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Abstract

Background: Whether in the context of monitoring disease progression or in assessing the effects of interventions,
a major challenge in dementia research is determining when an individual has undergone meaningful change in
symptoms and other relevant outcomes such as cognitive test performance. The challenge lies in differentiating
genuine improvement or deterioration from change in scores due to random and systematic error.

Body: In this review, we discuss the advantages and limitations of available methods for assessing individual-level
change in the context of key challenges, including imperfect and differential reliability of scores, and practice
effects. We discuss indices of reliable change and the use of composite and item response theory (IRT) scores.

Conclusion: We conclude that IRT-based approaches hold particular promise because they have the flexibility to
accommodate solutions to a wide range of issues that influence the accuracy of judgements of meaningful change.
We close by discussing the practical implications of adopting IRT-based approaches.
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Introduction
Dementia is a major public health concern, expected to
only increase in importance with the estimated 35.6 mil-
lion people living with dementia in 2010 projected to
double by 2030 [1]. Determining whether an individual
has undergone meaningful change in symptoms over
time is a core task in dementia research and clinical
practice; however, it is also subject to a number of chal-
lenges. These include differentiating meaningful change
from change due to measurement error, practice effects,
and other sources of bias and imprecision. In this review,
we discuss the various methods that have been proposed
to address these challenges. We highlight their strengths
and weaknesses and provide recommendations for best
practices and future research.

The importance of measuring change in dementia
Determining when and for whom meaningful changes in
symptoms have occurred is a key task in dementias and
ageing research and in clinical practice. Evidence that
meaningful cognitive decline has occurred is central in
the diagnosis of dementia and mild cognitive impair-
ment (MCI [2]). Though traditionally inferred based on
estimates of premorbid functioning, clinicians are now
increasingly utilising repeated assessments to determine
whether an individual’s decline over time represents a
steeper trajectory than would be expected as part of the
normal ageing process [3]. Similarly, identifying when
meaningful change has occurred is important for track-
ing the progression of disease over time and for predict-
ing who will develop dementia in the future. It can thus
also contribute to provision and care planning [4, 5].
Establishing when meaningful individual-level change

has occurred is also necessary in the context of evaluat-
ing interventions for dementia, as well as for supporting
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healthy ageing more broadly. Recent decades have seen
considerable efforts invested in developing and evaluat-
ing treatments for dementia and its sequelae [6, 7]. Data
from randomised controlled trials can be analysed using
methodologies such as multi-level models with time-by-
group interaction (control versus treatment, pre- versus
post-treatment) parameters or similar methodologies
that compare changes in treatment and control condi-
tions (e.g. [8]). These statistical methodologies provide
information on whether, as a whole, treatment groups
have shown statistically significant improvements (or at-
tenuated declines) compared with control groups. While
this is valuable information regarding the efficacy of a
treatment, it does not identify whether, and which, indi-
vidual trial participants have shown meaningful change.
Demonstrating that meaningful change has occurred
at the level of individuals has been argued by several
authors to be the true measure of an intervention’s
success because statistically significant effects in
group-level statistics do not imply that any one indi-
vidual has undergone clinically meaningful change [9].
Further, examining who at the individual-level has
undergone clinically significant change provides an
entry point for exploring sources of heterogeneity in
treatment response. It may be particularly valuable in
the context of adaptive trials, which utilise informa-
tion on an ongoing basis for the purposes of maxi-
mising trial efficiency, as well as for early detection
and enrolment of participants, including those in the
prodromal phase of dementia (e.g. [10]).

Challenges in assessing meaningful change
Random measurement error
Assessing whether an individual has undergone meaningful
change is subject to a number of challenges and necessi-
tates addressing sources of both random and systematic
error. All assessments used in dementia are subject to ran-
dom measurement error with the implication that change
in scores can occur merely due to random fluctuations.
The poorer the reliability of the test, the larger the fluctua-
tions that could be expected to occur randomly and the less
certain a researcher or practitioner can be that an observed
change in scores reflects a genuine change in the ability or
symptom being measured. Further, the reliability of assess-
ments may depend on factors that vary across individuals,
including age, gender, education, ethnicity, and a person’s
level of the attribute being measured [11]. For example,
previous research has suggested that the Alzheimer’s
Disease Assessment Scale-Cognitive (ADAS-Cog), a meas-
ure widely used in clinical trials, is less reliable in mild and
moderate dementia because some respondents answer all
questions correctly, creating ceiling effects on some of its
components [12]. When an assessment demonstrates lower
reliability at higher/lower levels of functioning, the

magnitude of change required to be confident that the
change is meaningful can vary depending on an individual’s
ability level.

Practice effects
A further issue in determining meaningful change is
measurement reactivity. Measurement reactivity con-
cerns the influence of previous administration of the
same test on later measurements [13]. Practice effects
are a particularly problematic form of measurement
reactivity, especially in the context of cognitive tests.
Practice effects refer to improvements in scores (or at-
tenuated declines) over repeated administration of a test
[14]. The need to correct for practice effects would be
indicated when repeated administration of a test yields
an improvement in scores in a control group. For
example [15], found test score improvements over a
one-week test retest period in seven of nine cognitive
tests they analysed. Score improvements were greatest
for visuo-spatial memory and verbal learning tasks. Prac-
tice effects have also been shown to be present in
screening tools used as part of clinical trials for Alzhei-
mer’s disease [16]. Failing to correct for practice effects
when merited leads to an under-estimation of decline.
Like reliability, practice effects may vary by individual.

For example, individuals who are less impaired at base-
line may benefit more from practice than those who are
more impaired at baseline [17, 18], although the import-
ance of differential practice effects is debated [15].
It is worth highlighting that parallel forms of tests

(i.e. measures with different content that yield com-
parable scores) for repeated assessments have been
explored as a possible solution for practice effects
(e.g. [19]). While they have shown some success, they
do not appear to fully eliminate the effects of practice
[16, 20]. This has been attributed to the fact that
exposure to the specific content of a test is only one
factor contributing to practice effects; others may
include refining test-taking strategy or procedural
learning (e.g. [14]). Further, developing multiple paral-
lel forms for repeated assessments and ensuring their
comparability is a major challenge in its own right,
significantly increasing test development and valid-
ation demands.

