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Abstract

Background: Single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies only explain
part of the heritability of Alzheimer’s disease (AD). Epistasis has been considered as one of the main causes of
“missing heritability” in AD.

Methods: We performed genome-wide epistasis screening (N = 10,389) for the clinical diagnosis of AD using three
popularly adopted methods. Subsequent analyses were performed to eliminate spurious associations caused by
possible confounding factors. Then, candidate genetic interactions were examined for their co-expression in the
brains of AD patients and analyzed for their association with intermediate AD phenotypes. Moreover, a new
approach was developed to compile the epistasis risk factors into an epistasis risk score (ERS) based on multifactor
dimensional reduction. Two independent datasets were used to evaluate the feasibility of ERSs in AD risk
prediction.

Results: We identified 2 candidate genetic interactions with PFDR < 0.05 (RAMP3-SEMA3A and NSMCE1-DGKE/
C17orf67) and another 5 genetic interactions with PFDR < 0.1. Co-expression between the identified interactions
supported the existence of possible biological interactions underlying the observed statistical significance. Further
association of candidate interactions with intermediate phenotypes helps explain the mechanisms of
neuropathological alterations involved in AD. Importantly, we found that ERSs can identify high-risk individuals
showing earlier onset of AD. Combined risk scores of SNPs and SNP-SNP interactions showed slightly but steadily
increased AUC in predicting the clinical status of AD.

Conclusions: In summary, we performed a genome-wide epistasis analysis to identify novel genetic interactions
potentially implicated in AD. We found that ERS can serve as an indicator of the genetic risk of AD.
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Background
Alzheimer’s disease (AD) is a chronic neurodegenerative
disease that is characterized by the extracellular depos-
ition of beta-amyloid and the intracellular accumulation
of phosphorylated tau protein. AD is the most common
cause of dementia in elderly people, with an incidence
rate of approximately 1.5% among people over 65 years
old and nearly 50% among people over 90 years old [1].
Unlike early-onset AD, which is often caused by muta-
tions in APP, PSEN1, or PSEN2 [2], late-onset AD
(LOAD), the most common form of AD, exhibits a more
complex genetic mechanism. Apolipoprotein ε4 allele
(APOE4) is the only common high-risk genetic variant
associated with LOAD, and previous large-scale
genome-wide association studies (GWASs) have identi-
fied dozens of loci with small effects [3–5], suggesting
that a large portion of the genetic components of LOAD
remains unexplained.
It is estimated that 24–33% of the phenotypic variance

of LOAD can be explained by APOE combined with
common variants [6, 7]; this value is considerably lower
than the well-reported 58–79% of heritability estimated
from twin studies [8]. Rare variants, structural variants,
and genetic interactions are possible causes of missing
heritability in complex diseases [9]. Previous studies have
identified rare coding variants in SORL1 and ABCA7,
which can affect APP processing [10, 11]. Besides, rare
variants in PLCG2, ABI3, and TREM2 revealed the in-
volvement of microglial-mediated innate immunity in
AD [12]. In this study, we focus on the genetic interac-
tions, which refers to the combinatorial effect of one or
more variants, to help explain the missing heritability in
AD. However, there are several challenges in detecting
genetic interactions on a genome-wide scale. First, the
computational burden of testing pairwise interactions
exhaustively is heavy due to the quadratic complexity in-
volved [13]. While a typical GWAS analysis analyzes sev-
eral million SNPs, corresponding genome-wide
interaction screening needs to be performed on more
than 1 × 1014 SNP interactions, which is a prohibitive
number. Second, the detection of genetic interactions is
a typical case of a “large p, small n” problem [14]. To re-
duce the high rate of false positives caused by the astro-
nomic number of tests performed, P value thresholds
tend to be extremely conservative, while the sample size
is usually the same as in traditional GWAS analysis,
which can lead to a failure in discovering significant gen-
etic interactions. Finally, the biological interpretation of
statistical interactions is challenging, as statistical inter-
actions do not necessarily imply an interaction at the
biological level [15]. This situation is further complicated
by the problem of insufficient sample size, as samples
are stratified into the 9 cells of a 3 × 3 contingency table
instead of the 3 groups discriminated by the counts of

minor alleles in a typical GWAS analysis. The small
sample size in the cells of the 3 × 3 contingency table
could lead to invalid biological interpretations of statis-
tical interactions. Due to these limitations, only one
genome-wide interaction analysis has identified an inter-
action between rs6455128 (KHDRBS2) and rs7989332
(CRYL1) that is replicable across datasets [16]. In this
study, we limited the analysis to SNPs that are more
likely to be deleterious according to combined
annotation-dependent depletion (CADD) scoring.
Therefore, the number of tests to be performed was
scaled down. The aforementioned first and second prob-
lems of genetic interaction screening were alleviated. For
better biological interpretation of statistical interactions,
we excluded interactions with any of the cells containing
less than 3 samples in the 3 × 3 × 2 contingency table.
Furthermore, we analyzed the associations of candidate
interactions with intermediate AD pathologies, including
brain atrophy, white matter injury, and tau and amyloid
deposition.
The polygenic architecture of AD enables the construc-

tion of predictive models based on genome-wide signifi-
cant polymorphisms. A previous analysis of polygenic risk
scores (PRSs) based on 22 GWAS-identified SNPs showed
that PRSs were associated with the risk of AD and cere-
brospinal fluid β-amyloid (1-42) (Aβ1-42) [17]. Another
study showed that elevated PRSs were associated with
worse memory and a smaller hippocampus at baseline, as
well as greater longitudinal cognitive decline and clinical
progression [18, 19]. In these analyses, PRSs displayed a
significant but only moderate association with the trait of
interest. Thus, PRSs alone seemed to be insufficient to
capture the whole genetic landscape of AD. Through
identifying genetic interactions, we attempted to evaluate
the predictive capacities of epistasis risk scores as a com-
plement to traditional PRSs. The whole workflow of our
proposed analysis is displayed in Fig. 1.

