ± 0.47 0.44 ± 0.48 41 30

Hooper visual organization test 0.58 ± 0.29 0.48 ± 0.26 39 28

Logical memory multiple choice 0.57 ± 0.42 0.87 ± 0.28 50 32

Visual reproductions immediate recall 0.55 ± 0.35 0.85 ± 0.21 48 32

Trails A 0.52 ± 0.41 0.51 ± 0.44 40 28

Visual reproductions delayed recall 0.52 ± 0.47 0.77 ± 0.33 40 30

Copy clock 0.44 ± 0.45 0.36 ± 0.47 41 26

Command clock 0.39 ± 0.45 0.76 ± 0.37 47 31
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creating scalable solutions across the globe, particularly
to those regions where technical or advanced clinical ex-
pertise is not readily available. This means that users at
the point-of-care may not be in the best position to
manually process voice recordings or any other data to
derive needed features that can be fed into the computer
models. Since our deep learning models do not require
data preprocessing or handcrafted features, our approach
can serve as a potential screening tool without having
the need of an expert-level input. Our current findings
serve as a first step towards achieving such a solution
that can have a broader outreach.

Study limitations
The models were developed using the FHS voice record-
ings, which is a single population cohort from the New

England area in the United States. Despite demonstrat-
ing consistent model performance using rigorous cross-
validation (5-fold) approaches, our models still need to
be validated using data from external cohorts to confirm
their generalizability. Currently, we do not have access
to any other cohort that has voice recordings of neuro-
psychological exams. Therefore, our study findings need
to be interpreted considering this limitation and with
the hope of evaluating them further in the future. Due
to the lack of available data in some cases and because
not all participants took all the types of neuropsycho-
logical tests, we were able to generate the distribution of
times spent for a portion of the tests. It must be also
noted that the number of NC, MCI, DE, and NDE par-
ticipants varied for each neuropsychological test. Add-
itionally, there may be outside factors affecting the

Fig. 4 Saliency maps highlighted by the CNN model. A This key is a representation that maps the colored hatches to the neuropsychological tests. B
Saliency map representing a recording (62 min in duration) of a participant with normal cognition (NC) that was classified as NC by the convolutional
neural network (CNN) model. C Saliency map representing a recording (94 min in duration) of a participant with dementia (DE) who was classified
with dementia by the CNN model. For both B and C, the colormap on the left half corresponds to a neuropsychological test. The color on the right
half represents the DE[+] value, ranging from dark blue (low DE[+]) to dark red (high DE[+]). Each DE[+] rectangle represents roughly 2 min and 30 s
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amount of time it took a participant to complete a
neuropsychological test that is not represented in the
boxplots. For example, a normal participant could finish
the BNT quickly and perform well, whereas administra-
tion of the BNT to a participant with dementia could be
abruptly stopped due to an inability to complete the test
or for other reasons. Therefore, the amount of time
spent administering the BNT in the recordings in those
two cases could be similar, but for different reasons.
Nevertheless, statistical tests were performed to quantify
the pairwise differences on all the available neuropsycho-
logical exams, which gave us the flexibility to report the
differences that were statistically different and those that
were similar. Also, while it is possible that the inter-
viewer’s behavior can influence the interviewee’s re-
sponse, we must acknowledge that all the interviewers
are professionally trained to uniformly administer the
neuropsychological tests. Finally, we must note that some
participants who were included as NC at baseline assess-
ment showed subtle changes in cognition sufficient to
warrant a dementia review, and this may have affected
the model performance.

Conclusions
Our proposed deep learning approaches (LSTM and
CNN) to processing voice recordings in an automated
fashion allowed us to classify dementia status on the
FHS participants. Such approaches that rely minimally
on neuropsychological expertise, audio transcription, or
manual feature engineering can pave the way towards
the development of real-time screening tools in demen-
tia care, especially in resource-limited settings.
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Additional file 1: Table S1. Demographics of the participants who
were non-demented (NDE, i.e., individuals with normal cognition (NC)
and mild cognitive impairment (MCI)) at the time of the voice recordings.
ApoE data was unavailable for one Gen 1 participant, thirteen Gen 2 par-
ticipants, and one New Offspring Cohort (NOS) participant; MMSE data
was not collected for all Gen 3, OmniGen 2, and NOS participants.

Additional file 2: Figure S1. The dataset was first split into two parts
such that a portion of the participants along with their recordings were
kept aside for independent model testing. The models were trained on
the remaining data using 5-fold cross-validation. We split the data on the
participant level for each fold and then all of a given participant’s record-
ings were included in each fold.

Additional file 3: Figure S2. Long short-term memory (LSTM) networks
were used to classify participants who have normal cognition from those
with dementia and were used to classify participants who were not de-
mented from those who were demented. The models were trained on
full audio recordings and the performance was reported on audio sam-
ples of variable lengths extracted from the test data (see Figure S1). Plots
(A) and (B) denote the ROC and PR curves for the LSTM model's perform-
ance on the normal cognition versus dementia task and plots (C) and (D)

denote the ROC and PR curves for the LSTM model's performance on the
non-demented versus demented task.

Additional file 4: Figure S3. Convolutional neural network (CNN)
models were used to classify participants who have normal cognition
from those with dementia and were used to classify participants who
were not demented from those who were demented. Models were
trained on full audio recordings and the performance was reported on
audio samples of variable lengths extracted from the test data (see
Figure S1). Plots (A) and (B) denote the ROC and PR curves for the CNN
model's performance on the normal cognition versus dementia task and
plots (C) and (D) denote the ROC and PR curves for the CNN model's
performance on the non-demented versus demented task.

Additional file 5: Table S2. For the neuropsychological tests that have
too few samples, the average salient administered fraction (SAF) and
standard deviation for true positive (SAF[+]) and true negative (SAF[-])
cases are listed in descending order based on the SAF[+] value. SAF[+] is
calculated by summing up the time spent in a given neuropsychological
test that intersects with a segment of time that is DE[+] salient and
dividing by the total time spent in a given neuropsychological test. SAF[-]
is calculated by summing up the time spent in a given
neuropsychological test that intersects with a segment of time that is not
DE[+] salient and dividing by the total time spent in a given
neuropsychological test. The number of samples for SAF[+] and SAF[-]
indicate the number of true positive and true negative recordings that
contain each neuropsychological test.
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