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Abstract 

Background  Missing data can complicate the interpretability of a clinical trial, especially if the proportion is substan-
tial and if there are different, potentially outcome-dependent causes.

Methods  We aimed to obtain unbiased estimates, in the presence of a high level of missing data, for the intervention 
effects in a prodromal Alzheimer’s disease trial: the LipiDiDiet study. We used a competing risk joint model that can 
simultaneously model each patient’s longitudinal outcome trajectory in combination with the timing and type 
of missingness.

Results  Using the competing risk joint model, we were able to provide unbiased estimates of the interven-
tion effects in the presence of the different types of missingness. For the LipiDiDiet study, the intervention effects 
remained statistically significant after this correction for the timing and type of missingness.

Conclusion  Missing data is a common problem in (Alzheimer) clinical trials. It is important to realize that statisti-
cal techniques make specific assumptions about the missing data mechanisms. When there are different missing 
data sources, a competing risk joint model is a powerful method because it can explicitly model the association 
between the longitudinal data and each type of missingness.
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Background
The course of Alzheimer’s disease (AD) is characterized 
by a process of neurodegenerative changes, gradually 
leading to subtle cognitive decline several years before 
the diagnosis of AD dementia can be made [1]. As such, 
clinical trials in AD studying the efficacy on disease pro-
gression typically require long follow-up periods [2]. A 
frequent problem associated with follow-up studies is 
missing data, especially in the case of long-term follow-
up. Missing data may result from subjects dropping out 
of a trial, for instance, when they move away or lose 
motivation to participate. If subjects who terminate the 
trial early are systematically different from completers, 
the resulting missing data pose challenges on the statisti-
cal analysis.

This paper focuses on the data of a randomized con-
trolled trial in individuals with prodromal AD, the 
LipiDiDiet trial [3, 4]. The trial had an initial 24-month 
intervention period, with the trial design allowing sub-
jects to continue for a maximum of 72 months of ran-
domized, controlled, double-blind, parallel-group 
intervention. This paper addresses the first 36 months of 
intervention, which currently is the maximum reported 
intervention period. The trial’s objective was to assess 
the effect of medical nutrition (Souvenaid) on cognition 
and related measures. The active component of Sou-
venaid is Fortasyn Connect, a specific combination of 
nutrients that reduces AD-linked brain pathologies in a 
neuroprotective manner [5–11]. Previous clinical studies 
showed benefits on memory and functional connectivity 
in patients with mild and moderate AD [12–14].

In the LipiDiDiet trial, significant benefits of the inter-
vention over the placebo control arm were observed for 
the Neuropsychological Test Battery (NTB) score, NTB 
5-item composite, and NTB memory domain, the Clini-
cal Dementia Rating Sum of Boxes (CDR-SB), which is a 
measure of cognition and function in real life, as well as 
on multiple measures of brain atrophy [3, 4].

As typical for long-term clinical trials, the LipiDiDiet 
trial had missing data. In particular, about 25% of the 
randomized subjects had data eligible for efficacy analy-
sis at the last 36-month time point. One of the reasons 
for these missing data was the exclusion (i.e., censoring) 
of data collected after the start of open-label medication 
given to subjects who progressed to dementia during 
the trial. That is, although subjects went to AD medica-
tion or open-label Souvenaid intervention, instead of 
double-blind placebo-controlled active intervention in 
the absence of pharmaceutical AD medication, they were 
allowed to remain in the trial, and data were continued 
to be recorded. However, these data were -prespecified 
to be-  excluded from the main analyses. The reasons 
for excluding these data include that AD drugs (potent 

neurotransmitter level modulators) are likely to affect 
the study outcomes and that the switch to the open-label 
intervention terminates the double-blind phase of the 
trial for these subjects. Note that although data of some 
subjects on open-label medication were still collected 
and therefore not missing, throughout this paper, we 
refer to these as missing data since these data were not 
used in the statistical analysis.

Apart from excluding data after the use of open-label 
medication, also other reasons contributed to the pool 
of missing data, in this case, because data could not be 
recorded. These include not opting in after the first 
24 months (n = 64), adverse events (n = 18), withdrawal 
of informed consent (n = 22), protocol deviations (n = 3), 
other reasons (n = 37), or lost to follow-up (n = 4).