Methods
Study subjects
Three independent datasets were used for genome-wide
epistasis screening. National Institute on Aging (NIA)-
LOAD (dbGaP accession: phs000168.v2.p2) study was to
identify and recruit families with two or more siblings
with the late-onset form of AD and a cohort of unre-
lated, non-demented controls similar in age and ethnic
background, and to make the samples, the clinical and
genotyping data and preliminary analyses available to
qualified investigators worldwide [20]. Genetic Alzhei-
mer’s Disease Associations (GenADA, dbGaP accession:
phs000219.v1.p1) was a multi-site collaborative study to
associate DNA sequence (allelic) variations in candidate
genes with AD [21]. The NIA Alzheimer’s Disease Cen-
ters (ADCs, dbGaP accession: phs000372.v1.p1) cohort
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consisted of autopsy-confirmed and clinically confirmed
AD cases, cognitively normal elders (CNEs) with complete
neuropathology data who were older than 60 years of age
at death and living CNEs who were documented to not
exhibit mild cognitive impairment (MCI) and were be-
tween 60 and 100 years of age at assessment [22].
Two additional independent datasets were used for the

construction and testing of PRSs. The Religious Orders
Study and the Rush Memory and Aging Project (ROS/
MAP) study were longitudinal clinical-pathologic cohort
studies of AD [23]. The diagnosis of AD for each subject
was performed by a neurologist who reviewed all avail-
able clinical data each year blinded to prior years and at
the time of death for all years blinded to all pathologic
data. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI, including phases 1, GO, and 2) was an inter-
national cooperative study conducted to investigate the
pathology of AD and to develop treatments to slow or
stop AD progression [24]. All subjects were administered
clinical evaluations at the time of enrollment by expert
physicians.

Genotyping, imputation, and sample quality control
The NIA-LOAD samples were genotyped using the Illu-
mina Human610-Quad BeadChip (Illumina, Inc., San

Diego, CA, USA). The GenADA samples were geno-
typed using the Human Mapping 500 K Array Set (Affy-
metrix, Inc., Santa Clara, CA, USA). Samples from the
ADCs were genotyped in two batches by using either the
Human660W-Quad BeadChip or the HumanOmniEx-
press BeadChip (Illumina Inc., San Diego, CA, USA).
There were 11,896 samples with both genotyping data
and a clinical diagnosis of AD available in the three
datasets.
Individuals in the ROS/MAP cohort were genotyped

in two batches with a total sample size of 2090. The first
batch was genotyped using the Affymetrix GeneChip 6.0
(Affymetrix, Inc., Santa Clara, CA, USA) at the Broad In-
stitute’s Center for Genotyping or the Translational
Genomics Research Institute. The other batch was geno-
typed using the Illumina HumanOmniExpress platform
(Illumina, Inc., San Diego, CA, USA) at the Children’s
Hospital of Philadelphia. A total of 1550 subjects from
ADNI were genotyped with two platforms. A total of
757 individuals in ADNI1 were genotyped using the Illu-
mina Human610-Quad BeadChip (Illumina, Inc., San
Diego, CA, USA). A total of 793 ADNIGO/2 subjects
were genotyped using the HumanOmniExpress Bead-
Chip (Illumina Inc., San Diego, CA, USA).
All datasets were phased using Eagle (v2.4.1) [25] and

imputed using Minimac3 [26]. Genotyping data were first
aligned to the human GRCh37/hg19 assembly using
UCSC’s liftOver tool [27]. Then, allele filtering and imput-
ation were carried out as described in a previous study
[28] with 1000 Genomes Phase3 integrated haplotypes as
the reference panel [29]. Imputed variants with an imput-
ation quality statistic (R2) below 0.3 were discarded.
Only individuals of European descent were selected for

further analysis using GRAF-pop [30]. We excluded
samples with a genotype missing rate > 0.2 or heterozy-
gosity rate ± 3 standard deviations from the mean. We
removed individuals with discordant sex information be-
tween the input dataset and those imputed from X
chromosome inbreeding coefficients. Then, samples
from NIA-LOAD, GenADA, and ADCs were merged
into one large dataset (N = 10,389). Two batches from
ROS/MAP were merged into one dataset (N = 2079).
The ADNI1/GO/2 data were merged into one dataset,
which will hereafter be referred to as the ADNI dataset
(N = 1419). After sample quality control, 10,389 individ-
uals were kept in the discovery dataset consisted of
NIA-LOAD, GenADA, and ADCs (Table 1). For ROS/
MAP, of 2090 individuals, 2079 were kept for further
analysis (Table 2). For ADNI, of 1550 individuals, 1419
were kept for further analysis (Table 2).