Solutions to the challenges of assessing
individual-level change in dementia
Reliable change index (RCI)
The main attempts to answer the challenges of
determining meaningful individual-level change have
used a reliable change framework [9]. In this frame-
work, a statistically reliable change is considered a
prerequisite for meaningful change. Reliable change
is determined by establishing a threshold that a
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change in scores must exceed in order to be consid-
ered reliable. The threshold is selected so that an
improvement or deterioration that exceeds it would
not be expected due to occur measurement error
alone. The necessary threshold to ensure reliable
change depends on the level of random error associ-
ated with the instrument used, with lower reliability
instruments requiring larger changes to indicate sta-
tistically reliable changes. Jacobson and Truax [9]
advocated the use of reliable change index (RCI)
developed by Jacobson et al. [21] and later modified
by Christensen and Mendoza [22]. Here, a reliable
change is defined as a change exceeding:

RCI ¼ x2 − x1
SE x2 − x1ð Þ

ð1Þ

where x1 denotes a score at time 1, x2 denotes a score at
time 2, and SE(x2 − x1) is an estimate of the standard error
of the difference score x2 − x1, making RCI a standard
score. SE(x2 − x1) is calculated from the standard error of
measurement (SE):

SE x2 − x1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 SEð Þ2

q
ð2Þ

The SE in turn is calculated using an estimate of the
reliability (rxx) and standard deviation (SD) of the test
scores:

SE ¼ SD1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rxx

p ð3Þ
Based on this, an RCI is defined for a given instru-

ment as the magnitude of change necessary for a
change in scores to be considered reliable (e.g. at
p < .05). For example, suppose an individual scores 8
at time 1 and 10 at time 2. If a test had a reliability
of .90, a population standard deviation of 2 and a re-
liable change at p < .05 was desired, then the score
difference required to conclude that a reliable change
has occurred could be computed as follows. Substitut-
ing these values into Eqs. 1, 2, and 3:

SE ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − :90

p

SE ¼ 0:6

Then:

SE x2 − x1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0:6ð Þ2

q

SE x2 − x1ð Þ ¼ 0:85

And finally:

RCI ¼ 10 − 8
0:85

RCI ¼ 2:35

Our p < .05 implies an RCI (standardised score change)
of 1.96, based on a standard normal distribution. Thus,
in this instance, our hypothetical respondent has under-
gone reliable change.
As an alternative, one can use the values calculated

above to define a 95% confidence interval against which
one can consider the raw differences. In this instance,
using a p < .05 alpha level, we would multiply ± 1.96
×SE(x2 − x1). This would result in a 95% CI [− 1.66, 1.66],
with changes falling outside of this range representing
reliable change.
This basic form of RCI is, however, only one of several

variants available and one that, of the full range of chal-
lenges discussed above, only addresses the issue of meas-
urement error. Further, it assumes that measurement
error is uniform across individuals; an assumption we
have noted is unlikely to hold in practice.

RCI variants
Several previous reviews have discussed the various
forms of RCI relevant for dementia research [3, 5, 23].
They have in common that (like the RCI in Eq. 1) they
are essentially ratios of change scores and their standard
error. RCI variants can then be classified according to
two major distinctions. The first is whether the numer-
ator is a ‘simple-difference’ or a ‘predicted-difference’
score. The second is whether the denominator (the
standard error) represents dispersion around the mean
of change scores or around a regression line.

Simple-difference score RCIs
Equation 1 is a form of simple-difference score.
Simple-difference score RCIs use the observed change
score in the numerator. They can be corrected for
practice effects by calculating the average practice ef-
fect (i.e. average change in scores due to test re-
administration) and subtracting this from an individ-
ual’s change to yield their practice-corrected change
(e.g. [24]). To obtain the average change score due to
test re-administration, the average change should be
based on a healthy sample that is not expected to
show decline (or improvement for reasons such as
some intervention) over the re-test period otherwise
the change due to practice alone will not be correctly
estimated.
To illustrate, if the average change in scores estimated

in a healthy sample on our hypothetical test was + 2
points (an improvement of 2 points), then an individual
who scored 9 at baseline and 8 at follow-up would have
a practice-corrected change of (8 − 9) − 2 = − 3. This
would be of greater magnitude than the RCI of |1.66|
for our hypothetical test with a reliability of .90 and SD
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of 2 and could thus be considered a reliable decline.
Note in this example, the raw change uncorrected for
practice effects would be − 1, a difference that would not
constitute a reliable change on our hypothetical test. As
in this hypothetical example, decisions as to whether to
correct or not correct can carry important consequences
for whether a given individual’s change is considered
meaningful or not. Here, we note one simple adjustment
for practice effects; however, many other approaches
have been suggested in the literature [25].
There are variations across methods in terms of how

the denominator (the dispersion of difference scores) of
simple-difference score RCIs are computed. Where
available, the actual standard deviation of the difference
scores in normative data can be used; however, in prac-
tice such data may not be available for a given test. As
such, various methods have been proposed to estimate
this quantity. This includes variants using the standard
error of measurement at baseline [9], the standard error
of measurement at both baseline and retest [26], and the
standard error of prediction from a regression of retest
on baseline scores. In practice, there is often little differ-
ence between these choices for the denominator,
although using both baseline and retest information pro-
vides a better approximation to the variance of differ-
ence scores than using baseline information alone [3].

Predicted-difference score RCIs
Simple-difference score RCIs correct only for unreliabil-
ity and practice effects and assume both are uniform
across scores. Predicted-difference score RCIs address
additional challenges. Predicted-difference score RCIs
use a regression prediction equation from a reference
sample to compute the change score (numerator) of the
RCI [27–29]. Here, the change score is the difference be-
tween the observed score at time 2 and the predicted
score for time 2 estimated from the time 1 score using a
regression model. This method has three principal ad-
vantages over simple-difference score methods. First, re-
gression to the mean is accounted for by the use of
predicted scores from a regression. Second, the model
can be specified such that practice effects can depend on
time 1 scores (rather than being assumed uniform across
all individuals). Third, additional predictors and their in-
teractions can be included in the regression model in
order that the effects of variables such as age, gender,
education, ethnicity, and test-retest interval can also be
taken into account. Usually, the denominator of a
prediction-difference score RCI will be the standard
error of the estimate from the regression.

Use of RCI in dementias and ageing research
The RCI variants discussed above have been used in de-
mentias and ageing research for some time and it is now

relatively common to compute RCIs for measures used
in assessing change in symptoms or broader aspects of
functioning in mild cognitive impairment (MCI) and
dementia. RCIs have, for example, been computed and
utilised for the Mini-Mental State Examination (MMSE
[30, 31] and modified MMSE (3MS [31]), the Dementia
Rating Scale [32], Consortium to Establish a Registry for
Alzheimer’s Disease-Neuropsychological (CERAD-NP)
battery [33], the Rey Auditory Verbal Learning Test (Rey
AVLT [34]), the Repeatable Battery for the Assessment
of Neuropsychological Status (RBANS [35]), and several
other batteries and specific assessments (see [33] for a
review). RCIs are thus becoming a standard part of the
reported psychometric properties of instruments and de-
mentia research.

