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Abstract

Background: The relationship between cancer and dementia is triggering growing research interest. Several
preclinical studies have provided the biological rationale for the repurposing of specific anticancer agents in
Alzheimer’s disease (AD), and a growing number of research protocols are testing their efficacy and safety/
tolerability in patients with AD.

Methods: The aim of the present systematic review was to provide an overview on the repurposing of approved
anticancer drugs in clinical trials for AD by considering both ongoing and completed research protocols in all
phases. In parallel, a systematic literature review was conducted on PubMed, ISI Web, and the Cochrane Library to
identify published clinical studies on repurposed anticancer agents in AD.

Results: Based on a structured search on the ClinicalTrials.gov and the EudraCT databases, we identified 13 clinical
trials testing 11 different approved anticancer agents (five tyrosine kinase inhibitors, two retinoid X receptor
agonists, two immunomodulatory agents, one histone deacetylase inhibitor, and one monoclonal antibody) in the
AD continuum. The systematic literature search led to the identification of five published studies (one phase I, three
phase II, and one phase IIb/III) reporting the effects of antitumoral treatments in patients with mild cognitive
impairment or AD dementia. The clinical findings and the methodological characteristics of these studies are
described and discussed.

Conclusion: Anticancer agents are triggering growing interest in the context of repurposed therapies in AD.
Several clinical trials are underway, and data are expected to be available in the near future. To date, data emerging
from published clinical studies are controversial. The promising results emerging from preclinical studies and
identified research protocols should be confirmed and extended by larger, adequately designed, and high-quality
clinical trials.
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Background
Cancer and dementia, including Alzheimer’s disease
(AD), represent two of the leading causes of mortality
and disability worldwide [1]. Although these pathological
conditions have traditionally been associated with dis-
tinct pathophysiological mechanisms and phenotypic
manifestations, a growing body of research has recently
been focused on their possible mutual relationship [2, 3].
Some studies suggested an inverse relationship be-

tween cancer and dementia (mostly of the AD type),
with cancer history decreasing the risk of AD and pa-
tients with AD having a lower probability of developing
cancer [4]. However, it is crucial to clarify the either
genetic or molecular mechanisms that could be some-
how at crossroads between these two conditions and
sustain their possible negative association. In contrast,
other studies provided preliminary evidence that cancer
and AD may share some common pathways. In this re-
gard, a recent study analyzed all biological hallmarks of
cancer in the AD literature and concluded that not all
cancer etiopathogenetic events run the opposite direc-
tion in AD [5]. Moreover, since Hanahan and Weinberg
updated their research on the hallmarks of cancer [6, 7],
there is accumulating evidence that these key molecular
pathways may also affect the risk, onset, and progression
of AD and that some specific hallmarks can actually be
common to these diseases [8].
For instance, it has been shown that some oncopro-

teins, such as protein kinases, are dysregulated in AD,
since hyperphosphorylation of neurofibrillary tangles is
one of the distinctive features of AD [8]. Another cancer
hallmark, namely inflammation [6, 7, 9], is also increas-
ingly invoked to explain the neuropathological changes
leading to AD. Indeed, the activation of microglia and
astrocytes and the resulting neuroinflammation are cur-
rently considered as major events in the pathophysiology
of this neurodegenerative condition [10, 11] and it is
demonstrated that amyloid plaques are surrounded by
activated microglia both in early and late stages of the
disease [12]. Targeting these immune responses could
therefore represent an alternative therapeutic strategy in
AD [13, 14]. Finally, other biological processes and ab-
normalities, such as genome instability and deregulation
of cellular energetics, probably constitute common
underlying mechanisms [5].
The therapeutic implications of the complex relation-

ship between cancer and dementia have instead been
poorly investigated yet. Given the current therapeutic
gap in AD, the scientific community is growingly investi-
gating whether drugs approved for other diseases may
be repurposed to slow down or even hamper AD course
[15, 16]. In this regard, some anticancer drugs have been
shown to have a good permeability through the blood-
brain barrier (BBB), thus potentially exerting relevant

