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Abstract

Background: Recent DNA/RNA sequencing and other multi-omics technologies have advanced the understanding
of the biology and pathophysiology of AD, yet there is still a lack of disease-modifying treatments for AD. A new
approach to integration of the genome, transcriptome, proteome, and human interactome in the drug discovery
and development process is essential for this endeavor.

Methods: In this study, we developed AlzGPS (Genome-wide Positioning Systems platform for Alzheimer’s Drug
Discovery, https://alzgps.lerner.ccf.org), a comprehensive systems biology tool to enable searching, visualizing, and
analyzing multi-omics, various types of heterogeneous biological networks, and clinical databases for target
identification and development of effective prevention and treatment for AD.

Results: Via AlzGPS: (1) we curated more than 100 AD multi-omics data sets capturing DNA, RNA, protein, and
small molecule profiles underlying AD pathogenesis (e.g., early vs. late stage and tau or amyloid endophenotype);
(2) we constructed endophenotype disease modules by incorporating multi-omics findings and human protein-
protein interactome networks; (3) we provided possible treatment information from ~ 3000 FDA approved/
investigational drugs for AD using state-of-the-art network proximity analyses; (4) we curated nearly 300 literature
references for high-confidence drug candidates; (5) we included information from over 1000 AD clinical trials noting
drug’s mechanisms-of-action and primary drug targets, and linking them to our integrated multi-omics view for
targets and network analysis results for the drugs; (6) we implemented a highly interactive web interface for
database browsing and network visualization.
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Conclusions: Network visualization enabled by AlzGPS includes brain-specific neighborhood networks for genes-of-
interest, endophenotype disease module networks for omics-of-interest, and mechanism-of-action networks for
drugs targeting disease modules. By virtue of combining systems pharmacology and network-based integrative
analysis of multi-omics data, AlzGPS offers actionable systems biology tools for accelerating therapeutic
development in AD.

Keywords: Alzheimer’s disease, Clinical trial, Drug repurposing, Genomics, Mechanism-of-action, Multi-omics,
Network medicine, Systems pharmacology

Background
Alzheimer’s disease (AD) is a progressive neurodegener-
ative disorder accounting for 60–80% of dementia cases
[1]. In addition to cognitive decline, AD patients have
extensive neuropathological changes including depos-
ition of extracellular amyloid plaques, intracellular
neurofibrillary tangles, and neuronal death [2, 3]. It is es-
timated that the number of AD patients will reach 16
million by 2050 in the USA alone [4, 5]. Effective treat-
ments are needed, as there are no disease-modifying
treatments for AD and no new drugs have been ap-
proved since 2003 by the US Food and Drug Adminis-
tration (FDA). There are several possible explanations
for the high failure rate in AD drug discovery. For ex-
ample, traditional “one gene, one drug, one disease” hy-
pothesis may result in failure by anticipated off-target
side effects and suboptimal efficacy because of complex
disease pathobiology of AD [3, 6]. Also, there is a lack of
sensitive endpoint measures for outcomes in clinical tri-
als. Other potential immediate causes for clinical trial
failures include targeting the wrong pathobiological or
pathophysiological mechanisms, attempted intervention
at the wrong stage (too early or too late), unfavorable
pharmacodynamic and pharmacokinetic characteristics
of the drug (e.g., poor brain penetration), lack of target
engagement by drug candidates, and hypotheses that fail
to incorporate the great complexity of AD [6, 7].
Multiple types of omics data have greatly facilitated

our understanding of the pathobiology of AD. For ex-
ample, using single-cell RNA-Seq, a novel microglia type
(termed disease-associated microglia, DAM) was discov-
ered to be associated with AD, understanding of whose
molecular mechanism could offer new therapeutic
targets [8]. Using large-scale genome-wide association
studies (GWAS), twenty loci showed genome-wide
significant association with AD, among which 11 were
newly discovered [9]. A recent study using deep profiling
of proteome and phosphoproteome prioritized proteins
and pathways associated with AD, and it was shown that
protein changes and their corresponding RNA levels
only partially coincide [10]. The large amount of multi-
omics data and recent advances in network-based meth-
odologies for drug repurposing today present