SNP selection and quality control
We selected SNPs that were more likely to be deleteri-
ous based on combined annotation-dependent depletion

Fig. 1 The workflow of our genetic interaction screening and
validation procedures. AD, Alzheimer’s disease; BOOST, Boolean
operation-based screening and testing; ADNI: the Alzheimer’s
Disease Neuroimaging Initiative; dbGaP, the database of Genotypes
and Phenotypes; PRS, polygenic risk score; ROSMAP: the Religious
Orders Study and the Rush Memory and Aging Project; SNP, single
nucleotide polymorphism
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(CADD) scores [31]. After imputation, only SNPs that
were located within 5 kb of any protein-coding gene with
a CADD score ≥ 15 were retained for further analysis.
Furthermore, calls with an uncertainty greater than 0.2
or import dosage certainty smaller than 0.8 were treated
as missing using PLINK (v1.90b4.10) [32]. Then, SNPs
with a missing rate > 0.1, minor allele frequency < 0.05,
or Hardy-Weinberg equilibrium test value of P < 1 ×
10−6 were removed. Ultimately, 36,860 SNPs passed the
filtering and quality control processes.

AD pathologies and neuroimaging
Intermediate phenotypes such as AD pathologies and
neuroimaging data can help understand how the identi-
fied genetic interactions work. Subsets of samples from
ROS/MAP and ADNI have AD pathologies and neuro-
imaging data available. In ROS/MAP, immunohisto-
chemistry and automated image processing were used
for the measurement of total amyloid and paired helical
filament tau (PHF-tau). A modified Bielschowsky silver
staining technique was used to measure neuritic plaques,
diffuse plaques, and neurofibrillary tangles. Among 2079
subjects in ROS/MAP, at the time of these analyses,
1310 had available measurements of neurofibrillary tan-
gles, neuritic plaques, and diffuse plaques; 1279 had
available total PHF-tau measurements; and 1270 had

available total amyloid measurements. In ADNI, cere-
brospinal fluid (CSF) total tau (T-tau), phosphorylated
tau (P-tau), and β-amyloid (1-42) (Aβ1-42) levels were
measured via electrochemiluminescence immunoassays.
Among 1419 individuals in the ADNI cohort, 1043 had
available CSF T-tau, CSF P-tau, and CSF Aβ1–42 mea-
surements. Molecular and structural neuroimaging data
were also available for a subset of ADNI individuals.
Structural magnetic resonance imaging was employed to
generate estimates of the entorhinal cortex and hippo-
campal volume for 782 individuals. Fractional anisotropy
(FA) for five bilateral fronto-temporal-occipital and in-
terhemispheric white matter tracts (the sagittal stratum,
hippocampal segment of the cingulum bundle, splenium
of the corpus callosum, inferior fronto-occipital fascic-
ulus, and superior longitudinal fasciculus) was estimated
from diffusion-weighted images for 188 subjects.

Association and interaction analysis
Association analysis was used to evaluate the main ef-
fects of selected SNPs. A linear mixed model [33] was
employed to detect the association between SNPs and
the AD status with sex, age, imputation batch, and the
first three principal components as covariates. The dis-
covery dataset consisted of data from three studies
(NIA-LOAD, GenADA, and ADCs) in four batches. To

Table 1 Characteristics of study participants (N = 10,389) after QC of genetic data

Cohort AD Non-AD

N Age, years (SD) Sex (F/M) N Age, years (SD) Sex (F/M)

NIA-LOAD 1832 76.14 (7.10) 650 M, 1182 F 1986 76.38 (8.55) 790 M, 1196 F

GenADA 805 78.04 (8.60) 340 M, 465 F 779 73.41 (7.92) 278 M, 501 F

ADCs 3516 72.00 (9.27) 1655 M, 1861 F 1471 75.90 (9.56) 542 M, 929 F

Total 6153 74.02 (8.92) 2645 M, 3508 F 4236 75.43 (8.96) 1610 M, 2626 F

NIA-LOAD, National Institute of Aging-Late Onset Alzheimer’s Disease; GenADA, Genetic Alzheimer’s Disease Associations; ADCs, Alzheimer’s Disease Centers; AD,
Alzheimer’s disease; F, female; M, male; SD, standard deviation

Table 2 Characteristics of study participants from ROS/MAP (N = 2079) and ADNI1/GO/2 (N = 1419) after QC of genetic data

ROS/MAP AD (n = 564) Non-ADa (n = 1515) Diff (P)b

Sex (F/M) 388 F, 176 M 1060 F, 455 M 0.63

Age at death, years (SD) 90.92 (5.88) 88.10 (6.73) < 0.0001

APOE ε4 status (−/+) − 378, + 186 (0.33) − 1226, + 289 (0.19) < 0.0001

ADNI AD (n = 555) Non-AD (n = 864) Diff (P)b

Sex (F/M) 231 F, 324 M 372 F, 492 M 0.62

Age at AD, years (SD) 74.78 (8.11) 77.49 (7.33) < 0.0001

APOE ε4 status (−/+) −201, + 354 (0.64) − 568, + 296 (0.34) < 0.0001

ROS/MAP, The Religious Orders Study/the Rush Memory and Aging Project; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AD, Alzheimer’s disease; Diff, the
statistical difference between AD and non-AD; F, female; M, male; SD, standard deviation; Age at AD, age when AD developed for AD patients or age at last valid
record for non-AD subjects; APOE ε4 status (−/+), presence of the ε4 allele
aNon-AD in ROS/MAP includes 713 individuals with missing AD status
bP values are calculated by Fisher’s exact tests (for sex and APOE ε4 status) or two-sample t tests (for age at death, age at AD)
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avoid multicollinearity, only three dummy variables for
four batches were used as covariates.
We employed three widely used models to test for sig-