Therefore, throughout this paper, we distinguish two 
groups of subjects, each with a different type of miss-
ing data. The first group, i.e., missing group 1, refers to 
subjects with missing data due to the exclusion (i.e., 
censoring) of data collected after the start of open-label 
medication. The second group, i.e., missing group 2, 
refers to subjects who dropped out of the trial. We also 
identify a third group, the completers. This group refers 
to subjects who remained in the trial for 36 months with-
out dropping out or censoring of data.

The longitudinal measures that were collected in the 
LipiDiDiet trial include an NTB 5-item composite Z 
score, composite Z scores for NTB memory domain, 
NTB executive function domain, and NTB total based 
on 16 items, CDR-SB, hippocampal, ventricular, and 
whole-brain atrophy based on MRI [3, 4]. Since a wors-
ening of cognition is among the criteria for AD demen-
tia diagnosis [15], one could expect a (strong) correlation 
between the longitudinal outcomes on cognition and 
related measures and progression to dementia. There-
fore, whether or not a subject has missing data due to 
the exclusion of data after using open-label medication 
following progression to dementia should typically be 
related to their (missing) longitudinal measurements. For 
this reason, the missingness is possibly informative. In 
this case, the traditional statistical methods for analyzing 
longitudinal data, i.e., mixed models, are subject to bias. 
Instead, a method that takes into account the missing 
data mechanism needs to be used. Previous data analysis 
included a sensitivity analysis using a joint model for lon-
gitudinal and survival data [16–18]. Such an analysis can 
take into account the possible informative character of 
the missing data by simultaneously modeling the longi-
tudinal data and the event and timing of missingness [19, 
20]. However, it is reasonable to assume that the depend-
ence between the missingness and the longitudinal meas-
urements might also have been dependent on the reason 
for missingness. That is, we can expect different (missing) 
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longitudinal trajectories for subjects whose data col-
lected after the start of open-label medication use were 
censored than for subjects who dropped out of the trial. 
These two types of (missing) longitudinal trajectories 
might differ from the trajectories of the subjects who 
completed the trial without dropout or censoring of data. 
In this paper, we use a competing risk joint model that 
can deal with and distinguish between the completers 
and the two different types of missing data. For informa-
tion on competing risk joint models, see, for example, 
[21, 22]. Within the context of AD, these models have 
been addressed previously to model the competing risks 
of dementia and death [23, 24]. Using the competing risk 
joint model, we aim to obtain unbiased estimates of the 
intervention effects in the presence of the different types 
of missingness. Additionally, we compare the results 
based on mixed models, standard joint models, and the 
competing risk joint models, i.e., three methods that deal 
differently with the missing data.

Methods
Study design and subjects
The LipiDiDiet trial is a randomized, controlled, double-
blind, parallel-group, multicenter trial done primarily in 
memory clinics at 11 study sites in Finland, Germany, 

The Netherlands, and Sweden. Following the 24-month 
intervention [3], subjects could continue for 72 months 
of randomized, controlled, double-blind, parallel-group 
intervention. In this paper, we report over 36 months of 
intervention. The LipiDiDiet trial investigated the effects 
of Fortasyn Connect on cognition and related meas-
ures in individuals with prodromal AD. These included 
an NTB 5-item composite Z score, and composite Z 
scores for NTB memory domain, NTB executive func-
tion domain, and NTB total based on 16 items; CDR-SB; 
(three-dimensional T1-weighted) anatomical scans of the 
total hippocampal, whole brain, and ventricular volumes 
(cm3); and time to dementia diagnosis. For the outcome 
measures based on the NTB, composite Z scores were 
calculated standardized to the baseline mean and stand-
ard deviation (SD) based on the modified intention-to-
treat population in the LipiDiDiet main papers [3, 4].

