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Abstract

Background: Alzheimer’s disease (AD) is a progressive and irreversible brain disorder. Hippocampus is one of the
involved regions and its atrophy is a widely used biomarker for AD diagnosis. We have recently developed
DenseCNN, a lightweight 3D deep convolutional network model, for AD classification based on hippocampus
magnetic resonance imaging (MRI) segments. In addition to the visual features of the hippocampus segments, the
global shape representations of the hippocampus are also important for AD diagnosis. In this study, we propose
DenseCNN2, a deep convolutional network model for AD classification by incorporating global shape
representations along with hippocampus segmentations.

Methods: The data was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and was T1-
weighted structural MRI from initial screening or baseline, including ADNI 1,2/GO and 3. DenseCNN2 was trained
and evaluated with 326 AD subjects and 607 CN hippocampus MRI using 5-fold cross-validation strategy.
DenseCNN2 was compared with other state-of-the-art machine learning approaches for the task of AD classification.

Results: We showed that DenseCNN2 with combined visual and global shape features performed better than deep
learning models with visual or global shape features alone. DenseCNN2 achieved an average accuracy of 0.925,
sensitivity of 0.882, specificity of 0.949, and area under curve (AUC) of 0.978, which are better than or comparable to
the state-of-the-art methods in AD classification. Data visualization analysis through 2D embedding of UMAP
confirmed that global shape features improved class discrimination between AD and normal.

Conclusion: DenseCNN2, a lightweight 3D deep convolutional network model based on combined hippocampus
segmentations and global shape features, achieved high performance and has potential as an efficient diagnostic
tool for AD classification.
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Introduction
Alzheimer’s disease (AD) is a chronic neurological brain dis-
order characterized by memory loss and cognitive impair-
ment [1]. Currently, there are no effective drug treatments
available to cure AD, and the existing medicines can only
ease symptoms or slow down its progression [2]. An early
diagnosis of AD can help in determining its progression and
also improve the quality of life of AD patients [3].
The current diagnosis of AD is made by clinical,

neuropsychological, and neuroimaging assessments [4–
9]. More recently, a variety of imaging modalities, in-
cluding structural and functional magnetic resonance
imaging (MRI) and positron emission tomography (PET)
studies of cerebral metabolism, have shown characteris-
tic changes in the brains of patients with AD [10–12].
MRI is considered the preferred neuroimaging examin-
ation for AD as it allows for high tissue contrast and ac-
curate measurement of the 3-dimensional (3D) volume
of brain structures, especially the size of the hippocam-
pus and related regions [13]. Also, MRI has an excep-
tional spatial resolution, high accessibility, and good
contrast. In recent years, extensive efforts have been
done to identify biomarkers for structural changes and
disease states of the brain with structural MRIs [12, 14].
Hippocampal atrophy measures from MRI are power-

ful biomarkers for monitoring AD progression [15, 16].
Features from the hippocampus have been studied for
AD diagnosis-based structural MRIs [16–19]. Hippo-
campal visual features have been used in Support Vector
Machines and Bayesian classifiers for AD diagnosis [17].
Hippocampal volume changes based on MRI were used
as biomarkers and features for AD diagnosis [18]. How-
ever, methods based on volumetric analysis alone pro-
vide limited information about morphological changes
that characterize the appearance and progression of AD.
Recently, shape description/modeling methods have
been proposed to analyze the development of AD [19].
Shape descriptors can be broadly divided into three cat-
egories: (1) histogram-based, (2) graph-based, and (3)
transform-based shape descriptors. Some of the
histogram-based descriptors are the shape spectrum,
generalized shape distributions, probability density-based
descriptors, 3D shape contexts, etc. [20]. The challenges
here are to select discriminating shape functions and to
robustly compute the dissimilarity between probability
distributions [21]. The graph-based descriptors like
medial axis, Reeb graph, skeletal graph, etc., capture geo-
metrical and topological shape properties, but are more
complex and difficult to be constructed and derived
[22]. Transform-based descriptors mainly include Fou-
rier transform descriptors, spherical space transform de-
scriptor, spherical harmonics, etc. [23], and have been
widely applied in the neuroimaging fields [24–26]. Gut-
man et al. performed shape analysis for the hippocampus