effects against AD pathology [17, 18]. A recent retro-
spective study of approximately 3.5 million older Ameri-
can veterans showed that cancer treatment was
independently associated with decreased AD risk and
that those who received chemotherapy had a lower risk
than those who did not [19]. Accordingly, in a study of
nearly 62,000 older women diagnosed with breast can-
cer, the risk of developing AD and other dementias was
significantly lower in patients receiving chemotherapy
[20]. In addition, some studies suggest that anticancer
drugs may also act as disease-modifying therapies once
the AD-related neurodegenerative process has already
started [21]. Based on these preliminary findings, a
growing number of research protocols are testing the ef-
ficacy and safety of approved anticancer agents in pa-
tients with AD.
Hence, the aim of the present systematic review was to

provide an overview on the repurposing of approved an-
ticancer drugs in clinical trials for AD. Both ongoing re-
search protocols and published studies were considered
for this purpose. Furthermore, attention was paid to
methodological and reporting quality.

Materials and methods
Systematic review of ongoing research protocols
Two databases were used as sources for the present
study: (i) the ClinicalTrials.gov for studies registered in
the USA and (ii) the EudraCT (European Union Drug
Regulating Authorities Clinical Trials Database) for all
interventional studies registered in the European Union.
The two databases were investigated in December 2020,
to identify ongoing research protocols testing anticancer
agents in the AD continuum by using both the following
search terms: “Alzheimer OR Dementia.” No restriction
was applied for recruitment phase/status, study design,
and study phase. Two reviewers (AA, EL) independently
selected protocols deemed to be eligible for the review
topic. Specifically, only studies (i) investigating pharma-
cological compounds approved by national or inter-
national drug agencies (e.g., Food and Drugs
Administration, European Medicines Agency) as anti-
cancer agents and (ii) recruiting patients with a clinical
diagnosis of AD or mild cognitive impairment (MCI) or
assessing AD biomarkers in subjects with preclinical AD
and healthy volunteers were selected. Trials focusing on
neurodegenerative dementias other than AD (i.e., Lewy
body dementia, Parkinson’s disease dementia, frontotem-
poral dementias) were instead not considered for the
present analysis. Any disagreement in the protocols’ se-
lection was resolved by discussion between the authors.
For each selected trial, the main methodological and
clinical information (IDs, status, duration, intervention,
sample size, sociodemographic and clinical characteris-
tics of participants, relevant inclusion and exclusion
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criteria, diagnosis at the baseline, primary and secondary
endpoints) were extracted in standardized forms. Along
with this information, it was investigated whether the
tested drugs were used as disease-modifying or as symp-
tomatic treatments.

Literature search of published clinical studies
The literature review was performed following the meth-
odology described in the Cochrane handbook for sys-
tematic reviews [22] and was reported based on the
PRISMA statement for reporting systematic reviews and
meta-analyses [23]. A systematic literature search was
conducted in the biomedical databases, i.e., PubMed, ISI
Web of Knowledge, and the Cochrane Library to identify
published clinical trials testing approved anticancer
agents in AD. The search was updated to January 2021.
The following terms were used: (Alzheimer* OR demen-
tia*) AND (((cancer* OR neoplas* OR tumor* OR onco-
log* OR anticancer* OR anti-cancer* OR anti-neoplas*
OR antineoplas* OR tumor* OR antitumor* OR anti-
tumor*) AND (drug* OR treatment* OR therap*) AND
(“clinical trial” OR “clinical trials” OR “randomized trial”
OR “randomised trial” OR “randomized trials” OR “ran-
domised trials”)) OR (bexaroten* OR Nilotinib OR
AMN107 OR Dasatinib OR Daratumumab OR Tamibar-
otene OR OAM80 OR Thalidomide OR Lenalidomide
OR Masitinib OR AB1010 OR Bosutinib OR PF-
5208763 OR Ski-606 OR Pexidartinib OR PLX3397 OR
Vorinostat)). Specific drug names and/or codes included
in the search string were selected based on the trials
identified by the search in the ClinicalTrial.gov and
EudraCT databases.
Studies were independently selected by four reviewers