The diagnosis of dementia was made based on the cri-
teria defined by DSM-IV, the National Institute of Neu-
rological and Communicative Disorders and Stroke, and 
the AD and Related Disorders Association criteria for 
AD. Subjects were measured at baseline, and around 
12, 24, and 36 months, with an additional visit around 
6 months for the NTB Z scores. Figure 1 shows the num-
ber of subjects with available measurements for the 

Fig. 1  Number of subjects with measurements eligible for efficacy analysis of the primary endpoint
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primary endpoint at different time points in the com-
peting risk joint model and the corresponding types of  
missingness. As can be seen, 45 (30%) and 36 (23%) sub-
jects in the active and control groups, respectively, had 
data at the 36-month time point eligible for efficacy  
analysis. For more information, regarding the LipiDiDiet 
trial and the main paper reporting the 36-month inter-
vention period results, we refer to the original clinical 
trial publications [3, 4].

Investigating the missing data patterns
In this paper, we use a statistical method that distin-
guishes between three types of subjects: (1) subjects 
who completed the 36-month intervention period (com-
pleters), (2) subjects whose data collected after the start 
of open-label medication use were censored (missing 
group 1), and (3) subjects whose data were not recorded 
once they dropped out of the trial (missing group 2). To 
get insight into how different these three types of sub-
jects are, we plotted the mean of their observed trajec-
tories until the moment of missingness for NTB 5-item 
composite and CDR-SB.

Statistical analyses
We simultaneously modeled the risks of missingness 
due to open-label medication use (missing group 1) and 
dropout (missing group 2), and the longitudinal trajec-
tories, using joint modeling for longitudinal and survival 
data. Using a joint model might have advantages com-
pared to using a mixed model in terms of how it deals 
with the missing data. According to Rubin’s taxonomy 
[25], we can distinguish three different mechanisms 
for missing data. When missingness is unrelated to the 
data, the mechanism is called missing completely at 
random (MCAR). When missingness depends only on 
the observed data (and covariates) but not on the unob-
served data, the mechanism is termed missing at ran-
dom (MAR). A mechanism where missingness depends 
on the unobserved data, perhaps in addition to the 
observed data, is missing not at random (MNAR). Note 
that in this paper, with (missing) data, we are referring to 
(missing) outcome data and not (missing) covariate data. 
The mixed model can accommodate both data with an 
MCAR and MAR mechanism. Joint models correspond 
to an MNAR missing data mechanism because they 
jointly model the longitudinal and the missingness pro-
cess. For example, a joint model (with the risk of missing-
ness as an event) assumes that, given the observed data 
and covariates, whether or not data of a subject is miss-
ing, and the timing of missingness might contain some 
additional information and should be taken into account. 
The competing risk joint model can thereby distinguish 
between two types of MNAR. For example, as done 

in this paper, in addition to using the information on 
whether or not data of a subject is missing and the timing 
of missingness, it also takes into account the reason for 
missingness, allowing each type of missingness to have a 
(different) MNAR characterization.

In the joint model, we simultaneously modeled the fol-
lowing three sub-models: (i) a longitudinal mixed model 
aiming to describe the patient-specific longitudinal trajec-
tories, (ii) a Cox proportional hazard model for the risk of 
open-label medication use as an event, and (iii) a Cox pro-
portional hazard model for the risk of dropout as a com-
peting event.

For the longitudinal outcome of interest, suppose yi(t) 
were the observations for the ith subject at time points 
tij (j =  1,…, ni). Note that both the number of measure-
ments (ni) and the timing of measurements (tij) could vary 
between subjects. We used the following joint model:

In the longitudinal sub-model, we used linear time 
trends (β1) for the longitudinal outcomes. To model the 
effect of Fortasyn Connect, we included both a main 
effect (β2) and a linear interaction of the intervention 
effect by time (β3). In this way, β2 denotes the difference 
between the intervention groups at baseline, while the 
interaction effect describes the intervention effect over 
time. Further, we adjusted for the effect of baseline Mini-
Mental State Examination (MMSE) (β4) and site (β5). 
To allow subjects to have different baseline levels and 
time trends, we included subject-specific random inter-
cepts (bi0) and slopes (bi1). Additionally, quadratic ran-
dom effects (bi2) were included if they improved the fit 
of the model. In the Cox model, we included interven-
tion (γ1) and baseline MMSE (γ2) as time-independent 
effects and one of the longitudinal measures as a time-
dependent effect. Further, hiGr1 and hiGr2 denote the risks 
of being in missing group 1 and missing group 2 for the 
ith subject. The quantity εi(t) denotes the measurement 
error, for which we assumed εi(t) ∼ N (0, σ2). The quanti-
ties h0Gr1 and h0Gr2 denote the baseline hazards for being 
in missing group 1 and missing group 2. The param-
eters αGr1 and αGr2 measure the strength of the associa-
tion between the longitudinal outcome and the risk of 
the corresponding event. Specifically, the quantities 