unprecedented opportunities for accelerating target
identification for drug discovery for AD. This potential
has been demonstrated in other complex diseases as
well, such as cancer [11], cardiovascular disease [12],
and schizophrenia [13], and is beginning to be exploited
in AD [6, 14]. Drug repurposing offers a rapid and cost-
effective solution for drug discovery for complex disease,
such as the current global pandemic of coronavirus dis-
ease 2019 (COVID-19) [15, 16] and AD [6]. The central
idea of network-based drug repurposing is that for a
drug to be able to affect a disease, the drug targets must
directly overlap with or be in the immediate vicinity of
the disease modules, which can be identified using the
vast amount of high-throughput multi-omics data
(Fig. 1a). Our recent efforts using network-based meth-
odologies and AD omics data have led to the discovery
of two drugs that show efficacy in network models in
AD: sildenafil [6] and pioglitazone [14]. Network analysis
provides potential mechanisms for these drugs and facil-
itates experimental validation. Therefore, we posit that a
comprehensive systems biology tool in the framework of
network-based multi-omics analysis could inform Alz-
heimer’s patient care and therapeutic development.
To this end, we present a new freely available database

and tool, named AlzGPS (A Genome-wide Positioning
Systems platform for Alzheimer’s Drug Discovery), for
target identification and drug repurposing for AD.
AlzGPS was built with large-scale diverse information,
including multi-omics (genomics, transcriptomics [bulk
and single cell], proteomics, and interactomics) of hu-
man and other species, drug-target networks, literature-
derived evidence, AD clinical trials information, and net-
work proximity analysis (Fig. 1b). Our hope is that
AlzGPS will be a valuable resource for the AD research
community for several reasons. First, AlzGPS contains
abundant multi-domain information all coalesced in one
location. The manually curated data, such as the
literature-derived information for the most promising
repurposable drugs and more than 100 multi-omics AD
data sets, are of high quality and relevance. Second,
using state-of-the-art network proximity approaches,
AlzGPS provides a systemic evaluation of 3000 FDA ap-
proved or investigational drugs against the AD data sets.
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Fig. 1 The architecture of AlzGPS. a AlzGPS was built on three main data entities (genes, drugs, and omics layers) and their relationships. The
multi-omics data (genomics, transcriptomics (bulk and single cell/single nucleus), and proteomics) in AlzGPS help identify likely causal genes/
targets that are associated with Alzheimer’s disease (AD) and disease modules in the context of human protein-protein interactome. Via network
proximity measure between drug-target networks and disease modules in the human protein-protein interactome, drugs can be prioritized for
their potential to alter the genes in the module for potential treatment of AD. b Detailed statistics of the entities and relations in AlzGPS. EGO,
brain-specific neighborhood network (ego network); LCC, largest connected component network; MOA, mechanism-of-action network
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These results (along with various network visualizations)
will provide insights for potential repurposable drugs
with clear network-based footprints in the context of the
human protein-protein interactome. The drug-data set
associations can be further explored in AlzGPS for indi-
vidual drug targets or genes associated with AD. Lastly,
AlzGPS offers a highly interactive and intuitive modern
web interface. The relational nature of these data was
embedded in the design to help the user easily navigate
through different types of information. In addition,
AlzGPS provides three types of network visualizations
for the tens of thousands of networks in the database,
including brain-specific neighbor networks for genes,
disease modules derived from multi-omic profiles with
varying degrees of disease biology of AD, and inferred
mechanism-of-action (MOA) networks for drugs and
omic pairs with significant proximity. AlzGPS is freely
available to the public without registration requirement
at https://alzgps.lerner.ccf.org.