Item response theory approaches to reliable
change
Overview of IRT
While the RCIs described above have represented a
significant advance in establishing reliable change,
they remain subject to some important limitations.
First, these RCIs were developed and have been most
commonly used with ‘observed’ scores, i.e. (typically
unweighted) composites (averages or sums) of the set
of items in a particular assessment instrument, in the
numerator. When unweighted sum scores are used,
they fail to fully exploit the information available
from the items in assessments. In particular, they fail
to take into account the fact that not all items in an
assessment are equally strongly related to the attri-
bute that they are seeking to measure and, similarly,
that they are not all equally likely to be endorsed (in
symptom inventories) or answered correctly (in cogni-
tive tests). As a result, estimates of symptoms and
cognitive performance tend not to be as accurate as
they could be if information regarding these item
properties were taken into account. It leads to situa-
tions where, for example, two individuals differing in
symptom severity could be assigned the same overall
score if they endorsed the same number of symptoms,
even if the symptoms endorsed by one individual
tended to be more impairing or indicative of a later
disease stage than the other. Similarly, the use of un-
weighted composite scores assumes that the measure-
ment properties of the scores are identical across
time (‘longitudinal invariance’; e.g. see [36]), where, in
fact, they may change as a result of developmental
processes such as ageing or previous test administra-
tion (e.g. [37]).
A second major shortcoming of the traditional RCIs

reviewed above is that the measurement errors of the
scores used in the denominator are estimated assuming
that scores are equally reliable irrespective of a person’s
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level on the attribute measured by the assessment. This
is important because assessments cannot be expected to
be equally reliable across the full range of attribute levels
that they measure, owing to the fact that the items
within assessments will have a peak range of attribute
levels at which they can discriminate. Assessments
designed for screening or diagnostic purposes are likely,
for example, to have a peak reliability around diagnostic
cut-off points [38]. Thus, the score estimate for individ-
uals scoring far away from this cut-point would be esti-
mated with less precision than those scoring just above
or below this cut-point. Where score reliability differs
depending on symptom severity (e.g. [12]), traditional
RCIs will not provide the individual-level calibration of
change thresholds required to accurately capture reliable
change.
The above issues are in principle addressed by using

an IRT approach to reliable change [11, 39]. IRT
models (see [40] for an introduction) are latent vari-
able models that link observed item responses to la-
tent unobserved attributes (e.g. cognitive ability,
depression, quality of life). IRT models come in vari-
ous forms but a commonly used form is the 2-
parameter logistic (2PL) model for items with a bin-
ary response format. The 2PL links the probability of

endorsing an item/answering it correctly to under-
lying attribute levels using a logistic model:

P Y ¼ 1jθð Þ ¼ exp α θ − βð Þ½ �
1þ exp α θ − βð Þ½ � ð4Þ

P(Y = 1| θ) is the probability of endorsing an item
given a person’s latent attribute level, θ. In addition,
exp.(.) refers to the exponential function, α is an item
discrimination parameter, and β is an item location (also
referred to as difficulty) parameter.
Item discrimination captures the strength of relation

between an item and an underlying attribute measured
by a test. For items with high discrimination, item scores
rise more sharply with increases in attribute levels than
items with low discrimination. Higher discrimination
items are thus more informative about attribute levels.
Item location captures the position on the latent attri-
bute scale that a majority of individuals endorse or
correctly answer the item.
These two item properties can be illuminated by exam-

ining item characteristic curves (ICC) from the 2PL.
When plotted, the ICCs show the probability of endorsing
an item at different attribute levels. Figure 1 shows the

Fig. 1 Example item characteristic curves (ICCs) for three hypothetical items. The x-axis shows the latent attribute (θ) scale. θ = 0 represents
average cognitive ability. Negative numbers are below average θ levels and positive numbers are above average θ levels. Position on x-axis is
determined by the location parameter and represents item difficulty. The steepness of the slopes of the lines are determined by the
discrimination parameters. Items with steeper curves better discriminate between individuals with adjacent θ values when compared to
flatter curves
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ICCs for three items differing in their discrimination and
location parameters.
The x-axis shows the latent attribute scale θ scale. It is

simplest to think of these as items of a cognitive test.
Zero on the θ scale represents average cognitive ability.
Negative numbers are below average θ levels and posi-
tive numbers are above average θ levels. The position of
the curves on the x-axis is determined by the location
parameter. Here, the item shown with the solid line
would be the easiest item—that is, individuals with lower
levels of θ have a greater than chance (y-axis probabil-
ity = 0.5) of getting the question correct. As we move to
the right, items become harder. As such, the dashed line
represents an item with the highest location (difficulty)
parameter. The steepness of the lines is determined by
the discrimination parameters. Here, items depicted with
the solid and dotted lines have the same discrimination,
but different location parameters. These items have a
steeper curve, indicating that they discriminate better
between individuals with similar θ values when com-
pared to the third item (dashed line), which has a shal-
lower curve.
Item characteristic curves can be summed to obtain

test characteristic curves. Test characteristic curves show
the relationship between the underlying attribute levels
and the expected total scores on a given test and thus
are useful for placing underlying levels of an attribute on
the scale of the original assessment.
When extending the 2PL model to longitudinal data

across two time points, it is possible to use IRT models
to examine intra-individual change, analogous to
approaches that have been suggested using CTT scores
[41]. A first important step is to evaluate longitudinal
measurement invariance. Tests of measurement invari-
ance assess whether the measurement properties of a
test are the same across time. In the context of the 2PL,
these properties are the item difficulty and discrimin-
ation parameters. If measurement invariance can be
established, then it can be assumed that the latent con-
struct is equivalent at both points in time. If invariance
does not hold, it is not clear that the test measures the
construct in the same way at both time points. This is
an important concept when studying change. If it is not
clear that measurement is equivalent over time, then it
is impossible to establish if any observed difference in
scores reflects genuine change rather than changes in
measurement. It is important to note that whenever a
test of change is conducted on a simple (or weighted)
sum score, measurement invariance is assumed, but not
tested.
In fact, there are reasons to believe that measurement

invariance over time is likely to be violated. Violations of
longitudinal invariance are reasonably common in other
domains (e.g. mental health) due to developmental

changes in social contexts and brain development [37]
and it is quite conceivable that this would also be true in
ageing. For example, minor memory problems could be-
come more noticeable to older adults if they become
more attuned to signs of cognitive decline compared to
their younger self, leading to differences in reporting of
symptoms even in the absence of true change. Further,
in the context of cognitive tests, the same problems can
sometimes be solved via different strategies and older
adults may shift strategies to compensate for declines in
particular domains. If different abilities are drawn on to
different extents to solve cognitive tests, this could also
lead to violations of invariance.
Longitudinal invariance can be evaluated by compar-