y(i)(t) = m(i)(t)+ ε(i)(t),

mi(t) =β0 + β1t + β2 interventioni

+ β3 interventioni x t + β4bMMSEi + β5sitei

+ bi0 + bi1t + bi2t
2
,

hiGr1(t) = hoGr1(t) exp γ1interventioni + γ2bMMSEi + αGr1mi(t) ,

hiGr2(t) = hoGr2(t) exp
{

γ1interventioni + γ2bMMSEi + αGr2mi(t)
}

.
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exp(αGr1) and exp(αGr2) denote the hazard ratios for the 
competing event at time t for a unit increase in the lon-
gitudinal trajectory at the same time point.

Within the joint modeling framework, different possi-
bilities exist to model the association between the longi-
tudinal outcome and the risk of an event. For example, 
next to using the value of the longitudinal outcome, the 
rate of change (i.e., slope) could be used to model the 
relationship with the risk of an event. For more informa-
tion about the different possibilities for the association 
structure, see [18, 26].

We also fitted a separate longitudinal mixed model 
and a standard joint model with the same covariate 
structure as in the competing risk joint model. In the 
standard joint model, we used missingness due to any 
possible reasons as a composite event. All the statistical 
analyses in this paper were performed with the statisti-
cal software package R, using R-package JM [27]. For an 
example of fitting a competing risk joint model using the 
R-package JM, including R code and an example dataset, 
we refer to [18].

Results
Investigating the missing data patterns
Figures 2a and 3a show the mean of the observed trajec-
tories until the moment of missingness respectively for 
NTB 5-item composite and CDR-SB. For example, the 
6-month panel shows the mean of the observed trajec-
tories until 6 months for all subjects who only have data 
for up to 6 months. The 12-month panel then includes 
all subjects whose last data were recorded at month 12, 
etc. Although we cannot be sure about the missing tra-
jectories, plotting the available information provides 
insight into the differential patterns. First, we observe a 
general pattern that the higher the baseline cognitive per-
formance according to the NTB 5-item composite, the 
longer the subjects remained in the trial. Second, subjects 
with missingness due to open-label medication use seem 
to have different longitudinal trajectories than subjects 
who dropped out. A steeper decrease in NTB 5-item 
composite and a steeper increase in CDR-SB reflect a 
faster loss of cognitive performance and cognitive-func-
tional performance.

Statistical analyses
This paper’s results can differ from the LipiDiDiet main 
paper presenting the 36-month results [4] since different 
modeling choices are made. The main difference is that in 
this paper, we used the competing risk joint model, which 
can take into account the possible informative charac-
ter of the missing data and thereby also distinguishes 
between the reasons for missingness as defined here. Fur-
thermore, the main paper’s approach is a mixed model 

that includes the outcome baseline value as a covariate 
and models the change from baseline as the response  
variable, according to a prespecified statistical analysis 
plan. However, modeling the outcome baseline values 
as part of the trajectory is preferred when using a joint 
model, as it maximizes the amount of information used 
to estimate the association between the longitudinal data 
and the survival data. Therefore, we included the base-
line values in the longitudinal trajectory and modeled the 
value as the response variable.

Supplementary Table 1 shows the baseline characteris-
tics for missing group 1, missing group 2, and the com-
pleters. Supplementary Table  2 shows the number of 
subjects (n), the number of total observations (N), and 
the number of the competing events in the competing 
risk joint model for each longitudinal outcome in the 
control and active groups. Figure  4 presents the esti-
mated mean change from baseline as estimated from the 
competing risk joint model. As can be seen, trajectories 
worsened over time. We also plotted the mean of the fit-
ted trajectories, i.e., the estimated means for each type 
of missing data until the moment of missingness respec-
tively for NTB 5-item composite (Fig.  2b) and CDR-SB 
(Fig. 3b).