Methods
Data collection and preprocessing
AD data sets
A data set is defined as either (1) genes/proteins/metab-
olites that are differentially expressed in AD patients/
mice vs. controls, or (2) genes that have known associa-
tions with risks of AD from literature or other databases.
We retrieved expression data sets underlying AD patho-
genesis capturing transcriptomics (microarray, bulk or
single-cell RNA-Seq) and proteomics across human,
mouse, and model organisms (e.g., fruit fly and Caenor-
habditis elegans). All the samples of the data sets were
derived from total brain, specific brain regions (including
hippocampus, cortex, and cerebellum), and brain-
derived single cells, such as microglial cells. For some of
the expression data sets, the differentially expressed
genes/proteins were obtained from the original publica-
tions (from main tables or supplemental tables). For
other data sets that did not have such differential expres-
sion results available, the original brain microarray/
RNA-Seq data were obtained from Gene Expression
Omnibus (GEO) [17] and differential expression ana-
lysis was performed using the tool GEO2R [18].
GEO2R performs the differential expression analysis
for the sample groups defined by the user using the
limma R package [19]. All differentially expressed
genes identified in mouse were further mapped to
unique human-orthologous genes using the NCBI
HomoloGene database (https://www.ncbi.nlm.nih.gov/
homologene). The details for all the data sets, includ-
ing organism, genetic model (for mouse), brain re-
gion, cell type (for single-cell RNA-Seq), PubMed ID,
GEO ID, and the sources (e.g., supplemental table or
GEO2R), can be found in Table S1.

Genes and proteins
We retrieved the gene information from the HUGO
Gene Nomenclature Committee (HGNC, https://www.
genenames.org/) [20], including gene symbol, name, type
(e.g., coding and non-coding), chromosome, synonyms,
and identification (ID) mapping in various other data-
bases such as NCBI Gene, ENSEMBL, and UniProt. All
proteins from the AD proteomics data sets were mapped
to genes using the mapping information from HGNC.

Single-nucleotide polymorphisms (SNPs)
We found 3321 AD-associated genetic records for 1268
genes mapped to 1629 SNPs, by combining results from
GWAS Catalog (https://www.ebi.ac.uk/gwas/) [21] using
the trait “Alzheimer’s disease” and published studies.
The PubMed IDs for the genetic evidence are provided
in AlzGPS.

Tissue expression specificity
We downloaded RNA-Seq data (transcripts per mil-
lion, TPM) across 33 human tissues from the GTEx
v8 release (accessed on March 31, 2020, https://
gtexportal.org/home/). We defined the genes with
count per million (CPM) ≥ 0.5 in over 90% samples
(e.g., brain) as tissue-expressed genes and otherwise
as tissue-unexpressed. To quantify the expression sig-
nificance of tissue-expressed gene i in tissue t, we cal-
culated the average expression 〈E(i)〉 and the standard
deviation δE(i) of a gene’s expression across all in-
cluded tissues. The significance of gene expression in
tissue t is defined as:

zE i; tð Þ ¼ E i; tð Þ − E ið Þh i
δE ið Þ ð1Þ

Data for multiple brain regions were available from
GTEx v8. We combined the data of these brain regions
when comparing the brain expression specificity vs.
other tissues. In addition, we further computed the ex-
pression specificity across 13 different brain regions.
Both tissue expression specificity and brain region ex-
pression specificity results for the genes are available in
AlzGPS.

Drugs
We retrieved drug information from the DrugBank data-
base (v4.3) [22], including name, type, group (approved,
investigational, etc.), Simplified Molecular-Input Line
Entry System (SMILES), and Anatomical Therapeutic
Chemical (ATC) code(s). We also evaluated the pharma-
cokinetic properties (such as blood–brain barrier [BBB])
of the drugs using admetSAR [23, 24].
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Drug literature information for AD treatment
For the top 300 repurposable drugs (i.e., drugs with
the highest number of significant proximities to the
AD data sets), we manually searched and curated
the literature for their therapeutic efficacy against
AD using PubMed. In addition to the title, journal,
and PubMed ID, we summarized the types (clinical
and non-clinical), experimental settings (e.g., mouse/
human and transgenic line for non-clinical studies;
patient groups, randomization type, length, and con-
trol type of clinical studies), and results of these
studies. In total, we found 292 studies for 147
drugs.