(AA, EL, IB, GR) based on their pertinence with and
relevance to the topic of the review. Disagreements were
resolved by consensus. Only clinical studies (i) investi-
gating approved anticancer agents and (ii) enrolling
patients with a clinical diagnosis of AD (of any severity)
or MCI or exploring the effect of anticancer agents on
AD biomarkers in participants with preclinical AD or
healthy subjects were selected. Preclinical studies, study
protocols, and reviews as well as studies recruiting par-
ticipants without a diagnosis of AD were not considered.
Studies that published only trial protocols and/or pa-
tients’ baseline features were excluded. Conference pro-
ceedings, abstracts, posters, letters, and editorials were
also excluded. When trial results were available both
from clinical trials databases and publications, data were
compared to identify possible discrepancies. A modified
PRISMA Flow Diagram was used to report the flow
process for study selection (Fig. 1). Then, the Cochrane
risk-of-bias tool for randomized trials (RoB) was applied
to published trial studies for methodological and quality
assessment. The RoB tool is suitable for individually

randomized, parallel-group, and cluster-randomized tri-
als. The qualitative assessment of included studies was
performed using the software Review Manager, version
5.3, developed by the Cochrane Collaboration.

Results
Overview of identified research protocols
A total of 3654 protocols registered on ClinicalTrials.gov
and 656 protocols registered on EudraCT were identified
and screened. Among them, 13 studies fulfilled the se-
lection criteria as they were testing approved anticancer
agents in samples of patients in the AD continuum
(Fig. 1). Eleven of these studies were only registered in
ClinicalTrials.gov. One trial was registered on both data-
bases, and one protocol was registered exclusively in the
EU database. Three phase I, one phase I/II, eight phase
II, and one phase IIb/III protocols were identified
(Table 1).
Overall, 11 different approved anticancer drugs were

investigated. Five drugs (bosutinib, dasatinib, masitinib,
nilotinib, and pexidartinib) belong to the class of tyro-
sine kinase inhibitor (TKI) class, two are immunomodu-
latory agents (lenalidomide and thalidomide), two are
retinoid X receptor (RXR) agonists (bexarotene and
tamibarotene), one is a monoclonal antibody (daratumu-
mab), and one is a histone deacetylase (HDAC) inhibitor
(vorinostat) (Fig. 2). A comprehensive overview of the
role of these drugs in cancer, their regulatory approved
indications, and the rationale for their therapeutic po-
tential for AD is provided in Table 2 [24–47, 49, 50].
Five protocols are currently active (nilotinib, lenalido-

mide, dasatinib, daratumumab, and vorinostat), four are
completed (bexarotene and masitinib), one is enrolling
by invitation (bosutinib), two are currently in unknown
status (tamibarotene, thalidomide), and one is prema-
turely ended (pexidartinib). In terms of the number of
trials identified, bexarotene and masitinib were the most
represented agents that are being investigated in two tri-
als each.
Concerning the study design, four studies (vorinostat,

bosutinib, dasatinib, and daratumumab) are adopting a
single-group assignment (i.e., no placebo) whereas nine
are parallel-group, placebo-controlled studies.
Notably, only for one protocol, the study design and

findings were already published in a journal [51]. No dis-
crepancies between the registered protocol and the study
publication were noticed regarding baseline characteris-
tics, outcomes, and observed adverse events (AEs). A
total of 1057 (range 5–721) subjects were planned to be
enrolled in the considered protocols. The largest number
of participants are expected to be recruited in the two
trials with masitinib (n=756). Most studies focused on
subjects with a diagnosis of MCI and mild to moderate
AD (MMSE range 10–28). Only in one study, healthy
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volunteers were enrolled (bexarotene, NCT02061878).
The duration of the planned interventions ranged be-
tween 5 days and 1 year.
Five trials (i.e., daratumumab, tamibarotene, lenalido-

mide, and both masitinib studies) adopted the

Alzheimer’s Disease Assessment Score–Cognitive Sub-
scale (ADAS-Cog) as the primary outcome.
Phase III masitinib and lenalidomide trials indicated

the Alzheimer’s Disease Collaborative Study-Activities of
Daily Living (ADCS-ADL) as the primary endpoint. The

Fig. 1 Modified PRISMA flow diagram for clinical trial selection
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Mini Mental State Examination (MMSE) was indicated
as the primary outcome in the lenalidomide study and as
the secondary outcome in the daratumumab, tamibaro-
tene, bexarotene, and masitinib studies. The Montreal
Cognitive Assessment (MoCA) was used as the second-
ary endpoint in the dasatinib trial. In the phase I bexaro-
tene study, where healthy volunteers were enrolled, only
amyloid biomarkers were considered as both primary
and secondary outcomes. No clinical outcomes were de-
fined in phase I and phase I–II studies (vorinostat, bosu-
tinib, bexarotene, and dasatinib).