Table 1 (A) shows the longitudinal sub-model results of 
the competing risk joint model for each longitudinal out-
come. Note that for NTB 5-item composite, NTB execu-
tive function domain, NTB total, MRI total hippocampal 
volume, MRI whole brain volume, and MRI ventricu-
lar volume, we included random quadratic effects as it 
improved the fit of the model. The parameter β3 describes 
the intervention effect on the corresponding longitudinal 
outcome over time and denotes our effect size of interest. 
For NTB 5-item composite and NTB memory domain, we 
observe significant intervention effects, with the average 
decrease being respectively 0.058 (95% CI 0.023 to 0.094) 
and 0.074 (95% CI 0.003 to 0.145) per year less in the 
active group than in the control group. For NTB execu-
tive function domain and NTB total, we observe −0.006 
(95% CI −0.064 to 0.052) and 0.024 (95% CI −0.019 to 
0.067) less reduction per year in the active group than in 
the control group, respectively, although not being statis-
tically significant. We observe significantly less worsening 
in CDR-SB in the active group than in the control group, 
with an estimated difference of −0.295 (95% CI −0.480 
to −0.109) per year. Additionally, we observe significant 
intervention effects for MRI total hippocampal volume 
and MRI whole brain volume, with respectively 0.071 
(95% CI 0.028 to 0.115) and 3.719 (95% CI 0.829 to 6.609) 
less reduction per year in the active group than in the 
control group. We observe an estimated yearly difference 
of −0.659 (95% CI − 1.426 to 0.108) for MRI ventricular 
volume, although not being statistically significant.
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Figure  5 compares the intervention effect estimates 
and corresponding 95% confidence intervals for each 
longitudinal outcome obtained from the competing risk 
joint model, the standard joint model, and the separate 
linear mixed model. This figure also includes the results 
as presented in  the LipiDiDiet main paper [4]. We 
observe that the results for the intervention effects are 
comparable for the three types of models. For the inter-
ested reader, we refer to Supplementary Figure 1, which 
provides more insight into the differences between the 
models. This figure shows that, although the interven-
tion effect estimates are comparable, the models differ in 
how they deal with the three different types of subjects. 

Also, we conducted two small data manipulations solely 
to illustrate the potential bias that could be introduced 
by ignoring the missingness and the gain in efficiency 
that can be achieved by modeling the different types of 
missingness. For both data manipulations, we used the 
NTB 5-item composite outcome. For the first type of 
data manipulation, we artificially created extra MNAR 
missingness in the control group for those subjects who 
decreased the most in cognitive performance. For the 
second type of data manipulation, we artificially created 
two different types of MNAR missingness. In particu-
lar, we created extra MNAR missingness in the control 
group for those subjects who decreased the most in 

Fig. 2  a The mean observed trajectories up to the last available measurement per group for NTB 5-item composite. b The mean fitted trajectories 
up to the last available measurement per group for NTB 5-item composite. The numbers denote the number of subjects per group. A higher NTB 
5-item score indicates better performance
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cognitive performance and extra MNAR missingness in 
the treatment group for those subjects who improved 
the most in cognitive performance. As can be seen, in 
these situations, the mixed model, joint model, and com-
peting risk joint model yield different results (see Sup-
plementary Tables 4 and 5).

To enable evaluation of the model goodness of fit, we 
also added plots of the residuals versus the fitted values 
for each outcome to the Supplementary Material (Sup-
plementary Figure 2). Overall, we conclude that the fit is 
satisfactory.

Table  1 (B) also shows the survival sub-model results  
of the competing risk joint model for each longitudi-
nal outcome. The sign of the α-coefficient indicates the 
direction of the association. For the  NTB composite 
scores, MRI total hippocampal, and whole brain volume, 
the sign of the α-coefficient is negative for missing group 
1, indicating that a higher value is found to be associ-
ated with a lower risk of being in missing group 1 (i.e., 
open-label medication use). For example, a unit increase 
in NTB 5-item composite score is estimated to increase 
the risk of being in missing group 1 by 0.227-fold (95% CI 

Fig. 3  a The mean observed trajectories up to the last available measurement per group for CDR-SB. b The mean fitted trajectories up to the 
last available measurement per group for CDR-SB. The numbers denote the number of subjects per scenario of dropout. A higher CDR-SB score 
indicates worse performance