Drug-target network
To build a high-quality drug-target network, several
databases were accessed, including the DrugBank
database (v4.3) [22], Therapeutic Target Database
(TTD) [25], PharmGKB database, ChEMBL (v20) [26],
BindingDB [27], and IUPHAR/BPS Guide to PHAR
MACOLOGY [28]. Only biophysical drug-target inter-
actions involving human proteins were included. To
ensure data quality, we kept only interactions that
have inhibition constant/potency (Ki), dissociation
constant (Kd), median effective concentration (EC50),
or median inhibitory concentration (IC50) ≤ 10 μM.
The final drug-target network contains 21,965 interac-
tions among 2892 drugs and 2847 human targets/
proteins.

Clinical trials
The AD interventional clinical trials were retrieved from
https://clinicaltrials.gov. Information including phase,
posted date, status, and agent(s) was obtained from
https://clinicaltrials.gov. Drugs were mapped to the
DrugBank IDs. Proposed mechanism and therapeutic
purpose were from Cummings et al. [29, 30].

Human protein interactome
We used our previously built high-quality comprehen-
sive human protein interactome which contains 351,
444 unique protein-protein interactions (PPIs, edges)
among 17,706 proteins (nodes) [11, 12, 31, 32].
Briefly, five types of evidence were considered for
building the interactome: physical PPIs from protein
three-dimensional (3D) structures, binary PPIs re-
vealed by high-throughput yeast-two-hybrid (Y2H)
systems, kinase-substrate interactions by literature-
derived low-throughput or high-throughput experi-
ments, signaling networks by literature-derived low-
throughput experiments, and literature-curated PPIs
identified by affinity purification followed by mass
spectrometry (AP-MS), Y2H, or by literature-derived

low-throughput experiments. The details are provided
in our previous studies [11, 12, 31, 32].

Network proximity quantification of drugs and AD data
sets
To quantify the associations between drugs and AD-
related gene sets from the data sets, we adopted the
“closest” network proximity measure:

dABh i ¼ 1
Aj jj j þ Bk k

X

a∈A

minb∈Bd a; bð Þ þ
X

b∈B

mina∈Ad a; bð Þ
 !

ð2Þ

where d(a, b) is the shortest path length between
gene a and b from gene list A (drug targets) and B
(AD genes), respectively. To evaluate whether such
proximity was significant, we performed z score
normalization using a permutation test of 1000 ran-
dom experiments. In each random experiment, two
randomly generated gene lists that have similar de-
gree distributions to A and B were measured for the
proximity. The z score was calculated as:

zd ¼ d − d
σd

ð3Þ

P value was calculated according to the permutation
test. Drug-data set pairs with Z < − 1.5 and P < 0.05 were
considered significantly proximal. In addition to network
proximity, we calculated two additional metrics, overlap
coefficient C and Jaccard index J, to quantify the overlap
and similarity of A and B:

C ¼ A∩Bj j
min Aj j; Bj jð Þ ð4Þ

J ¼ A∩Bj j
A∪Bj j ð5Þ

Generation of gene/protein networks
We offer three types of networks in AlzGPS: brain-
specific neighborhood (EGO) network for the genes, lar-
gest connected component (LCC) network for the data
sets, and inferred MOA network for significantly prox-
imal drug-data set pairs. The three networks differ by in-
clusion criteria of the nodes (genes/proteins). The edges
are PPIs colored by their types (e.g., 3D, Y2H, and litera-
ture). All networks are colored by whether they can be
targeted by the drugs in our database.
For the EGO networks, we filtered genes by their brain

expression and generated only the network for those
that were considered to be expressed in brain using
GTEx data. We used the ego_graph function from Net-
workX [33] to generate the EGO networks. The net-
works are centered around the genes-of-interest. We
incorporated the tissue specificity of the genes (indicated
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in the network by the node size) into the visualization
tool, to allow users to further filter the network to show
only the genes that have positive brain specificity.
An LCC network was generated for each AD data set

using the subgraph function from networkx. For MOA,
we examined the connections (PPIs) among the drug
targets and the data sets.