using the spherical harmonic shape description [24].
Spherical harmonics requires spherical parameterization,
a smooth mapping from the surface to a unit sphere
[27]. But the shape descriptors based on Laplace Bel-
trami (LB) spectrum can be modeled for any Riemann-
ian manifold, is isometry-invariant, and avoids pre-
processing steps like mapping, registration, and align-
ment [28]. In [25], shape changes of MRI brain regions
were studied using LB eigen value-based features.
Recently, deep learning (DL) techniques have been de-

veloped/used to find links between different parts of im-
ages and to identify disease-related patterns [29],
including AD classification based on detailed hippocam-
pus analysis using structural MRIs [30–33]. Deep learning
models can extract the features directly from medical im-
ages to discover hidden representations. These models
often outperform other machine learning approaches with
the best results on image classification tasks. However, re-
cent researches suggest that these models have limitations
in recognizing objects by their global shapes or shape sur-
faces [34, 35]. And, it is well-known that the hippocampal
shape changes are important biomarker in AD [15]. In this
study, we hypothesize that integration of global shape rep-
resentations with visual features of the hippocampus in a
deep learning framework will improve the performance of
AD classification.
We have recently developed a densely connected 3D

convolution neural network (CNN) model (DenseCNN)
for classifying AD from normal based on hippocampus
segmentations [36]. DenseCNN is a lightweight model
with fewer convolutional kernels, relatively simple struc-
ture, and fewer total parameters than other state-of-the-
art deep learning models for AD classification. Recent
studies demonstrated that deep convolution neural net-
works (DCNN) often did not capture global object shape
features [34, 35]. DCNNs are able to encode the local
shape features including local edge segments and rela-
tions. But, it is sensitive to how these local features fit
together as a whole to represent global shape features.
DCNNs trained for object recognition do not appear to
represent global shape at all [34]. Thus, in this study, we
propose DenseCNN2, a lightweight DenseCNN model
with combined global shape and visual hippocampus
segmentation features of hippocampus, to improve AD
classification. Different from DenseCNN, DenseCNN2 is
built not only on hippocampus segmentations but also
their global shape representations. We demonstrated
that DenseCNN2 performed better than DenseCNN and
other state-of-the-art methods.

Materials and method
Data
The MRI Data was obtained from the ADNI (http://
adni.loni.usc.edu) and the data is T1-weighted structural
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from initial screening or baseline, including ADNI 1,2/
GO and 3. Hippocampus segmentation was performed
on this MRI data. After the segmentation, data con-
tained 326 AD subjects and 607 control normal (CN)
subjects, totaling 933 hippocampus segmentations. This
work is aimed at classifying AD vs. CN. The demo-
graphic information of the subjects is provided in
Table 1.
There are two hippocampi (left and right) in the brain.

We segmented left and right hippocampi using the very
recent segmentation tool Hippmapp3r, which is based
on 3D CNNs and robust for MRI images with brain at-
rophy and lesions associated with aging and neurodegen-
eration [37]. Hippmapp3r has shown to be producing
accurate and fast hippocampal segmentations when
compared to the existing segmentation algorithms [37].

Figure 1 shows examples of hippocampal segmentation
results from the two groups AD and CN.

Global shape representations
Global shape features, for each left (L) and right (R)
hippocampus, were obtained using LB spectrum [25].
Compared to other shape descriptors such as spherical
harmonics [24], LB spectrum is isometry-invariant and
avoids pre-processing steps like mapping, registration, and
alignment. Also, LB spectrum works for any Riemannian
manifold [28], whereas spherical harmonics requires
spherical parameterization, a smooth mapping from the
surface to a unit sphere [27]. The shape and geometrical
information of volumetric data can be discovered and ex-
tracted by taking the eigenvalues (i.e., the spectrum) of its
LB operator. The LB spectrum can be considered as the
set of squared frequencies that are associated with the
eigen modes of a generalized oscillating membrane de-
fined on the manifold [25]. Also, eigen values are invariant
to isometric transformations and rely on the deformation
applied to the boundary of the object [27]. Since, LB
spectrum is isometric invariant; it is one of the most
powerful ways to represent shape [25]. A brief detail of
the LB spectrum is provided below.
Spectrum of the LB operator is defined for real-valued

functions on Riemannian manifolds. For a real-valued

Table 1 Demographic characteristics of the subjects from ADNI
database (age and years of education are given as mean
(standard deviation))

AD (N=326) CN (N=607) P value

Gender (% female) 47.54 54.36 0.054

Age 74.9 (7.6) 74.4 (7.3) 0.008

Years of education 15.0 (2.9) 16.5 (2.5) < 0.001

APOE ε4 (% at least one allele) 67.27 28.62 < 0.001

Axial Coronal Sagittal

AD
(Right)