Page 8 of 12van Oudenhoven et al. Alzheimer’s Research & Therapy           (2021) 13:63 

0.164 to 0.315), which means an estimated risk reduction  
of 77.3%. For CDR-SB and MRI ventricular volume, the 
sign of the α-coefficient is positive for missing group 1, 
indicating that a higher value is found to be associated  
with a higher risk of being in missing group 1. For  
instance, a unit increase in CDR-SB is estimated to 
increase the risk of being in missing group 1 by 1.644-
fold (95% CI 1.466 to 1.842), which means an increase of  
64.4%. Note that associations and hazard ratios corre-
sponding to one unit increase in the different types of 
longitudinal outcomes are not directly comparable as  
the longitudinal outcomes are measured on different 
scales.

Using the rate of change (i.e., slope) to model the asso-
ciation between the longitudinal outcome and the risk of 
an event was found to give similar results for the inter-
vention effects (see Supplementary Table 3).

Discussion
In this paper, we aimed to obtain unbiased estimates 
for the intervention effect on the longitudinal outcomes 
in the presence of missing data. One of the reasons for 
the missing data was the exclusion of data collected after 
the start of open-label medication given to subjects who 
progressed to dementia during the trial, but also other 
reasons contributed to the pool of missing data. We 

Fig. 4  Estimated mean change from baseline based on the competing risk joint model for each outcome. Error bars are ± SE. Except for CDR-SB 
and MRI ventricular volume, higher scores indicate better performance
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applied a statistical method that simultaneously models 
the longitudinal trajectories and the event and timing of 
missingness and thereby distinguishes between the dif-
ferent types of missing data. We believe that the so-called 
competing risk joint model is an adequate way to deal 
with this type of data. We found significant intervention 
effects for three longitudinal outcomes in the neuropsy-
chological domain (NTB 5-item composite, NTB mem-
ory domain, and CDR-SB) and two longitudinal MRI 
brain volume measures (hippocampal and whole brain 
volume).

Apart from using the longitudinal outcome’s value 
to model the association with the risk of an event, we 
also tried using the rate of change (i.e., slope). However, 
results for the intervention effects were found to be very 
similar. One explanation might be that the study popula-
tion is relatively homogeneous at baseline, with all sub-
jects being at a similar (i.e., prodromal) disease stage. 
In this situation, the difference between subjects in the 
post-baseline value is highly correlated with differences 
between subjects in slopes. In a population with differ-
ent disease stages and thus with substantial differences 
in baseline levels, results might be more sensitive to the 
choice of the association structure.

Similar results regarding the intervention effect were 
obtained based on the competing risk joint model, the 

joint model, and the mixed model. These three types of 
models make different assumptions about the missing 
data mechanism. Mixed models can accommodate data 
that is MAR. When the missing data is MAR, this means 
that the missing data can be predicted based on the 
observed data and covariates. The standard joint model 
used in this paper takes into account that missing data 
might be MNAR, and the competing risk joint model 
allows the pattern of dependence between the probabil-
ity of missingness and the unobserved data to be different 
for the different types of missingness. The fact that the 
obtained intervention effect estimates were comparable 
for all three models indicates that the results reported in 
[4] are not very sensitive to the model-specific assump-
tions about missingness. Although this is good news for 
this specific clinical trial, results in other situations could 
be less robust for the missing data assumptions. There-
fore, our advice is always to perform a sensitivity analysis 
when dealing with missing data.

Missing data is a complicated problem, which brings 
the need for complex statistical methods. The problem 
of missing data also requires (clinical) expertise on the 
underlying reasons for the missing data. Together, the 
statistician and the clinician should make decisions 
about which (model) assumptions are appropriate for 
the data at hand.