ing a set of nested models, where constraints to item
location and discrimination parameters are added in
sequence. In these models, correlated residuals or spe-
cific factors should be included to account for the fact
that repeated measures of items will correlate with one
another over and above their correlation due to their
common relation with the underlying attribute being
measured. In order to assess whether invariance holds,
model fit comparisons are made between models with
and without equivalence constraints. If model fit
decreases significantly with the addition of invariance
constraints, it would be concluded that invariance does
not hold [42].
It is not necessary for all items to have invariant dis-

crimination and location parameters across time pro-
vided that a subset of items (at least two but ideally
more) are invariant and that the lack of invariance is
modelled [43, 44]. In fact, from this point of view, base-
line and retest scores need not be based on the exactly
same set of items as long as a small core of items can be
used to provide an ‘anchor’ that links items on to the
same scale. Thus, IRT provides a framework for testing
longitudinal invariance and accommodating violations of
this assumption.

IRT-based RCIs
Individual-level scores can be obtained from IRT models
by treating the parameters of the model (the discrimin-
ation, difficulty, and trait correlations) as fixed and esti-
mating scores based on these in a manner conceptually
similar to deriving predicted scores from a regression
model. There are several ways to estimate individual-
level scores from an IRT model (see [45] for a discus-
sion). First, they can be obtained using maximum likeli-
hood estimation, which involves an iterative search for
the set of θ scores that maximises the likelihood func-
tion (the product of the probabilities of all item
responses). An issue with this method is that latent trait
scores are not defined for some patterns of scores, for
example, when an individual correctly answers all test
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items. Practically, such a scenario would be common
when cognitive healthy individuals complete assessments
such as the MMSE.
An alternative approach that resolves this issue is

Bayesian estimation, where Bayesian prior information
about the latent trait distribution in the population is
incorporated into the estimation and a posterior distri-
bution is formed as the product of this prior distribution
and the likelihood function. The multivariate standard
normal distribution is often used as the prior distribu-
tion. Methods for computing scores within this Bayesian
approach include expected a posteriori (EAP) and max-
imum a posteriori (MAP). In these approaches, individ-
ual scores are the mean (EAP) and mode (MAP) of the
posterior distribution [45].
The appropriate method of computing standard errors

of measurements for individual-level scores depends on
the method chosen for estimating the scores. For EAP,
the standard deviation of the posterior distribution is
used. For ML and MAP, they are computed as the
inverse of the ‘information’ for the attribute level. Infor-
mation is an IRT equivalent of reliability/precision. A
distinctive and crucial feature of information and thus
standard errors from an IRT perspective is that it can
vary with attribute level, thus allowing for the standard
error of measurement to be calibrated to an individual’s
specific level.
From the IRT score estimates and their standard

errors computed as described above, an IRT-based
RCI can be formed. For example, Jabrayilov et al.
(2016) suggests the following RCI:

RCI ¼ θ̂2 − θ̂1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE θ̂1

� �2
þ SE θ̂2

� �2
r ð5Þ

where θ̂1 and θ̂2 represent estimates of latent scores at

baseline and retest respectively and SEðθ̂1Þ and SEðθ̂2Þ
are the associated standard errors of the scores. Reise
and Haviland [39] suggested a similar method whereby
the 95% confidence intervals around baseline scores are
calculated and a reliable change defined as occurring
when the follow-up score falls outside this interval.

Practice effects within an IRT framework
Practice effects in an IRT framework will manifest as
violations of measurement invariance in the location
parameters over time where items become easier to
answer correctly on a second administration. Two pri-
mary solutions have been proposed [43]. First, if there is
a subset of items that are resistant to practice effects
over time and thus demonstrate longitudinal invariance,
these items can have their parameters fixed equal over
time. The remaining item parameters can vary over time

to capture the effects of practice. Second, different sets
of anchor items could be administered over time but
their parameters fixed to known values estimated from
previous studies. An appropriate reference sample can
be used to estimate the item parameters. If neither ap-
proach is feasible, we suggest applying a correction dir-
ectly to the attribute scores where some previous
information is available on practice effects. Known prac-
tice effects on the raw scale score can be converted to
the IRT score scale through the test characteristic curve.
The test characteristic curve is the sum of item charac-
teristic curves and links latent attribute levels to total
scores on the test.

A comparison of approaches to RCI calculation
In order to demonstrate the use of different forms of
RCI for individual change, and the differences in sub-
stantive conclusions that may follow, here, we will pro-
vide a practical example.

Lothian Birth Cohort 1936
Data are taken from the Lothian Birth Cohort Study
1936 (LBC1936). The LBC1936 is a longitudinal cohort
study of healthy ageing, with a focus on cognitive func-
tion. Full details of the LBC1936 have been previously
published [46, 47]. In brief, the study comprises, mostly,
surviving members of the Scottish Mental Survey 1947,
in which almost all 1936-born school children in Scot-
tish schools took The Moray House Test No. 12 test of
general intelligence test on June 4, 1947 (N = 70,805).
Surviving members of the survey, who lived in Edinburgh
(Scotland) or the surrounding area, were invited to take
part in the LBC1936 study. The initial wave of testing took
place in 2004–2007 with 1091 participants recruited (mean
age 69.5 years, SD = 0.8 years) [46]. Participants with neuro-
degenerative disease at wave 1 were excluded. On entry to
the study, participants were free of cognitive impairment.
The normative nature of the sample makes it a good basis
for estimating the IRT parameters for estimating reliable
change in the NART because the sample can be assumed
to be having a distribution of scores that approximately
reflects that in the underlying same-aged population. How-
ever, very cognitively impaired older adults are likely to
under-represented in the sample and an optimal calibration
sample would include better representation of clinically
impaired individuals.
For the current analysis, we make use of complete

cases (n = 535) from waves three (mean age = 76.2 years,
SD = 0.7 years) and four (mean age = 79.3 years, SD = 0.6
years) where item level responses to the National Adult
Reading Test were available. In this example, we are thus
considering reliable change across 3 years.
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National Adult Reading Tests
The specific data used for this example are the item
responses to the National Adult Reading Test (NART
[48]). The NART is a commonly used test to estimate
pre-morbid intelligence in studies of ageing. Respon-
dents are given a list of 50 irregular words and are asked
to read them aloud. Words are presented in order of dif-
ficulty. For each item, respondents score 1 if the pronun-
ciation is correct and 0 if it is incorrect. Thus, the item
level data comprises 50 binary right/wrong answers at
each wave.