Overview of published clinical studies
The structured bibliographic searches yielded 2056 re-
cords. A total of 10 studies were selected based on their
pertinence and relevance to the topic of the review.
When applying the predefined inclusion and exclusion
criteria, five studies were further excluded, with five
studies to be included in the qualitative analysis [48, 51–
54] (Fig. 1). Four phase II and one phase I studies were
identified. For one study, results were also posted on
ClinicalTrials.gov as mentioned in the previous section.
Anticancer drugs for which a publication was available
were bexarotene [52, 54], masitinib [51], nilotinib [53],
and thalidomide [48]. The main characteristics and out-
comes of the identified studies are summarized in
Table 3.

Design and study population
Four studies [48, 51–53] enrolled patients with a diagno-
sis of mild to moderate AD while one study [54] re-
cruited healthy volunteers; four studies enrolled patients
older than 50 years [48, 51–53], while one study [54] re-
cruited young volunteers [age range 21–50]. In two stud-
ies [52, 53], a positive amyloid PET was required as an
additional criterion before randomization.
All five studies adopted a randomized, double-blind

design. Only one study was a multicenter trial [51]. Allo-
cation ratio, treatment duration, drug, and placebo doses
were always described. Four trials [48, 52–54] adopted a
two-arm design while the remaining one [51] relied on a
multi-arm design. All studies reported that the appear-
ance and way of administration of drug and matching
placebo were identical. In some cases, packaging and la-
beling were generated and held by a third-party service
to ensure a blinding procedure.
We used the RoB tool for quality analysis of random-

ized studies (Fig. 3). Our analysis of random sequence
generation (selection bias) assessed that three studies
had an unclear risk of bias [48, 53, 54] while, for two
studies, a low risk was estimated [51, 52]. The enroll-
ment and allocation process were reported in all studies.
However, in two studies, the flow diagram of the
randomization process was not available [48, 54]. Base-
line characteristics and clinical features of participants
were reported for both treatment and placebo groups in

Fig. 2 Pie chart of approved anticancer drugs in trials for Alzheimer’s disease
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all studies. Only for one study [51], p-values were pre-
sented in tables to highlight between-group differences
at the baseline. Only in two studies [52, 53], ethnicity
was reported among baseline characteristics with white/
Caucasian participants accounting for the overwhelming
majority of participants (90–95%).

Apoliprotein E (ApoE) genotype
Information on ApoE genotype was reported only for
three studies in summary tables [52–54]. In the

nilotinib study, all ApoE genotypes identified in both
treatment and placebo groups were reported. In the
phase II bexarotene study, the frequency of ApoE-ε4
carriers (homozygotes and heterozygotes) and noncar-
riers was provided. In the phase I bexarotene study,
based on theoretical concerns that the ApoE-ε4 allele
may confer toxic gain of function and side effects, it
was considered as appropriate to enroll only ApoE
ε3/ε3 carriers. For two studies [48, 51], genotype pro-
files were not characterized.

Table 2 Anticancer drug class, mechanism of action, approved indications, and therapeutic rationale for repurposing in Alzheimer’s
disease

Molecule Drug class Role in cancer Approved indication(s) Rationale for therapeutic
purpose in AD

Reference

Vorinostat HDAC inhibitor Antiproliferative effect through
modulation of histone acetylase
activity

Cutaneous manifestations
in cutaneous T cell
lymphoma

Restoration of synaptic plasticity.
Improved memory long-term po-
tentiation, reduction in Aβ and
tau pathology.