AD
(Left)

NC
(Right)

NC
(Left)

Fig. 1 Examples of hippocampal segmentations (both left and right) from the AD and NC
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function f defined on a Riemannian manifold M, the LB
operator Δ is given as:

Δf ¼ div grad fð Þ ð1Þ

with grad “f” being the gradient of “f” and the div being
the divergence on the manifold. The LB operator is a
linear differential operator and it can be calculated in
local coordinates. LB operator is self-adjoint and semi-
positive definite. It follows that the operator Δ admits an
orthonormal eigensystem. It consists of eigenvalues λi ϵ
ℝ and eigen function fi pairs. More details of LB oper-
ator can be found in [28, 38]. The eigen values are called
LB the spectrum and contain intrinsic geometrical infor-
mation of the segmented data. Generally, normalized
eigen values are utilized to obtain a scale-invariant global
shape representation. This spectrum was calculated
through finite element computations [38].

Deep visual features of the hippocampus segments
We obtained deep visual features of the hippocampus seg-
ments from DenseCNN, a deep convolution neural net-
work model for AD classification that we have recently
developed based on hippocampus segments [36]. Den-
seCNN has 3 dense layers, with each layer consisting of 2
convolutional layers, combined with Batch normalization
(BN) layers and Relu activation layers. Transition layers
end with a max pooling layer to decrease the size of input
data. DenseCNN has two streams for left and right hippo-
campus segments correspondingly (Fig. 2). Each stream
has an initial 3D convolutional layer followed by a BN
layer and a Relu activation layer, extracting low-level
image features. Then a max pooling was used to ignore 0
voxels on the edges of the input data and reduce the data
size. Two dense blocks and a transition layer were stocked
in each stream, using 8 and 16 filters correspondingly. At
the end of each stream is a global average pooling (GAP)
layer, which compresses high dimensional image features
to 1-dimensional features. After the GAP layer, two
streams were merged followed by a dropout layer. Finally,
a fully connected layer and a SoftMax layer were used for
generating prediction. The architecture of this model is
shown in Fig. 2. The output of the last GAP layer is the
CNN features considered here. For each left and right
hippocampus, deep visual features were obtained after the
last GAP layer of the DenseCNN.

Joint training DenseCNN2 using DenseCNN features and
global shape features
Using the abovementioned methods, both shape and
deep features were extracted using hippocampus seg-
ments. Global shape description for each of the left and
right hippocampus is calculated using the LB spectrum
(see the “Global shape representations” section) where

“f” is the output of the segmentation tool Hippmapp3r.
These two types of (shape and DenseCNN features) were
expanded and connected together. The two parts of fea-
tures re-trained in a neural network using a joint train-
ing strategy. The learned features from DenseCNN and
shape features were combined by a network architecture
with fully connected layers followed by softmax layer for
AD classification. This joint training strategy can make
better global optimization for two models. The perform-
ance of this joint model was analyzed by varying the
number of fully connected layers and also varying the
number of neurons in each layer. Both training and test-
ing data were normalized using a z-score to combine
deep features and shape features on the same scale.

Fig. 2 The architecture of DenseCNN
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Figure 3 illustrates the architecture of direct combin-
ation of CNN features and shape features.

Evaluation
To train and test the classification performance of the
proposed DenseCNN2 model, a total of 326 AD sub-
jects and 607 CN subjects were used. DenseCNN2
was implemented with python and Keras library on
the Tensorflow backend. Fivefold cross-validation with
validation and test set was used for model evaluation.
Each time, 1-fold of the data set was used for testing,
and 4 folds were further split into training and valid-
ation with the validation part consisting of 10% of the
training data. This process was repeated 10 times and
the average result was reported. In this experiment,
as the spectrum of the LB operator contains intrinsic
shape information, we considered the top 30 LB eigen
values. Normalized eigen values were used and the
type of normalization used here was λn → λn/λ1 with
logarithmic scale.
To evaluate the performance of DenseCNN2, five

measures were computed for evaluation: overall accur-
acy, sensitivity, specificity, receiver operating characteris-
tic (ROC) curve, and the area under ROC curve (AUC).