nificant genetic interactions in AD. The first method
uses logistic regression models by including an add-
itional interaction term [32]. The other two methods are
faster in scanning for epistasis based on the inspection
of 3 × 3 joint genotype count tables. Boolean operation-
based testing and screening (BOOST) allows the use of
fast logic (bitwise) operations to obtain contingency ta-
bles [34]. Joint-effect tests maintain correct type 1 error
rates under the null hypothesis [35]. For logistic regres-
sion, BOOST, and joint-effects, SNP pairs with fewer
than 3 observations in any 3 × 3 × 2 contingency table
cell (cases and controls were considered separately) were
removed from the analysis, resulting in 392,241,651 valid
tests being performed. Multiple-testing correction for
statistical tests across the three methods was conducted
using false discovery rate (FDR). Post hoc analysis was
performed using a genotypic test [36] adjusting for sex,
age, imputation batches, and the first three principal
components to ensure that these potential confounders
had not caused any observed association. Then, linkage
disequilibrium (LD) between each pair of genetic inter-
action was measured by R2. Genetic interactions with an
LD > 0.2 were removed from further analysis.
The associations of candidate interactions with AD

pathologies and neuroimaging phenotypes were analyzed
using the same genotypic test [36] adjusted for sex, age,
imputation batches, and the first three principal
components.

eQTL analysis and gene co-expression
Genetic interactions were further examined by eQTL
and co-expression analysis. For eQTL analysis, data
were obtained and analyzed using the Genotype-
Tissue Expression (GTEx) web platform [37]. For co-
expression analysis, SNPs were mapped to the nearest
genes within a distance of 5 kb. RNA-Seq data were
obtained from samples of the gray matter of the
dorsolateral prefrontal cortex of 724 subjects from the
ROS/MAP cohorts. These samples were quantified by
using a Nanodrop spectrophotometer, and their qual-
ity was evaluated with an Agilent Bioanalyzer (Agilent
Technologies, Inc., Santa Clara, CA, USA). A total of
582 RNA-Seq samples met the quality (Bioanalyzer
RNA integrity (RIN) score > 5) and quantity (5 μg)
thresholds. Then, the RNA-Seq data were processed
via a parallelized automatic pipeline. The FPKMs were
quantile normalized, and potential batch effects were
removed by using the combat package in R. Pairwise
correlations for gene co-expression were measured
with the Pearson correlation coefficient.

Definition of epistasis risk scores and combined risk
scores
PRSs have been used to inform the disease risk of a pa-
tient for the early prevention of the disease [17, 38].
Given a set of SNPs, PRSs are derived by multiplying the
number of risk alleles for each SNP by the natural loga-
rithm of their respective odds ratios (ORs) and summing
these products for each subject [39]. For the jth individ-
ual, the PRS is defined by:

PRS j ¼
X

i

Gij � Ei

N j

where Ei is the effect size for the ith SNP, Gij is the num-
ber of effective alleles observed for the ith SNP of jth in-
dividual, and Nj is the number of SNPs included in the
PRS for the jth individual.
For risk scores defined by epistasis, there is no readily

available definition from previous publications. Inspired
by an epistasis analysis framework called multifactor di-
mensionality reduction (MDR) [40, 41], we define the
epistasis risk score (ERS) for the jth individual as:

ERS j ¼
X

i

X9

k¼1

CikEik

N j

where Cik equals to 1 if the jth individual was assigned to
the kth cell of the 3 × 3 genotype contingency table for
the ith interaction. Otherwise, Cik equals to 0. Eik is the
effect size (natural logarithm of OR) of the kth cell of
3 × 3 genotype contingency table for the ith interaction.
Nj is the number of interactions included in the ERS for
the jth individual.
The combined risk score (CRS) of SNPs and SNP-SNP

interactions for the jth individual is defined as:

CRS j ¼ w� PRS j þ 1 −wð Þ � ERS j

where w is a weighting factor for PRS and ERS. To avoid
using an arbitrary w, for individuals from ADNI, we se-
lected w that maximized the AUC of CRSs in ROS/
MAP. Likewise, we selected w that maximized the AUC
of CRSs in ADNI for individuals from ROS/MAP.