[24, 25]

Bosutinib Tyrosine kinase
inhibitor

The primary target is the BCR-ABL
kinase. Inhibition of several tyro-
sine kinases

Ph+ chromosome chronic
myeloid leukemia

Increase in blood and brain IL-10
and soluble CX3CL1

[26–29]

Masitinib Tyrosine kinase
inhibitor

Inhibition of the receptor tyrosine
kinase c-Kit. Inhibition of PDGFR,
Lck, FAK, and FGFR3

Mast cell tumor (for
veterinary use)

Inhibition of c-Kit receptor in
MCs. It is capable of blocking Fyn
that is involved in tau phosphor-
ylation. Cognitive improvements
as a result of Fyn inhibition

[30–34]

Dasatinib Tyrosine kinase
inhibitor

Inhibition of BCR-ABL, SRC family
kinases, c-Kit, EPHA2, and PDGFRβ

Ph+ chromosome chronic
myeloid leukemia in
chronic phase and acute
lymphoblastic leukemia in
blastic phase

Removal of senescent cells from
the plaque environment.
Inhibition of amyloid-dependent
microgliosis

[35, 36]

Nilotinib Tyrosine kinase
inhibitor

Antiproliferative effects through
inhibition of several kinases (BCR-
ABL, c-Kit and PDGF, PI3K-Akt,
JACK-STAT)

Ph+ chromosome chronic
myeloid leukemia

Abl inhibition facilitates amyloid
clearance and reduces
inflammation. Upregulation of
soluble CX3CL1

[26–28]

Pexidartinib Tyrosine kinase
inhibitor

It works by inhibiting the colony-
stimulating factor (CSF1)/CSF1 re-
ceptor pathway.

Symptomatic
tenosynovial giant cell
tumor

Reduction in microglial
neuroinflammation

[37–40]

Bexarotene Retinoid X receptor
agonist

Inhibition of cell cycle progression,
prevention of multidrug
resistance, inhibition of
angiogenesis and metastasis

Advanced cutaneous T-
cell lymphoma

Alter the CSF levels of ApoE
Inhibition of Aβ42 aggregation

[21,
41–44]

Tamibarotene Retinoid X receptor
agonist

Specific agonist for retinoic acid
receptor alpha/beta with possible
binding to retinoid X receptors
(RXR)

Relapsed or refractory
acute promyelocytic
leukemia (only in Japan)

Decreased insoluble Aβ 42
deposition in and increased
VAChT and ACh in the brain and
reduction of neuroinflammation

[45]

Thalidomide Immunomodulatory
agent

Possible anti-TNF-α effects.
It may act as a VEGF inhibitor.

Multiple myeloma Reduction of Αβ, inhibition of the
expression of BACE1 enzyme.
Reduction of proinflammatory
TNF-α

[46]

Lenalidomide Immunomodulatory
agent

Tumor cell apoptosis by inhibition
of bone marrow stromal cell
support, by anti-angiogenic, anti-
osteoclastogenic effects, and by
immunomodulatory activity

Multiple myeloma; mantle
cell lymphoma; follicular
lymphoma

Reduction of the expression of
TNF-α, IL-6, IL-8
Increase the expression of anti-
inflammatory cytokines.

[47, 48]

Daratumumab Monoclonal
antibody

Targeting and induction of
apoptosis in cells that highly
express CD38

Relapse/refractory
Multiple myeloma

AD pathology is attenuated in
CD38-deficient mouse model

[49, 50]
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Concomitant treatments and investigational drug dosages
Participants with AD were allowed to continue their
treatments with cholinesterase inhibitors and/or mem-
antine if on a stable dose. Investigational drugs were
thus administered as adjunct therapies to the standard
of care. Regarding drug dose, fixed dosages were

assessed in bexarotene studies [52, 54]. Conversely, in
the nilotinib trial [53], patients received escalating dose
regimens unless safety and tolerability concerns ap-
peared. In the masitinib study [51], blinded dose adjust-
ments were allowed in the case of minimal toxicity or
lack of response. In the thalidomide study [48], patients

Fig. 3 Risk of bias tool for methodological evaluation of published clinical studies
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received escalating dose regimens previously adopted in
oncological studies. Additional information on thera-
peutic regimens and posology is provided in Table 3.