Comparison with other models
The performance of DenseCNN2 with combined visual
and shape features was compared with deep learning
models with shape features alone and visual features
alone (DenseCNN). We also compared DenseCNN2
with existing traditional and deep learning methods such
as hippocampus volumes, CHF features [17], ResNet

[39], 3D CNN [32], hybrid CNN-RNN [33], multi-model
CNN [40], and 3D DenseNet [41]. For existing deep
learning methods, the reported results are considered
here. Overall accuracy, sensitivity, specificity, and AUC
were compared.

Data visualization using UMAP
We performed data visualization to demonstrate how
combined visual and shape features contributed in sep-
arating AD from normal. Dimension reduction plots
were used to visualize the data by placing similar data
points in close proximity in a low-dimensional space.
UMAP (Uniform Manifold Approximation and Projec-
tion), an effective tool for visualizing clusters or groups
of data points and their relative proximities with nonlin-
ear mapping [42], were used for data visualization. The
quality of the separation was computed using three com-
monly used probabilistic class separability measures,
namely, Jeffries-Matusita distance, Bhattacharya distance,
and the transformed divergence [43]. The greater the
values of these measures indicate better separation be-
tween the classes.

Fig. 3 The structure of the joint model

Table 2 Performance comparison of DL_shape, DenseCNN, and
DenseCNN2

Method Accuracy Sensitivity Specificity AUC

DL_shape 70.89 54.31 75.42 76.15

DenseCNN 89.91 84.91 94.01 96.42

DenseCNN2 92.52 88.20 94.95 97.89
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Results
Comparison of DenseCNN2 with combined visual and
shape features with deep models with shape or visual
features alone
DenseCNN2 was compared with deep learning model
using shape features alone (DL_shape), and with Den-
seCNN with visual features. DL_shape was constructed
using fully connected layers network with softmax layer
classification. For training DenseCNN2 model, the net-
work parameters were randomly initialized at the begin-
ning. For learning deep features, batch-normalization
has been performed in order to stop learning irrelevant
features at convolutional layers and for faster training.
Also, to avoid overfitting, the dropout and L2
regularization were used in the network. Optimal per-
formance of the model is found with dropout factor of 0.5
and L2 weight decay of 0.02. The performance of the joint
training with both (deep and shape) features was analyzed
by varying the number of fully connected layers and also
varying the number of neurons. The stochastic gradient
descent optimizer was used with the initial learning rate of
1e−3. The momentum was set to 0.9 and the cross-
entropy loss function was used. DenseCNN2 has achieved
an accuracy of 92.52%, sensitivity of 88.20%, specificity of
94.95%, and AUC of 97.89%, which are better than DL_
shape and DenseCNN (Table 2). DCNNs are able to en-
code the local shape features including local edge seg-
ments and relations. But, it is sensitive to how these local
features fit together as a whole to represent global shape
features. Thus, our combined model DenseCNN2 has bet-
ter performance over DenseCNN.
Figure 4 illustrates the ROC curves of the shape and

DenseCNN and DenseCNN2 for classifying AD vs. NC.

These results demonstrate that combining CNN features
with shape features in DenseCNN2 improved the per-
formance of AD classification compared with CNN fea-
tures or shape features alone. These results indicate that
the model has learned complementary features for AD
classification based on global shape and visual features
of hippocampus segments. Thus, DenseCNN2 is better
than DenseCNN by modeling the global shape features
along with visual features.

Comparison with other methods
The performance of the proposed model was compared
with seven traditional and deep learning methods.
Table 3 shows the comparison performances between
DenseCNN2 and the existing methods. DenseCNN2
achieved a classification accuracy of 92.52%, a specificity
of 94.85%, and an AUC of 97.89 for AD vs. NC classifi-
cation, which is higher than both traditional and deep
learning methods. Although we reported higher

0.0
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0.0 0.2 0.4 0.6 0.8 1.0

DL_Shape
DenseCNN
DenseCNN2
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T
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Fig. 4 ROC curves of shape, DenseCNN, and DenseCNN2

Table 3 Performance comparison of DenseCNN2 with other
methods

Method Accuracy Sensitivity Specificity AUC

Hippo volumes 50.54 42.12 58.40 53.54

Hippo CHF features 85.12 76.31 81.40 –

3D CNN 86.94 79.36 93.21 86.40

ResNet 90.00 – – 95.60

Hybrid CNN-RNN 89.17 84.64 93.16 91.00

Multi-model CNN 88.90 86.62 90.81 92.50

3D DenseNet 92.29 90.63 93.72 96.95

DenseCNN2 92.52 88.20 94.95 97.89
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performance, the number of subjects and partitions of
training, testing data are different with the existing
methods. Compared to other models, DenseCNN2 is a
lightweight 3D deep convolutional network model based
on DenseCNN, with no particular feature engineering
needed. DenseCNN2 does not heavily rely on data aug-
mentation and is fast in training and prediction and has
potential to be used for practical and clinical purposes.
It integrates additional global shape information into the
model for improved performance.