Analyses
RCIs were computed using three different methods.

1. A classical test theory RCI following Eq. (1).
NART scores for waves 3 and 4 were simple
sum scores of correct responses. The standard
error was computed following Eq. (2) using the
Cronbach’s alpha reliability of wave 3 NART as
the estimate of rxx. Practice effects were
accounted for via subtracting the mean difference
score between waves from the raw difference
score. A 95% confidence interval was
constructed. Wave 4 scores falling outside of this
interval were deemed to have undergone reliable
change.

Two IRT RCIs were calculated based on a 2PL IRT
model with the individual-level scores estimated using
the MAP method. Scores were estimated from a longitu-
dinal invariance model in order to address equivalence
of measurement and account for practice effects via
releasing parameter constraints where necessary.

2. For the first, we followed Eq. (5) above.
3. For the second, a 95% confidence interval was

created based on the standard errors from wave 3,
as has previously been used by [39]. Wave 4 scores
outside this interval were concluded to have
undergone reliable change.

In each case, we considered the number of points that
would be deemed to have undergone reliable change,
and also the overall agreement between the three
methods. All models were estimated in R 3.6.1. The
following packages were used: tidyverse(), mirt(), psych(),
cowplot(), and patchwork() [49–53].

Results
The proportion of correct responses for the 50 NART
items at waves 3 and 4 are shown in Fig. 2.
As can be seen from comparison of panels A and B in

Fig. 2, on average, there is very little change in the pro-
portion of correct responses to each item across waves.

Fig. 2 Proportion correct responses to the NART in the LBC1936 (n = 535) for waves 3 (a) and 4 (b)
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The largest difference is a 6% increase in correct answers
for item 34 between waves 3 and 4.
Figure 3 shows the results of the three RCI ana-

lyses. In each plot, wave 3 scores are plotted on the
x-axis, wave 4 scores on the y-axis, the diagonal line
represents no change, and the shaded area shows the
95% confidence interval. Points that fall within the
confidence limits are dots, points which fall outside
the limits, and thus would be concluded to have
undergone reliable change, are represented by squares
(reliable decrease in scores) or triangles (reliable in-
crease in scores). Tables 1, 2, and 3 show the cross-
tabulation of the classification of cases depicted in
Fig. 3.
Across methods, reliable change based on the classical

test theory approach classified the most participants as
having undergone no reliable change. Both IRT

methodologies classified more participants with reliable
decreases in NART scores than the CTT approach, with
method [2] being the most sensitive to the identification
of reliable decreases. However, the IRT methods also
classify cases as showing no change, for which the CTT
method indicated either a reliable increase or decrease
in scores (see first column in Tables 1 and 2). This pat-
tern also extends to the comparison of differing IRT
methods Table 3.

Discussion
In the previous sections, we outlined various approaches
that have been applied to the assessment of individual-
level change in the context of challenges such as meas-
urement error and practice effects. We noted that while
traditional RCI approaches have been developed to take
account of such issues, they (erroneously) assume that

Fig. 3 Individual change in NART scores across waves 3 and 4 in the LBC1936 estimated based on the three RCI calculation methodologies. a
Top left: CTT method. b Bottom left: IRT method 1. c Bottom right: IRT method 2

Table 1 Cross-tabulation of CTT RCI versus IRT method 1

IRT method 1

No change Reliable increase Reliable decrease

CTT RCI No change 462 8 42 512

Reliable increase 6 10 1 17

Reliable decrease 1 0 5 6

469 18 48 535
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measurement error is equal across levels of the latent at-
tribute and fail to fully exploit the information available
from item scores. IRT scores can in principle handle all
of these challenges.
The results of the empirical example presented here

demonstrate that the substantive conclusions about the
nature (improvement or decline), extent (magnitude),
and identification of individuals who undergo reliable
change varies as a function of the methodological
approach taken. In the current examples, a greater num-
ber of individuals are identified as having undergone re-
liable change as opposed to no change, as estimated by
the IRT approaches, primarily because across the range
of measurement where information (reliability) is high-
est, the standard error of measurement decreases such
that smaller magnitudes of difference indicate reliable
change. Conversely, and equally important, the IRT
methodologies classified some cases as having under-
gone no reliable change, where CTT methods indicated
either a reliable increase or decrease. These observations
highlight that assuming that the reliability of a test is
equal across all levels of the attribute can have import-
ant implications for identifying individuals has having
undergone reliable change.
In addition to allowing measurement error to vary

with attribute level, other potential advantages of IRT in
the context of assessing individual-level change in de-
mentias and ageing. IRT facilitates computerised adap-
tive testing (CAT [54]). In CAT, each individual is
administered a personalised set of items that is best cali-
brated to their attribute level and only until a certain
precision is reached. Thus, a low functioning individual
would receive easier items than a high functioning indi-
vidual and each would only receive as many items as ne-
cessary to estimate their score with a pre-specified level

of precision. This also means that the same participant/
patient could receive items with a level of difficulty
matched to their level as their disease progresses. Over-
all, fewer items need to be administered and participant/
patient burden is minimised. Similarly, IRT facilitates
linkage across datasets because provided there are a
small set of anchoring items, scores from different stud-
ies can be put on a common metric [55]. This, in turn,
facilitates substantially increased pooled sample sizes. Fi-
nally, IRT models can be fit for tests that measure mul-
tiple attributes. Here, measurement models such as
oblique, higher-order, or bifactor models could be used
to account for the structure of the test, including the
correlations among the different dimensions measured
by the test [56].
However, IRT models also have some disadvantages in

the context of assessing individual-level change. Perhaps
the main disadvantage is that IRT models are more tech-
nically and computationally demanding. While the IRT-
based methods discussed above can be implemented in
software such as Mplus [57] or in the mirt package in R
statistical software [49], their feasibility in clinical prac-
tice may be limited. While in principle, user-friendly
computerised systems could be developed, analogous to
those used in traditional RCIs (e.g. [28], these currently
do not exist. A second disadvantage is that simulation
work suggests that IRT models appear only to have con-
siderable advantages over observed scores when assess-
ments contain a sufficiently large number of items.
Jabrayilov et al. [11] conducted a simulation study com-
paring IRT and observed scores and found that IRT had
no advantage in terms of detecting reliable change when
the number of items was less than 20. Though the
empirical example presented here concerned a test with
50 items, it is not uncommon for subscales or screening