Website implementation
AlzGPS was implemented with the Django v3.1.0 frame-
work (www.djangoproject.com). The website frontend
was implemented with HTML, CSS, and JavaScript. The
frontend was designed to be highly interactive and inte-
grative. It uses AJAX to asynchronously acquire data in
JSON format based on user requests to dynamically
update the frontend interface. This architecture can
therefore be integrated into end users’ own pipelines.
Network visualizations were implemented using Cytos-
cape.js [34].

Results
Information architecture and statistics
One key feature of AlzGPS is the highly diverse yet in-
terconnected data types (Fig. 1). The three main data
types are genes, drugs, and AD-relevant omics data sets.
More than 100 omics data sets were processed, includ-
ing 84 expression data sets (Table S1) from AD trans-
genic animal models or patient-derived samples, 27 data
sets from the literature or from other databases, and 13
metabolomic data sets. The expression data sets contain
transcriptomic and proteomic data of human and rodent
samples. Comparative sample groups were available in
these data sets, such as early stage vs. late stage, healthy
vs. AD. The differentially expressed genes/proteins were
calculated for each data set.
The statistics and relations of the database are

shown in Fig. 1b. We collected and processed all the
basic information (see the “Methods” section) and
then constructed the relationships among the data
types. For example, for genes and drugs, the relation-
ship is drugs targeting proteins (genes); for genes and
data sets, the relationship is genes being differentially
expressed in the expression data sets or included in
other types of data sets, such as literature-based; for
drugs and data sets, the proximity between each pair
was calculated (see the “Methods” section) to identify
the drug that is significantly proximal to a data set,
and vice versa.
Additional data types were collected or generated.

For genes, these included genetic evidence (variants
associated with AD) and tissue expression specificity
to provide additional information for target gene
identification. For drugs, we collected the data from

more than 1000 AD clinical trials, and included the
proposed mechanisms-of-action and possible thera-
peutic indications on AD [29, 30]. Drugs of these tri-
als were extracted such that users can open
associated drugs from the trial page. The BBB prob-
ability was computed [23, 24], as well as 23 other
predicted absorption, distribution, metabolism, excre-
tion, and toxicity (ADMET) properties. For the top
300 drugs with the highest number of significant
proximities to all the data sets, we manually curated
the available literature. A total of 292 studies were
found for 147 drugs (49%) that reported the associa-
tions of the drugs and AD. We grouped these studies
into clinical and non-clinical, and extracted trial in-
formation for clinical type and experimental setting
(number and type of patients) for both types. We also
summarized and provided the study results.

Web interface and network visualizations
A highly interactive web interface was implemented
(Fig. 2). On the home page (Fig. 2a), the user can search
for drugs, genes, metabolites, gene variants, and clinical
trials. The user can directly list all drugs by their first-
level ATC code, all AD data sets available, and all the
AD clinical trials (Fig. 2b). The search results are dis-
played in the “DATA TABLE” tab and switched with
their associated buttons in the “RESULT” section on the
left. Each data entity has its own data table for the
associated information in the “DATA TABLE” tab. For
example, on the gene page of APP (Fig. 2b) is the basic
information (green rows), such as name, type, chromo-
some, and synonym; descriptions for the derived data
(purple rows), such as tissue specificity and number of
genetic records; and external links (red row). Data for
the relations of APP and other entities can be loaded by
clicking the button in “DETAIL” (blue row). For
example, the expression data sets in which APP is differ-
entially expressed can be found by clicking the “DATA-
SET” button (Fig. 2b). Any data loaded will be added to
the same explorer. The buttons in the “RESULT” are
organized in trees. For example, APP is included in the
“V1 AD-seed” data set, which contains 144 AD-
associated genes with strong literature evidence. When
the user clicks this data set in the APP gene table, a new
data table for the “V1 AD-seed” data set will replace the
APP gene page, and a new button with indentation will
appear below the APP button in “RESULT” (Fig. 2b).
The all-in-one interactive explorer that minimizes the