Table 1  Competing risk joint model results for the (A) longitudinal and (B) survival sub-model

β3 denotes the yearly intervention effect. Except for CDR-SB and MRI ventricular volume, higher scores indicate better performance

A. Longitudinal sub-model
  Longitudinal outcome β3

* (95% CI) pVal Intervention effect over 36 months (95% CI)

    NTB 5-item composite (Z score) 0.058 (0.023 to 0.094) 0.001 0.175 (0.069 to 0.281)

    NTB memory domain (Z score) 0.074 (0.003 to 0.145) 0.042 0.221 (0.008 to 0.434)

    NTB executive function domain (Z score) −0.006 (−0.064 to 0.052) 0.828 −0.019 (−0.193 to 0.155)

    NTB total (Z score) 0.024 (−0.019 to 0.067) 0.278 0.071 (−0.058 to 0.200)

    CDR-SB (score) −0.295 (−0.480 to −0.109) 0.002 −0.884 (−1.440 to − 0.328)

    MRI total hippocampal volume (cm3) 0.071 (0.028 to 0.115) 0.001 0.214 (0.084 to 0.344)

    MRI whole brain volume (cm3) 3.719 (0.829 to 6.609) 0.012 11.157 (2.487 to 19.827)

    MRI ventricular volume (cm3) −0.659 (−1.426 to 0.108) 0.092 −1.978 (−4.279 to 0.324)

B. Survival sub-model
  Longitudinal outcome Missing group 1: open-label medication use Missing group 2: dropout

αGr1 HR (95% CI) αGr2 HR (95% CI)

    NTB 5-item composite (Z score) −1.483 0.227 (0.164 to 0.315) 1.266 3.548 (2.332 to 5.400)

    NTB memory domain (Z score) −1.208 0.299 (0.216 to 0.414) 1.094 2.987 (2.001 to 4.459)

    NTB executive function domain (Z score) −0.711 0.491 (0.351 to 0.687) 0.444 1.559 (1.000 to 2.429)

    NTB total (Z score) −1.661 0.190 (0.123 to 0.294) 1.373 3.947 (2.250 to 6.923)

    CDR-SB (score) 0.497 1.644 (1.466 to 1.842) −0.513 0.599 (0.501 to 0.715)

    MRI total hippocampal volume (cm3) −0.530 0.588 (0.477 to 0.726) 0.532 1.703 (1.299 to 2.232)

    MRI whole brain volume (cm3) −0.002 0.998 (0.995 to 1.001) 0.000 1.000 (0.996 to 1.004)

    MRI ventricular volume (cm3) 0.013 1.013 (1.006 to 1.021) −0.010 0.990 (0.980 to 1.000)
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In this paper, we treated open-label medication use, 
following progression to dementia, and dropout as 
competing events. However, formally, these events are 
semi-competing as individuals can still progress to 
dementia after they drop out, or their dropout might 
be related to their progression to dementia. Similarly, 
as subjects who progressed to dementia are allowed to 

stay in the trial while using an open-label medication, 
they could formally still drop out. Another aspect is 
that, although different types of study dropouts were 
reported, we have chosen to combine all types of drop-
outs into one category, implicitly assuming the same 
missing data mechanisms for these different types of 
dropouts.

Fig. 5  Estimated parameters for the yearly intervention effect for each outcome. Intervention effects are based on the competing risk joint model 
(CRJM), joint model (JM), and mixed model (MM). Error bars are the corresponding 95% CI. *In Soininen et al., the resulting estimated changes 
over the 36-month period were presented
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Limitations
In this paper, we used a competing risk joint model to 
deal with the missing data. Although such a method 
can still provide unbiased estimates when there are 
different, potentially outcome-dependent causes of 
missing data, it also comes with extra challenges and 
modeling choices. Compared to mixed models, which 
are the traditional statistical models for longitudinal 
data, competing risk joint models require the specifi-
cation of the survival sub-models and the choice of an 
appropriate association structure. Misspecification in 
any part of the model could affect the (accuracy of the) 
derived estimates. In particular, the association struc-
ture’s choice is not always self-evident or challenging to 
make a priori, while it may substantially influence the 
derived results.

Conclusion
Missing data is a common problem in follow-up studies. 
Based on the observed data alone, it is impossible to tell 
how the missingness is associated with the observed and 
unobserved data. Therefore, it is important to carefully 
explore the effect of departures from the assumptions 
about missingness made in the main analysis by perform-
ing sensitivity analyses. In this paper, we have shown how 
one could perform such a sensitivity analysis using joint 
models and competing risk joint models.
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