Table 2 Cross-tabulation of CTT RCI versus IRT method 2

IRT method 2

No change Reliable increase Reliable decrease

CTT RCI No change 482 3 27 512

Reliable increase 11 6 0 17

Reliable decrease 3 0 3 6

496 9 30 535

Table 3 Cross-tabulation of IRT RCI 1 versus IRT RCI 2

IRT method 2

No change Reliable increase Reliable decrease

IRT method 1 No change 469 0 0 469

Reliable increase 9 9 0 18

Reliable decrease 18 0 30 48

496 9 30 535
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tools used in dementia to have smaller numbers of items
than 20.
A further challenge for IRT approaches to individ-

ual change is the requirement that responses to indi-
vidual items are available for analysis. Though
electronic records of item level responses are becom-
ing more common, it is still not always the case that
such data is automatically available. In many
instances, tests are still administered in paper and
pencil formats by practitioners, and only total scores
recorded electronically. It is not possible to utilise
IRT approaches with summary data.
IRT-based RCIs also share some of the limitations

of traditional RCIs. First, due to the fact that assess-
ments used in dementia and ageing research are
always subject to a degree of measurement error, a
failure to identify reliable change does not imply that
a change has not occurred; only that it was too small
given the measurement precision of the instrument to
be detected. Similarly, a reliable change does not
necessarily mean that a clinically meaningful change
has occurred. Clinically meaningful change must be
defined according to additional standards, for
example, crossing a clinical threshold or involving
clinical judgement (e.g. [9]). Finally, practice effects
are only one source of systematic error; there are
likely to be other factors that systematically affect
scores and their expected trajectory, including age,
gender, ethnicity, and education, as well as, anxiety,
mood, motivation, and effort at baseline and retest
(e.g. [58–60]). If these factors are not taken into ac-
count, meaningful changes may be masked or true
changes overstated. While it is possible to construct
regression models or multi-group models that take
into account these factors (e.g. IRT parameters could
be allowed to vary by gender, age or education), it is
difficult to measure and account for all sources of
systematic variance in scores.
Another challenge in determining individual-level

change is regression to the mean. Regression to the
mean (e.g. [61]) concerns the distribution of a set of
scores around the sample mean when data is considered
across time. At any given measurement point, observed
test scores will partly reflect a participant’s level of an at-
tribute and partly reflect a random deviation from that
score (‘random error’). At a single measurement point,
random error can result in extreme scores that deviate
substantially from an individual’s true level. However,
assuming that errors are normally distributed, on second
measurement, these scores are likely to be less extreme.
As retest scores will tend to gravitate towards mean

scores, for those with extreme scores at baseline, regres-
sion to the mean can mask or mimic true changes over
time. This means that the magnitude of change required

to be confident that the change is meaningful depends
on the individual (and their baseline score). Low test
reliability results in greater random error and thus also
greater proneness to the obscuring effects of regression
to the mean. However, there remains a lack of consensus
about whether and how to correct for regression to the
mean in analyses of change.
Despite these limitations, balanced against their advan-

tages, IRT-based RCIs seem to hold considerable poten-
tial for providing better estimates of reliable change in
the context of research studies such as clinical trials. We
identified no studies that have used IRT-based RCIs in
dementia research; however, IRT methods are becoming
more common in the field [55, 62]. Important future
directions include further empirical evaluation and com-
parison of traditional versus IRT-based RCIs in both
simulation studies and real data examples, the develop-
ment of IRT-RCI calculators analogous to those in exist-
ence for traditional RCIs (e.g. [28]), the further
development of IRT test banks to facilitate CAT testing,
and the development of reference samples to provide the
‘known’ IRT parameters that can be used in methods of
accounting for practice effects [43]. Finally, while the
current article has focused on reliable change over two
time points, the methods discussed can be extended to
further time-points to compute individual-level linear
and non-linear ‘slopes’ over time by combining IRT
measurement models with growth curve models (e.g.
[43]). Like the two-time point measures discussed here,
they will require further evaluation in the context of
dementia research but are likely to be useful in the
increasing number of observational ageing studies with
multiple ways of follow-up data.
It is also important to acknowledge that all the

methods discussed typically rely on data from various
cognitive assessments and psychometric tools. As such,
it is important that the field continue to actively evaluate
the overall quality of the measures available. From the
perspective of IRT, this could include, for example, reli-
able range of measurement or the equivalence of scores
across groups and delivery formats. Improving the qual-
ity of the measures that give rise to the scores used to
evaluate change will further improve our ability to iden-
tify and characterise change in cognitive functioning.

Conclusions
Considerable progress has been made in the develop-
ment and implementation of methodologies to assess
when individuals have undergone meaningful change.
IRT-based RCIs hold significant promise in addressing
some of the outstanding shortcomings of traditional
methods, especially the dependence of measurement
error on attribute level. Further empirical studies should
consider adopting IRT-based RCIs as an alternative to or
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alongside traditional RCIs. At the same time, the field
could benefit from further methodological work to fur-
ther evaluate and compare different IRT-based RCIs and
to make them more accessible for researchers and
clinicians.

Acknowledgements
We would like to acknowledge the help and support of Dementia Platform
UK (DPUK) in the production of this review. We thank the participants of the
Lothian Birth Cohort 1936 and the research team members who collected
and collated the data and made it available for these analyses.

Authors’ contributions
The manuscript was designed by TB, GMT, and ALM. MV conducted a
literature review and summary. ALM and TB drafted the manuscript. IJD
provided the data for the empirical example. TB and ALM conducted the
statistical analyses. ALM, GMT, TB, and IJD edited and revised the manuscript.
All authors read and approved the final manuscript.

Funding
DPUK funded this project through MRC grant ref. MR/L023784/2. Funding for
LBC1936 has been received from Research Into Ageing (Programme grant
251; wave 1) and Age UK (Disconnected Mind Programme grant; waves 2 to
4) and the UK’s Medical Research Council (G1001245, wave 3; MR/M013111/
1, wave 4).

Availability of data and materials
The datasets generated and/or analysed during the current study are not
publicly available due ethical restrictions on openly sharing the dataset. The
consent forms for the study included that participants’ data, some of which
is sensitive, would only be used for health-related research. Data are available
by submitting a data access form to lbc1936@ed.ac.uk. R code for the ana-
lyses reported in the empirical example is available at https://osf.io/2zsu8/

Ethics approval and consent to participate
Ethical permission for the LBC1936 study protocol was obtained from the
Multi-Centre Research Ethics Committee for Scotland (wave 1: MREC/01/0/
56), the Lothian Research Ethics Committee (wave 1: LREC/2003/2/29), and
the Scotland A Research Ethics Committee (waves 2, 3, and 4: 07/MRE00/58).