need for navigation of information using the relational
nature of these data is a major feature of the web inter-
face. Another major feature is the network visualizations.
We offer three types of networks: (1) the brain-specific
neighborhood network (EGO) for a gene-of-interest that
shows the PPIs with its neighbors (Fig. 2c), (2) the
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Fig. 2 Web interface overview. a The home page provides access to searching, listing entries, and viewing brain-specific gene/target networks.
User will be redirected to the interactive explorer (b), in which all information is then dynamically loaded and added to the same web page. Each
data entity has its own basic information page under the “DATA TABLE” tab. Additional information regarding the relations (e.g., proximity results)
can be loaded by clicking the corresponding button in the “DETAIL” section. c An example brain-specific neighborhood network using APOE. d
An example largest connected component network using data set “V2”
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Fig. 3 Case study—target identification. Four genes, MAPT (a), INPP5D (b), APOE (c), and BACE1 (d), are used as examples to show the gene
page. On the gene page, we show a summary of several statistics of the gene in AlzGPS, including the number of drugs that can target it,
number of data sets of omics in which the target/protein coding gene is differentially expressed, number of genetic records, and the brain
expression specificity. Detailed information can be loaded by clicking corresponding buttons. Examples of detailed differential expression results
and genetic records are shown for these four genes. In addition, a brain-specific neighborhood network is available that centers around the
gene-of-interest and shows the targetability of its neighborhood
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largest connected component (LCC) network for a data
set that shows the largest module formed by the genes
in this data set (Fig. 2d), and (3) inferred MOA network
for a significantly proximal drug-data set pair, which is
illustrated in the case studies below.

Case study—target identification
Generally, using AlzGPS for AD target identification
starts with selecting one or a set of data sets (Fig. 2b,
“DATASET” tab). Users can select a data set based on
organisms, methods (e.g., single-cell/nuclei RNA-Seq),
brain regions, and comparisons (e.g., early-onset AD vs.
healthy control) for the expression data sets. Addition-
ally, we have collected data sets from the literature,
other databases, or computationally predicted results.
Here, we use the “V1 AD-seed” data set as a starting
point. This data set was from our recent study which
contains 144 AD-associated genes based on literature-
derived evidence. We found that 118 genes were differ-
entially expressed as shown in at least one data set. By
browsing these genes, we selected four examples,
microtubule-associated protein tau (MAPT), inositol
polyphosphate-5-phosphatase D (INPP5D), apolipopro-
tein E (APOE), and β-secretase 1 (BACE1) based on
positive brain expression specificity and number of data
sets that include them.

MAPT
MAPT encodes the tau protein, modification of which is
one of the main neuropathological hallmarks of AD [35,
36]. Mutations and alternative splicing of MAPT are as-
sociated with risk of AD [37]. MAPT is differentially
expressed in five expression data sets (Fig. 3a) and has
high brain specificity. Five pieces of genetic evidence
were found for MAPT. MAPT can be targeted by 27
drugs. In addition, many of its direct PPI neighbors are
targetable, suggesting a potential treatment strategy by
targeting MAPT and its neighbors.