Evaluation of AD risk using genetic interactions
We constructed several sets of risk scores to evaluate
the contribution of epistasis to disease risk. For PRSs,
APOE (rs7412 and rs429358) and 20 common SNPs
identified by a previous GWAS [5] were included in the
analysis. The effect size of each SNP was also obtained
from the same study [5]. For ERSs, the effect size (nat-
ural logarithm of odds ratio) of each cell in the 3 × 3
genotype contingency table for each genetic interaction
was obtained on the discovery data (N = 10,389). Based
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on P value cutoff of 1 × 10−7, 1 × 10−6, or 1 × 10−5, three
sets of ERSs were constructed. Moreover, the pre-
dictive power of each nominal significant genetic
interaction (P < 1 × 10−5) was evaluated via a permu-
tation test. For each genetic interaction, an MDR
model [41] was trained using the discovery data.
Based on the MDR model, predictions of AD status
were given for each genetic interaction on the two
testing datasets, i.e., ROS/MAP and ADNI. The pre-
dictions for each interaction were permuted for 10,
000 times in each testing dataset to generate a null
distribution of random predictions. Based on the
null distribution, we selected 77 interactions that
showed non-random effects (P < 0.05) in both
ROS/MAP and ADNI.
To evaluate whether the genetic risk scores were asso-

ciated with age at onset of AD, we divided samples into
4 quantiles based on the corresponding genetic risk
scores. The age at onset of AD in each quantile was ana-
lyzed with the Kaplan-Meier method, where patients
were censored at the last record entry. The differences
in the age at onset of AD in 4 quantiles were compared
statistically using the log-rank test. Furthermore, the re-
ceiver operating characteristic (ROC) curves were gener-
ated by plotting the true-positive rate against the false-
positive rate. Then, the area under the ROC curve
(AUC) was calculated for each ROC curve to quantify
the prediction accuracy of each type of genetic risk
score.

Results
Genome-wide epistasis screening
First, we analyzed the main effect for each SNP using
traditional genome-wide association analysis (GWAS).
No genomic inflation was observed on the Q-Q plot
(Figure S1). One genome-wide significant signal ap-
peared nearby APOE on chromosome 19 (Figure S1).
Epistasis screening for the clinical diagnosis of AD was
carried out using three different methods. Under the
BOOST model, a total of 16,486 SNP-SNP interactions
(Table S1) were retained under a nominal P threshold of
1 × 10−5 For logistic regression and joint-effect tests, 11,
239 and 10,024 SNP-SNP interactions (Tables S2 and
S3) were retained under a nominal P threshold of 1 ×
10−5, respectively. Overall, there were 28,633 SNP-SNP
interactions identified by three methods (Fig. 2a). The
SNP-SNP interactions obtained via different methods
showed distinct results, with a higher overlap between
logistic regression and joint effect tests (Fig. 2b).
Two significant SNP-SNP interactions were identified

(PFDR < 0.05) by logistic regression. The first interaction
was between rs6952399 (chr7: 45210711, RAMP3: intron
variant) and rs6974494 (chr7: 83743961, SEMA3A: in-
tron variant). The other was between rs17856580 (chr16:
27246617, NSMCE1: missense variant) and rs1048159
(chr17: 54912339, DGKE: synonymous variant, C17orf67:
upstream variant). Under a less conservative PFDR of 0.1,
the interaction between rs2164808 (chr2: 25377176,
EFR3B: stop gained, RP11-509E16.1: upstream variant)

Fig. 2 Genetic interactions identified by the three adopted methods. a Interactions with P value smaller than 1 × 10−8 are shown. Interactions
within the same chromosome are marked in red. The histogram shows the interaction density. b There are 1139 common genetic interactions
identified by all three methods (P < 1 × 10 −5). Genetic interactions identified by BOOST are often different from the other two methods
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and rs354709 (chr2:143886953, ARHGAP15: intron vari-
ant) was the only genetic interaction identified by
BOOST. Five genetic interactions (PFDR < 0.1) were
identified by joint effect analysis, including rs6952399-
rs6974494 which was also identified by logistic regres-
sion. No main effects were observed for these genetic in-
teractions with an PFDR < 0.1, except a nominal
significant signal (P = 0.017) for rs2301600 in rs4574537-
rs2301600. Interactions (PFDR < 0.1) identified by three
methods were displayed in Table 3.

Transcription analysis of candidate interactions
The expression levels of genes that interact with each
other are likely to be positively or negatively correlated
[42]. Combining the interaction pattern with co-
expression and eQTL analysis, we can gain biological
insight beyond the statistical significance. Visualization
of the genetic interaction showed that rs6952399G-
rs6974494TT carriers displayed a higher risk of develop-
ing AD (Fig. 3). Based on eQTL analysis, rs6952399G

carrier showed a higher expression of RAMP3 (P = 2.4 ×
10−6), and rs6974494T carrier showed a lower expression
of SEMA3A (P = 1.6 × 10−5). Therefore, it is likely that
the upregulation of RAMP3 expression combined with
the downregulation of SEMA3A confers a higher risk of
AD (Fig. 3). This assumption is further supported by the
fact that RAMP3 and SEMA3A showed negative co-
expression in the brain (R = − 0.29). Moreover, RAMP3
and SEMA3A demonstrated higher negative correlation
in AD patients (R = − 0.33) compared to cognitive nor-
mal controls (R = − 0.24).
The seven SNP-SNP interactions identified by the

three models correspond to nine gene-gene interactions,
five of which showed significant co-expression. Besides
the co-expression between RAMP3 and SEMA3A, a
negative correlation has been observed between NSMC

E1 and DGKE/C17orf67 and between ARHGAP15 and
EFR3B/RP11-509E16.1 as well (Table S4). Statistical
epistasis often lacks biological interpretation. Here, we
provide the visualization of genetic interactions (Fig. 3,
Figure S2) together with the results of co-expression and
eQTL analysis (Table S4) to facilitate biological inter-
pretation of statistical significance.