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Psychology, University of Edinburgh, F17, 7 George Square,
Edinburgh EH8 9JZ, UK. 2Centre for Cognitive Ageing and Cognitive
Epidemiology, University of Edinburgh, Edinburgh, UK. 3Centre for Clinical
Brain Sciences, Centre for Dementia Prevention, University of Edinburgh,
Edinburgh, UK.

Received: 7 June 2020 Accepted: 1 January 2021

References
1. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global

prevalence of dementia: a systematic review and metaanalysis. Alzheimers
Dement. 2013;9(1):63–75.e2.

2. Lezak MD, Howieson DB, Loring DW, Fischer JS. Neuropsychological
assessment. USA: Oxford University Press; 2004.

3. Chelune GJ, Duff K. The assessment of change: serial assessments in
dementia evaluations. In: Handbook on the Neuropsychology of Aging and
Dementia. Cham: Springer; 2019. p. 61–76.

4. Hensel A, Angermeyer MC, Riedel-Heller SG. Measuring cognitive change in
older adults. Do reliable change indices of the SIDAM predict dementia? J
Neurol. 2007;254(10):1359.

5. Stein J, Luppa M, Brähler E, König H-H, Riedel-Heller SG. The assessment of
changes in cognitive functioning: reliable change indices for

neuropsychological instruments in the elderly – a systematic review. DEM.
2010;29(3):275–86.

6. Laver K, Dyer S, Whitehead C, Clemson L, Crotty M. Interventions to delay
functional decline in people with dementia: a systematic review of
systematic reviews. BMJ Open. 2016;6(4):e010767.

7. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D,
et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):
2673–734.

8. Thompson PA, Wright DE, Counsell CE, Zajicek J. Statistical analysis, trial
design and duration in Alzheimer’s disease clinical trials: a review. Int
Psychogeriatr. 2012;24(5):689–97.

9. Jacobson NS, Truax P. Clinical significance: a statistical approach to defining
meaningful change in psychotherapy research. J Consult Clin Psychol. 1991;
59(1):12.

10. Ritchie CW, Molinuevo JL, Truyen L, Satlin A, Van der Geyten S, Lovestone S.
Development of interventions for the secondary prevention of Alzheimer’s
dementia: the European Prevention of Alzheimer’s Dementia (EPAD) project.
Lancet Psychiatry. 2016;3(2):179–86.

11. Jabrayilov R, Emons WH, Sijtsma K. Comparison of classical test theory and
item response theory in individual change assessment. Appl Psychol Meas.
2016;40(8):559–72.

12. Raghavan N, Samtani MN, Farnum M, Yang E, Novak G, Grundman M, et al.
The ADAS-Cog revisited: novel composite scales based on ADAS-Cog to
improve efficiency in MCI and early AD trials. Alzheimers Dement. 2013;9(1
0):S21–31.

13. Murray AL, McKenzie K, Murray K, Richelieu M. Examining response shifts in
the clinical outcomes in routine evaluation-outcome measure (CORE-OM).
Br J Guid Couns. 2018;48(2):276–88.

14. Calamia M, Markon K, Tranel D. Scoring higher the second time around:
meta-analyses of practice effects in neuropsychological assessment. Clin
Neuropsychol. 2012;26(4):543–70.

15. Duff K, Callister C, Dennett K, Tometich D. Practice effects: a unique
cognitive variable. Clin Neuropsychol. 2012;26(7):1117–27.

16. Abner EL, Dennis BC, Mathews MJ, Mendiondo MS, Caban-Holt A, Kryscio
RJ, et al. Practice effects in a longitudinal, multi-center Alzheimer’s disease
prevention clinical trial. Trials. 2012;13(1):217.

17. Claus JJ, Mohr E, Chase TN. Clinical trials in dementia: learning effects with
repeated testing. J Psychiatry Neurosci. 1991;16(1):1.

18. Salthouse TA. Influence of age on practice effects in longitudinal
neurocognitive change. Neuropsychology. 2010;24(5):563.

19. Schmidt KS, Mattis PJ, Adams J, Nestor P. Alternate-form reliability of the
Dementia Rating Scale-2. Arch Clin Neuropsychol. 2005;20(4):435–41.

20. Beglinger LJ, Gaydos B, Tangphao-Daniels O, Duff K, Kareken DA, Crawford J,
et al. Practice effects and the use of alternate forms in serial
neuropsychological testing. Arch Clin Neuropsychol. 2005;20(4):517–29.

21. Jacobson NS, Follette WC, Revenstorf D. Psychotherapy outcome research:
methods for reporting variability and evaluating clinical significance. Behav
Ther. 1984;15(4):336–52.

22. Christensen L, Mendoza JL. A method of assessing change in a single
subject: an alteration of the RC index. Behav Ther. 1986;17(3):305–8.

23. Hinton-Bayre AD. Deriving reliable change statistics from test–retest
normative data: comparison of models and mathematical expressions. Arch
Clin Neuropsychol. 2010;25(3):244–56.

24. Chelune GJ, Naugle RI, Lüders H, Sedlak J, Awad IA. Individual change after
epilepsy surgery: practice effects and base-rate information.
Neuropsychology. 1993;7(1):41.

25. Maassen GH, Bossema E, Brand N. Reliable change and practice effects:
outcomes of various indices compared. J Clin Exp Neuropsychol. 2009;31(3):
339–52.

26. Iverson GL. Interpreting change on the WAIS-III/WMS-III in clinical samples.
Arch Clin Neuropsychol. 2001;16(2):183–91.

27. Crawford JR, Garthwaite PH. Using regression equations built from summary
data in the neuropsychological assessment of the individual case.
Neuropsychology. 2007;21(5):611.

28. Crawford JR, Garthwaite PH, Denham AK, Chelune GJ. Using regression
equations built from summary data in the psychological assessment of
the individual case: extension to multiple regression. Psychol Assess.
2012;24(4):801.

29. McSweeny AJ, Naugle RI, Chelune GJ, Lüders H. “T scores for change”: an
illustration of a regression approach to depicting change in clinical
neuropsychology. Clin Neuropsychol. 1993;7(3):300–12.

Murray et al. Alzheimer's Research & Therapy           (2021) 13:26 Page 12 of 13

mailto:lbc1936@ed.ac.uk
https://osf.io/2zsu8/


30. Hensel A, Angermeyer MC, Riedel-Heller SG. Measuring cognitive change in
older adults: reliable change indices for the Mini-Mental State Examination.
J Neurol Neurosurg Psychiatry. 2007;78(12):1298–303.

31. Tombaugh TN. Test-retest reliable coefficients and 5-year change
scores for the MMSE and 3MS. Arch Clin Neuropsychol. 2005;20(4):
485–503.