Safety profiles
Safety analysis, drug tolerability, and AEs were reported
for each study. A low risk of reporting bias was observed
in four studies [48, 52–54]. In the masitinib study [51],
only AEs with an incidence greater or equal to 5% were
reported. A comparison between the masitinib’s safety
profile observed in patients with AD and that emerged
in other masitinib phase II non-oncology studies showed
similar findings. A high discontinuation rate occurred in
the treatment arm of the masitinib trial as compared to
placebo (65% vs 25%). However, a similar frequency of
severe AEs occurred was documented in the masitinib
and placebo arms (15% vs 13% of patients, respectively).
Moreover, only seven out of 26 subjects (27%) discontin-
ued due to AEs while 10 subjects interrupted the treat-
ment for reasons unrelated to the exposure. In the
bexarotene studies [52, 54], increased triglyceride and
cholesterol levels were observed both in healthy subjects
and patients with AD. In the nilotinib study [53], the
drug revealed an acceptable safety profile.
Poor safety was reported in the thalidomide study [48].

Based on our judgments, attrition bias was low in four
studies [48, 52–54], since equal loss of participants oc-
curred both in treatment and control arms.

Results for reported outcomes
Safety and tolerability were assessed as primary out-
comes in three studies [48, 53, 54]. Biological outcomes
associated with the reduction of CNS amyloid markers
were evaluated in three studies [52–54]. In the proof-of-
mechanism study [54], only low nanomolar levels of
bexarotene were found in CSF and poor CNS penetra-
tion in the brain of healthy subjects was documented.
However, the authors cautioned that the BBB of healthy
human subjects would show lower permeability. The
study on thalidomide [48] showed that poor safety and
high toxicity hampered the use of a potentially thera-
peutic dose. Conversely, bexarotene, masitinib, and nilo-
tinib showed more favorable safety profiles.
All four studies on patients with AD assessed cognitive

and/or functional and/or neuropsychiatric changes
through the administration of clinical tools (ADAS-Cog,
ADCS-ADL, MMSE, MoCA, CDR-SB, CIBIC-Plus, and
NPI). No study used a comprehensive neuropsycho-
logical test battery to measure cognitive modifications.
Three studies [48, 52, 53] did not report any signifi-
cant cognitive improvement, while the masitinib study
[51] showed significant efficacy results measured with a
decrease greater or equal to four points of the ADAS-
Cog score at 12 and 24 weeks (6% of participants in the

masitinib group experienced a cognitive decline as com-
pared with 50% of those receiving placebo, p=0.040 and
p=0.046, respectively).
Nilotinib achieved relevant CSF concentrations. Fur-

thermore, it significantly reduced amyloid burden in the
frontal lobe, measured by florbetaben PET at 12 months,
and attenuated hippocampal volume loss. No significant
result was observed for the explorative clinical
outcomes.

Discussion
To the best of our knowledge, the present study is the
first attempt to systematically collect and discuss avail-
able data on the clinical use of approved anticancer
agents in AD. Based on the present analysis, the possibil-
ity of modifying the AD pathophysiology and clinical
course through the use of anticancer agents is increas-
ingly investigated. The results of several randomized
controlled trials have already been published and shared
with the scientific community [48, 51–54], while further
studies are currently underway and are expected to be
completed in the next few years, thus generating add-
itional evidence in the field.
Three out of five published randomized controlled tri-

als, two bexarotene studies [52, 54] and a thalidomide
study, [48] did not show any promising results, mainly
for reasons related to toxicity and poor CNS penetration.
Explorative clinical outcomes in the nilotinib [53] study
showed promising results that should be confirmed in
larger and longer studies. Masitinib was found to slow
down the rate of cognitive decline in AD [51]. It is note-
worthy that a larger phase IIb/III study on masitinib has
recently been completed on more than seven hundred
patients and, according to the statement of AB Science
(the industry that developed the drug) [55], the drug
met the primary endpoint by significantly improving
both cognition and functional abilities. Although masiti-
nib is currently approved for veterinary use, it is also
currently under evaluation in humans for the treatment
of diverse conditions including malignant melanoma,
mastocytosis, multiple myeloma, gastrointestinal and
pancreatic cancers, and multiple sclerosis [30].
Drug repurposing may consent to optimize the efforts

to develop new treatments for AD by exploring the AD-
related effects of agents already approved for other clin-
ical indications [16]. This approach is promising since
many approved pharmacological agents have shown AD-
relevant effects in animal models. Moreover, it may sig-
nificantly reduce the times and costs of drug develop-
ment given that the repurposed drugs have already been
tested in terms of safety/tolerability, thus rendering the
conduction of further preclinical studies unnecessary
[16]. In 2020, 53 clinical trials involving 58 FDA-
approved agents acting on multiple therapeutic targets
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(e.g., neuroinflammation, neuroprotection, neurotrans-
mitter modification) were registered in the Clinical-
Trials.gov database, accounting for 39% of the overall
AD pipeline [16]. In parallel, since 2019, the number of
phase III studies targeting Aβ dropped by 20% [56].
In the last decades, in vitro and animal studies have