Candidate interactions and AD neuropathology
To investigate the biological mechanism of the identified
genetic interactions, we tested the associations of these
interactions (PFDR < 0.1) with intermediate AD pheno-
types including Aβ and tau protein levels, brain atrophy,
and white matter injury. None of the candidate genetic
interactions displayed a significant association with the
entorhinal cortex or hippocampal volume. One inter-
action, between rs8580 (chr7: 44620836, TMED4: syn-
onymous variant) and rs8004063 (chr14: 23732479,
C14orf164: intron variant), demonstrated significant as-
sociation with neurite plaques in the entorhinal cortex
(P = 0.019). Due to linkage disequilibrium between
rs217362 and rs8580, the rs217362-rs8004063 inter-
action also manifested a significant association with
neurite plaques in the entorhinal cortex (P = 0.023).
TMED4 belongs to p24 family proteins, which are
mainly involved in vesicular protein trafficking and are
likely to promote neuritic plaque formation in AD [43].
C14orf164 is an important paralog of RNF212 which can
encode an E3 enzyme in the ubiquitin proteasome sys-
tem whose dysfunction could lead to Aβ accumulation
[44, 45]. Their molecular function supports that the
interaction may act through the trafficking and process-
ing of APP in AD pathogenesis.
White matter (WM) fractional anisotropy (FA) is

thought to be related to WM integrity, and a decline in
FA is often used as an index of decreasing WM health.

Table 3 Significant genetic interactions with a false discovery rate (FDR) < 0.1

SNP1 Chr_1 Position_1a SNP2 Chr_2 Position_2a P FDR Gene_1 Gene_2

Genetic interaction identified by BOOST

rs354709 2 143886953 rs2164808 2 25377176 1.47E−10 0.058 ARHGAP15 EFR3B; RP11-509E16.1

Genetic interactions identified by logistic regression

rs6952399 7 45210711 rs6974494 7 83743961 1.88E−10 0.048 RAMP3 SEMA3A

rs17856580 16 27246617 rs1048159 17 54912339 2.43E−10 0.048 NSMCE1 DGKE; C17orf67

Genetic interactions identified by joint effect

rs6952399 7 45210711 rs6974494 7 83743961 5.08E−10 0.076 RAMP3 SEMA3A

rs217362 7 44618599 rs8004063 14 23732479 7.61E−10 0.076 DDX56; TMED4 C14orf164; RNU6-1046P

rs4574537 5 137419728 rs2301600 19 35786868 7.70E−10 0.076 WNT8A MAG

rs2075302 2 163076146 rs374479 5 80998915 8.03E−10 0.076 FAP SSBP2

rs8580 7 44620836 rs8004063 14 23732479 9.70E−10 0.076 TMED4 C14orf164; RNU6-1046P

Chr_1, chromosome of SNP1; Gene_1, genes within 5 kb of SNP1; Chr_2, chromosome of SNP2; Gene_2, genes within 5 kb of SNP2;
aSNP positions were in build 37, assembly hg19
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The interaction between rs2164808 (chr2: 25377176,
EFR3B: stop gained, RP11-509E16.1: upstream variant)
and rs354709 (chr2: 143886953, ARHGAP15: intron vari-
ant) showed significant associations (left P = 0.046, right
P = 0.023) with FA estimates in the splenium of the cor-
pus callosum. EFR3B and phosphatidylinositol 4-kinase
alpha (PI4KA) forms a protein complex that plays an im-
portant role in the myelination process via actin dynam-
ics [46]. Interestingly, ARHGAP15, which is a Rac-
specific negative regulator, is also heavily involved in
actin cytoskeleton dynamics [47], suggesting that its
interaction with EFR3B affects WM health in AD pa-
tients through regulating myelination in axons.

Epistasis risk scores in AD
The polygenic basis of LOAD can be harnessed to iden-
tify individuals at risk for cognitive decline. Previously,
PRSs were inferred from the cumulated effects of each
disease-associated SNP. We investigated whether ERSs
that were inferred from the summed effects of each
disease-associated SNP-SNP interactions could serve as
an indicator of disease risk. After removing redundant
genetic interactions due to LD, 19,264 of 28,633 genetic

interactions with P < 1 × 10−5 were kept for ERS analysis.
ERSs were constructed based on three different P value
thresholds: P < 1 × 10−7 (298 interactions), P < 1 × 10−6

(2478 interactions), and P < 1 × 10−5 (19,264
interactions).
We evaluated if individuals with higher ERSs had a

higher risk of AD, therefore, had onset of AD at an earl-
ier age. It was shown that ERSs constructed from genetic
interactions with P < 1 × 10−7 could not identify high-
risk individuals from low-risk individuals in either ADNI
or ROS/MAP (Fig. 4a; Figure S3). This may arise from
the fact that SNPs or SNP-SNP interactions identified
from association analysis often had a very small effect
size. Adding more genetic interactions (e.g., 2478 inter-
actions or 19,264 interactions) gradually increased the
power of ERSs to stratify high risk individuals from low
risk individuals (log-rank test P < 0.0001, Fig. 4b; log-
rank test P = 0.0044, Fig. 4c; Figure S3). Thus, we dem-
onstrated that ERS could serve as an indicator of the
genetic risk of AD (Fig. 4; Figure S3). The same conclu-
sion still held true when samples from ROS/MAP were
used (Figure S3). Furthermore, we evaluated if the pre-
dictive power of ERSs was due to SNPs that have a main

Fig. 3 Visualization of rs6952399-rs6974494 interaction. The ratio of case and control in each cell is shown. Cells with significantly higher cases
than controls by fisher’s exact test are marked red. The counted allele for rs6952399 is G. The counted allele for rs6974494 is C
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effect in AD. We found that ERSs still demonstrated the
power to stratify high-risk individuals from low-risk in-
dividuals, after removing interactions that contained any
main effect SNP (P < 0.05) (Figure S4).