32. Pedraza O, Smith GE, Ivnik RJ, Willis FB, Ferman TJ, Petersen RC, et al.
Reliable change on the dementia rating scale. J Int Neuropsychol Soc. 2007;
13(4):716–20.

33. Stein J, Luppa M, Maier W, Tebarth F, Heser K, Scherer M, et al. The
assessment of changes in cognitive functioning in the elderly: age- and
education-specific reliable change indices for the SIDAM. DEM. 2012;
33(2–3):73–83.

34. Knight RG, McMahon J, Skeaff CM, Green TJ. Reliable Change Index scores
for persons over the age of 65 tested on alternate forms of the Rey AVLT.
Arch Clin Neuropsychol. 2007;22(4):513–8.

35. Duff K, Schoenberg MR, Patton D, Mold J, Scott JG, Adams RL. Predicting
change with the RBANS in a community dwelling elderly sample. J Int
Neuropsychol Soc. 2004;10(6):828–34.

36. Widaman KF, Ferrer E, Conger RD. Factorial invariance within longitudinal
structural equation models: measuring the same construct across time.
Child Dev Perspect. 2010;4(1):10–8.

37. Murray AL, Obsuth I, Eisner M, Ribeaud D. Evaluating longitudinal invariance
in dimensions of mental health across adolescence: an analysis of the Social
Behavior Questionnaire. Assessment. 2017;26(7):1234–45.

38. Reise SP, Waller NG. Item response theory and clinical measurement. Annu
Rev Clin Psychol. 2009;5:27–48.

39. Reise SP, Haviland MG. Item response theory and the measurement of
clinical change. J Pers Assess. 2005;84(3):228–38.

40. Embretson SE, Reise SP. Item response theory. Mahwah: Lawrence Erlbaum
Associates; 2013.

41. Mella N, Fagot D, Renaud O, Kliegel M, De Ribaupierre A. Individual
differences in developmental change: quantifying the amplitude and
heterogeneity in cognitive change across old age. J Intell. 2018;6(1):10.

42. Millsap RE. Testing measurement invariance using item response
theory in longitudinal data: an introduction. Child Dev Perspect. 2010;
4(1):5–9.

43. Wang C, Kohli N, Henn L. A second-order longitudinal model for binary
outcomes: item response theory versus structural equation modeling. Struct
Equ Model Multidiscip J. 2016;23(3):455–65.

44. Pokropek A, Davidov E, Schmidt P. A Monte Carlo simulation study to
assess the appropriateness of traditional and newer approaches to test
for measurement invariance. Struct Equ Model Multidiscip J. 2019;26(5):
724–44.

45. Brown A. Item response theory approaches to test scoring and evaluating
the score accuracy. In: The Wiley Handbook of Psychometric Testing: A
Multidisciplinary Reference on Survey, Scale, and Test Development; 2018. p.
607–38.

46. Deary IJ, Gow AJ, Taylor MD, Corley J, Brett C, Wilson V, et al. The Lothian
birth cohort 1936: a study to examine influences on cognitive ageing from
age 11 to age 70 and beyond. BMC Geriatr. 2007;7(1):28.

47. Taylor AM, Pattie A, Deary IJ. Cohort profile update: the Lothian Birth
Cohorts of 1921 and 1936. Int J Epidemiol. 2018;47(4):1042–1042r.

48. Nelson HE, Willison J. National adult reading test (NART): Nfer-Nelson
Windsor; 1991.

49. Chalmers RP. mirt: a multidimensional item response theory package for the
R environment. J Stat Softw. 2012;48(6):1–29.

50. Pedersen TL. patchwork: the composer of ggplots, vol. 2019; 2017. https://
github.com/thomasp85/patchwork.

51. Revelle WR. psych: procedures for personality and psychological research;
2017.

52. Wickham H. tidyverse: easily install and load the ‘Tidyverse’. R package
version 1.2. 1. Vienna: R Core Team; 2017.

53. Wilke CO. cowplot: streamlined plot theme and plot annotations for
‘ggplot2.’ CRAN Repos; 2016.

54. Zygouris S, Tsolaki M. Computerized cognitive testing for older adults: a
review. Am J Alzheimers Dis Other Dement. 2015;30(1):13–28.

55. Ueckert S, Plan EL, Ito K, Karlsson MO, Corrigan B, Hooker AC, et al.
Improved utilization of ADAS-cog assessment data through item
response theory based pharmacometric modeling. Pharm Res. 2014;
31(8):2152–65.

56. Reise SP. The rediscovery of bifactor measurement models. Multivar Behav
Res. 2012;47(5):667–96.

57. Muthén LK, Muthén B. Mplus. The comprehensive modelling program for
applied researchers: user’s guide, vol. 5; 2015.

58. Berry DT, Allen RS, Schmitt FA. Rey-Osterrieth Complex Figure:
psychometric characteristics in a geriatric sample. Clin
Neuropsychol. 1991;5(2):143–53.

59. Duff K, Patton D, Schoenberg MR, Mold J, Scott JG, Adams RL. Age-
and education-corrected independent normative data for the RBANS in
a community dwelling elderly sample. Clin Neuropsychol. 2003;17(3):
351–66.

60. Silverberg ND, Wertheimer JC, Fichtenberg NL. An effort index for the
Repeatable Battery for the Assessment of Neuropsychological Status
(RBANS). Clin Neuropsychol. 2007;21(5):841–54.

61. Barnett AG, van der Pols JC, Dobson AJ. Regression to the mean: what it is
and how to deal with it. Int J Epidemiol. 2005;34(1):215–20.

62. Li G, Larson EB, Shofer JB, Crane PK, Gibbons LE, McCormick W, et al.
Cognitive trajectory changes over 20 years before dementia diagnosis: a
large cohort study. J Am Geriatr Soc. 2017;65(12):2627–33.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Murray et al. Alzheimer's Research & Therapy           (2021) 13:26 Page 13 of 13

https://github.com/thomasp85/patchwork
https://github.com/thomasp85/patchwork

	Abstract
	Background
	Body
	Conclusion

	Introduction
	The importance of measuring change in dementia
	Challenges in assessing meaningful change
	Random measurement error
	Practice effects


	Solutions to the challenges of assessing individual-level change in dementia
	Reliable change index (RCI)
	RCI variants
	Simple-difference score RCIs
	Predicted-difference score RCIs

	Use of RCI in dementias and ageing research

	Item response theory approaches to reliable change
	Overview of IRT
	IRT-based RCIs
	Practice effects within an IRT framework

	A comparison of approaches to RCI calculation
	Lothian Birth Cohort 1936
	National Adult Reading Tests
	Analyses

	Results
	Discussion
	Conclusions
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