provided promising evidence supporting the repurposing
of anticancer agents for AD [21, 26, 57, 58]. In particu-
lar, agents acting as TKIs are attracting special attention.
Emerging evidence justifies TKI utilization in AD [26–
31, 33–41]. The inhibition of several kinases has been
associated with lower Aβ deposition and tau phosphoryl-
ation [26, 57] and hampered amyloidogenic APP pro-
cessing in AD neurons [58]. RXR agonists have also
provided promising preclinical results [42–45]. Particu-
larly, bexarotene was found to enhance the clearance of
soluble Aβ within hours in an ApoE-dependent manner,
to inhibit Aβ42 aggregation and reduce neuroinflamma-
tion, and to revert cognitive deficits [42–44] (Table 2).
These promising preclinical results were not confirmed
in humans mainly due to poor CNS penetration and defi-
cient cerebrospinal fluid concentrations. Moreover, fre-
quent serious AEs (i.e., elevated triglycerides) were
observed [54]. Other anticancer drugs such as thalido-
mide, lenalidomide, and pexidartinib have been shown to
exert neuroprotective effects and attenuate neuroinflam-
mation in experimental models [37–40, 46, 59]. Masitinib,
as well, showed promising anti-neuroinflammatory effects
through the modulation of microglia and amyloidosis, or
with a synaptoprotective action in relation with mast cell
inhibition [30–34]. Overall, targeting several actors impli-
cated in neuroinflammation, together with the reduction
of brain amyloid burden, currently represents the primary
therapeutic rationale for the repurposing of anticancer
drugs in AD [49, 50, 60–62].
Promisingly, most of the completed and ongoing

clinical studies testing anticancer agents in the con-
tinuum of AD are adopting a randomized, placebo-
controlled design. Moreover, a sizeable proportion of
these protocols is already assessing meaningful clin-
ical outcomes (e.g., cognitive and functional im-
provement) besides exploring the safety/tolerability
profiles of the investigational interventions and their
effects on specific biomarkers. These methodological
features enhance the clinical relevance of the find-
ings that will emerge from these trials. At the same
time, much remains to be done in this field. More-
over, several methodological shortcomings still limit
the overall quality of the available evidence. Indeed,
most studies are recruiting very small populations of
patients, with heterogeneous clinical manifestations
(e.g., at different dementia stages); are conducted in
single clinical sites; and are at the earlier phases of
drug development.

Several limitations of the present study are worth to
be acknowledged and discussed. First, besides Clinical-
Trials.gov and EudraCT, there are other registries for re-
search protocols (in particular, for those conducted
outside the USA and EU). Therefore, our study should
not be regarded as an exhaustive overview on the topic.
Moreover, such databases only collect a limited amount
of data on the methodology of the ongoing studies. In
addition, eventual protocol amendments and updates
may not be timely reported. A further limitation of the
present study is the lack of a quantitative analysis of the
reviewed evidence. However, identified studies did not
focus on the same research question and adopted differ-
ent methodological designs (e.g., different disease sever-
ity, interventions, comparators, and outcomes), thus
hampering the conduction of a metanalysis and quanti-
tative comparisons. On the contrary, the main strength
of this study is the choice of merging available evidence
coming from both ongoing research protocols and com-
pleted clinical trials. This approach has allowed us to
provide a comprehensive perspective on the repurposing
of anticancer agents for AD. However, to have an ex-
haustive overview of the efficacy and safety of anticancer
drugs currently underway for AD, we encourage the sci-
entific community to disclose trial data, even when re-
sults do not seem promising, thereby preventing
publication bias.

Conclusions
In conclusion, based on the present overview, the repur-
posing of anticancer agents for the treatment of AD is
triggering growing interest. The promising results emer-
ging from preclinical studies and identified research pro-
tocols should be confirmed and extended by larger,
adequately designed, and high-quality clinical trials.
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