Combined risk scores of SNPs and SNP-SNP interactions
We evaluated if combined risk scores (CRS) of SNPs
(defining PRS) and SNP-SNP interactions (defining ERS)
could be a better indicator of AD risk. PRSs and ERSs
showed an AUC of 0.66 and 0.56, respectively (Fig. 4d).
When ERSs consisting of genetic interactions with P <
1 × 10−7, 1 × 10−6, or 1 × 10−5 were combined with PRSs
for the construction of CRSs, the AUC of CRSs showed
a non-significant but steady increase up to 0.67 (Fig. 4d).
The similar non-significant but steady increase of AUC
for CRSs obtained using different P value thresholds

were also detected using individuals from ROS/MAP
(Figure S3).
We evaluated the correlation between CRSs derived

from genetic interactions with P < 1 × 10−5 and CSF
markers of AD. It was found that CRSs displayed a
strong negative correlation with CSF β-amyloid (1–42)
(R = − 0.40, P = 1.8 × 10−35) and a strong positive correl-
ation with CSF total tau (R = 0.24, P = 2.2 × 10−15) and
CSF phosphorylated tau (R = 0.27, P = 2.1 × 10−19) (Fig. 5).
Interestingly, CRSs showed much stronger correlation
with CSF total tau (AD: R = 0.088, P = 0.082; non-AD:
R = 0.19, P = 5.8 × 10−7) and CSF phosphorylated tau
(AD: R = 0.12, P = 0.018; non-AD: R = 0.23, P = 2.3 ×
10−9) in cognitive normal controls than in AD patients
(Fig. 5b, c). However, a higher correlation between CRSs
and CSF β-amyloid (1–42) (AD: R = − 0.41, P = 8.4 ×
10−17; non-AD: R = − 0.35, P = 7.1 × 10−20) was observed

Fig. 4 Performance of epistasis risk scores (ERSs), polygenic risk scores (PRSs), and combined risk scores (CRSs) in AD risk prediction using samples
from ADNI. Samples were divided into four quantiles (Q1 to Q4: from the lowest risk to the highest risk) based on their ERSs. The probability of
developing AD was analyzed by the Kaplan-Meier method, where the P value was obtained by the log-rank test. ERSs were obtained via
interactions with a P < 1 × 10−7 (298 interactions), b P < 1 × 10−6 (2478 interaction), or c P < 1 × 10−5 (19,264 interactions). d Comparison of AUCs
of ERSs, PRSs, and CRSs in identifying AD patients. ERS_1e-5: ERSs constructed by genetic interactions with P value smaller than 1 × 10−5;
PRS_GWAS: PRSs constructed by APOE (rs7412 and rs429358) and 20 SNPs identified by previous GWAS; CRS_1e-7, CRS_1e-6, CRS_1e-5: combined
risk score of SNPs and SNP-SNP interactions with P value smaller than 1 × 10−7, 1 × 10−6, or 1 × 10−5; CRS_selected: similar to CRS_1e-5, except
that only 77 genetic interactions showing non-random effects in ROS/MAP and ADNI were included
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in AD patients (Fig. 5a). This also held true when PRSs
were used in the correlation analysis (Figure S5). These
results strongly suggest that tau may act in the earlier
stage of AD as high-risk individuals showed faster accu-
mulation of CSF tau when they still displayed normal
cognitive status.
It should be noted that CRSs did not display a higher cor-

relation with CSF markers compared with PRSs (Fig. 5; Fig-
ure S5). A previous study has discovered that APOE
contributed mostly to amyloid accumulation and other SNPs
only affected the risk of further conversion to AD [48]. The
present analysis also reveals that genetic interactions affected
the risk of AD rather than pathological markers.
Furthermore, we selected interactions that demon-

strated the power to predict the risk of AD by itself
alone (Methods). From 19,264 interactions with P < 1 ×
10−5, 77 interactions that displayed predictive effects in
both ROS/MAP and ADNI were selected. Combined risk
scores of SNPs and these 77 interactions performed
much better in predicting the clinical status of AD
(ADNI: AUC = 0.71, Fig. 4d; ROSMAP: AUC = 0.69, Fig-
ure S3). However, because the testing datasets (ADNI
and ROS/MAP) were used for selection, the prediction
accuracy of this subset of interactions should be inter-
preted with caution. Their effects on risk prediction
need to be evaluated when a new dataset is available.
Overall, they represented a subset of SNP-SNP interac-
tions, each of which alone demonstrated predictive cap-
acity across our discovery and testing data. The full list
of the selected interactions is shown in Table S5.