Data visualization using UMAP with DenseCNN features
and with DenseCNN2 features
We used data visualization to get insights into the data
and the discrimination information between classes. We
demonstrated through 2D embedding of UMAP that the
class discrimination was improved when shape features
were added. Figure 5a, b provides the 2D embedding
UMAP of hippocampus data with visual features and
with combined visual and shape features respectively.
Visually, the separation between the two classes with
combined features is greater than the separation with
visual features alone. In Fig. 5a, UMAP provided two
well separated clusters, but many data points from dif-
ferent classes are overlapping and mis-classified. On the
other hand, while there is overlap with combined fea-
tures, but greater amount of the data is well separated
(Fig. 5b).
Table 4 provides quantitative measures of separations

for the UMAP with visual features and with combined
features. It is clear that the values of separations in-
creased for combined features compared with deep vis-
ual features alone. This indicates that the classes with

combined features have more separation than those with
deep visual features alone. These results further vali-
dated that the integration of shape features in deep
learning model is necessary for AD classification based
on MRI data.

Discussions and conclusion
We proposed a lightweight 3D deep convolutional net-
work model, DenseCNN2, for AD classification using
combined hippocampus segmentations and global shape
representations. We demonstrated that the combination
of deep features and global shape features improved the
performance of classifying AD from normal. Also, it is
observed through 2D embedding of UMAP that the class
discrimination is improved when shape features are
added. Also, DenseCNN2 is compared with existing
traditional and deep learning-based methods. It is per-
forming better or comparable with all the existing
methods.
Future works are warranted to further improve and

extend the current study. First, the performances were
heavily relied on high-quality hippocampus segments.
However, current hippocampus segmentation tools are
not ideal. We will develop more robust segmentation al-
gorithms for the hippocampus. We can also avoid this
problem by building deep learning models on other rele-
vant regions or whole brain MRI, since brain segments
on average have much higher quality than hippocampal
segments. Second, while DenseCNN2 is a lightweight
model without the need of particular feature engineering
and data augmentation and is fast in training and predic-
tion, the data preprocessing step was extensive including
segmentation, normalization, and multiple extractions,

Fig. 5 Two dimensional UMAP embedding with visual features (left) and with combined visual and global shape features (right). The data points
in color red represent AD subjects and in color blue represent NC subjects
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which needed a well understanding of the dataset and
expertise in image processing. In our future study, we
will investigate the possibility of building an end-to-end
deep learning model, to simplify the whole process of
data preprocessing, model training and testing, and data
visualization. Third, our model is based on only MRI
data. It is known that AD risk is also affected by genetic
variants, demographics, comorbidities, medications,
socio-economic determinants among others. So, our fu-
ture study would be to develop multi-modal prediction
models for AD classification by combining the MRI data
with other data available in ADNI. We will also investi-
gate how patient genetics, demographics, medications,
and comorbidities are involved in AD etiology by exam-
ining visual and shape changes in the hippocampus.
Studying such correlations or interactions provides im-
portant insights for AD initiation and progression.
Fourth, though our dataset consisted of 326 AD subjects
and 607 control normal (CN) subjects from the ADNI
database, it still may not be large enough to guarantee
generalizability. Further study could utilize more sam-
ples from ADNI, or other datasets such as Oasis (http://
www.oasis-brains.org). And we believe more new sam-
ples should be collected, since new MRI samples can test
the generality of existing AD detection approaches.

Limitation
Limitations include the following: (1) current model was
trained solely on hippocampus regions. Other brain re-
gions could be used for further improvements; (2)
current model used only MRI data. Other data types in-
cluding clinical, genetic, and genomics will be incorpo-
rated in our future studies; (3) only ADNI data was used
for both model training and testing. Other independent
datasets could be used for both model improvement and
independent testing; (4) this study focused on classifying
AD versus normal control. We will adopt the “light”
model approach demonstrated in this study to classify
AD versus MCI versus normal, which is a more challen-
ging task than classifying AD versus normal.

Data availability
Features and code for DenseCNN2 are publicly available
at http://nlp.case.edu/public/data/DenseCNN2.
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