Discussion
To help explain the missing heritability in AD, we per-
formed a genome-wide interaction analysis of AD. There

were seven candidate genetic interactions (PFDR < 0.1)
identified using the three most popularly adopted
methods. Previous reports supported possible functional
convergence between pairs of genes identified by our
analysis, such as RAMP3-SEMA3A and NSMCE1-DGKE.
It was reported that RAMP3, a component of amylin
receptor-3, could induce cell death via neurotoxic ac-
tions of Aβ [49]. Semaphoring 3A (Sema3A) could bind
to nonamyloidogenic sAPPα which would prevent the
collapse of axonal growth cones induced by Sema3A
[50]. Consequently, biological interaction between
RAMP3 and Sema3A is likely to be involved in the neu-
rodegeneration process of AD. For NSMCE1 and DGKε,
there may exist direct physical interaction between them,
as two independent studies have uncovered the exact
same ubiquitination site at lysine 357 in human DGKε
[51, 52]. NSMCE1 is a RING-type zinc finger-containing
E3 ubiquitin ligase that assembles with melanoma anti-
gen protein to catalyze the direct transfer of ubiquitin
from E2 ubiquitin-conjugating enzyme to a specific sub-
strate. DGKε is a membrane-bound diacylglycerol kinase
that converts diacylglycerol into phosphatidic acid.
Moreover, we visualized the 3 × 3 contingency table of

each interaction (Fig. 3; Figure S2). We attempted to
combine the observed interaction pattern with the gene
expression pattern (i.e., co-expression and eQTL) to
infer the mechanism of action of each interaction. In this
way, we found that the higher expression of RAMP3
combined with the lower expression of SEMA3A con-
ferred a higher risk of AD. Then, we related candidate
interactions with intermediate phenotypes in AD such as
Aβ and tau levels, brain atrophy, and FA estimates to
help understand the biological consequences of the stat-
istical significance. The association between TMED4-

Fig. 5 Associations between CRSs_1e-5 (combined risk scores constructed by genetic interactions with P < 1 × 10−5) and Alzheimer’s disease
pathologies. a CRSs were negatively correlated with CSF Aβ1–42 (AD (n = 388): R = −0.41, P = 8.4 × 10−17; non-AD (n = 655): R = − 0.35, P = 7.1 ×
10−20). b CRSs showed a positive correlation with CSF total tau (AD (n = 388): R = 0.088, P = 0.082; non-AD (n = 655): R = 0.19, P = 5.8 × 10−7). c CRSs
showed a positive correlation with phosphorylated tau (AD (n = 388): R = 0.12, P = 0.018; non-AD (n = 655): R = 0.23, P = 2.3 × 10−9)
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C14orf164 and neurite plaques in the entorhinal cortex
indicates that ubiquitination may play an important role
in Aβ accumulation, as C14orf164 is an important para-
log of RNF212 which can encode an E3 enzyme in the
ubiquitin proteasome.
Epistasis has never been used in the construction of

genetic risk scores. Here, we demonstrated that ERSs
were able to discriminate high-risk individuals that were
more likely to develop AD (Fig. 4; Figure S3). Then,
combined risk scores of SNP and SNP-SNP interactions
showed slightly but steadily increased AUC in predicting
the clinical status of AD (Fig. 4d). Additionally, we se-
lected a subset of 77 genetic interactions that showed
non-random effects in both ROS/MAP and ADNI. It
was shown that combined risk scores including the 77
interactions performed better in predicting the clinical
status of AD than using all the genetic interactions with
P < 1 × 10−5 (Fig. 4d; Figure S3). This indicated the possi-
bility of combining PRSs and ERSs as potential bio-
markers of AD. However, further evaluation of the
selected interactions on new datasets is needed.
Altogether, we demonstrated that ERS is a promising
complement to traditional PRS in practical application.

Limitations
To reduce the search space, we only analyzed SNPs with
a CADD score ≥ 15 that were more likely to be causative.
However, it is still possible for two non-deleterious SNPs
to be disease-causing variants when there is a genetic
interaction between them. In that case, faster tests are
needed to test the interactions between millions of
SNPs. Moreover, tests for interactions are complicated
by the fact that samples are stratified by the 3 × 3 geno-
type contingency table. Therefore, cells with very small
sample sizes are likely to induce false positives in the test
results. We try to avoid this issue by removing pairs that
show few samples in any cells of the 3 × 3 genotype con-
tingency table. Thus, we are likely to have removed
some rare allele pairs that might interact with each
other. Overall, the predictive power of our model was
based on a selected subset of deleterious common vari-
ants; further improvement may be expected when non-
deleterious or rare variants could be incorporated.
Moreover, we simply combined PRSs and ERSs by a

weighting factor. There may be a more complicated rela-
tionship between the additive effects of single SNPs and
genetic interactions. The development of a better inte-
grated model that can account for both main effects and
epistasis would further increase the prediction accuracy
of the genetic risk score.

Conclusions
In conclusion, through a genome-wide epistasis analysis,
we identified a number of genetic interactions that are

often co-expressed and can partly explain the “missing
heritability” in AD. Subsequent analysis revealed possible
links between these genetic interactions and pathological
endophenotypes. Furthermore, it was demonstrated that
ERSs can identify high-risk individuals showing earlier
onset of AD. Combined risk scores of SNPs and SNP-
SNP interactions showed slightly but steadily increased
AUC in predicting the clinical status of AD.
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