INPP5D
We found 7 genetic association records for INPP5D
(Fig. 3b). Recent GWAS results showed that the
rs35349669 polymorphism of INPP5D was significantly
associated with an increased risk of late-onset AD in
Caucasians [9, 38]. The intronic SNP rs61068452 of
INPP5D was significantly associated with reduced cere-
brospinal fluid (CSF) t-tau/Aβ1–42 ratio, showing a po-
tentially protective role in AD [39]. In addition to these
genetic associations, INPP5D was also differentially
manifested across 21 human and mouse expression data
sets. Altogether, INPP5D may suggest potential drug tar-
get candidates for future therapeutic development.

APOE
APOE has three major alleles, ε2, ε3, and ε4. Individuals
carrying the ε4 allele have an increased risk of develop-
ing AD compared to those carrying the more common
ε3 allele, while ε2 decreases the risk [40, 41]. The ε4 al-
lele of APOE is the main genetic risk factor of AD [41].
APOE ε4 plays an important role in Aβ deposition [41],
a major pathological hallmark of AD. APOE is differen-
tially expressed in 22 data sets (Fig. 3c). It has a high
number of associated genetic records—91. Both APOE
and its PPI partners can be targeted.

BACE1
BACE1 cleaves APP and generates Aβ peptides [42],
whose aggregation is a pathological hallmark of AD. The
inhibition of BACE1 has been a popular target for AD
drug development. Shown in Fig. 3d, BACE1 is differen-
tially expressed in 4 data sets.

Case study—drug repurposing
In this section, we use sildenafil and pioglitazone as two
examples. In our recent studies, we found that both sil-
denafil and pioglitazone were associated with a reduced
risk of AD using network proximity analysis and retro-
spective case-control validation [14]. Mechanistically,
in vitro assays showed that both drugs were able to
downregulate cyclin-dependent kinase 5 (CDK5) and
glycogen synthase kinase 3 beta (GSK3B) in human
microglia cells. These drugs were discovered using dif-
ferent data sets. Sildenafil was found using a high-quality
literature-based AD endophenotype module (available as
AlzGPS data set “V1 AD-seed”) containing 144 genes.
Pioglitazone was found using 103 high-confidence AD
risk genes (available as AlzGPS data set “V4 AD-
inferred-GWAS-risk-genes”) identified by GWAS [13].
AlzGPS provides a list-view of the network proximity

results of all the drugs organized by their first-level ATC
code, which can be found in the “DRUG CLASS” tab
(Fig. 2b). The drugs are ranked by the number of signifi-
cant proximities to the data sets. Sildenafil is in the top
four of the 148 drugs under the ATC code G “Genito-
urinary system and sex hormones” with network prox-
imity results, the top three being vardenafil, ibuprofen,
and gentian violet cation. Pioglitazone is in the top six of
the 226 drugs under the ATC code A “Alimentary tract
and metabolism,” following tetracycline, human insulin,
epinephrine, cholecalciferol, and teduglutide. Both drugs
achieved high numbers of significant proximities to the
expression data set. Next, we examined the basic infor-
mation of these drugs (Fig. 4a, e). Both drugs are pre-
dicted to be BBB penetrable. Sildenafil has 20 known
targets and is significantly proximal to 27 of the 111 data
sets (Fig. 4a). We found one non-clinical study that re-
ported that sildenafil treatment improves cognition and
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Fig. 4 Case study—drug repurposing. Sildenafil and pioglitazone are used as examples to demonstrate how to use AlzGPS for drug repurposing.
a Basic information for sildenafil. b Network proximity results for sildenafil. c Literature evidence for sildenafil. d Inferred mechanism-of-action for
sildenafil targeting the “V1 AD-seed” data set, which contains 144 high-quality literature-based Alzheimer’s disease (AD) endophenotype genes. e
Basic information for pioglitazone. f Network proximity results for pioglitazone. g Five studies were found that were related to treating AD with
pioglitazone. h Inferred mechanism-of-action for pioglitazone targeting the “V4 AD-inferred-GWAS-risk-genes” data set which contains 103 high-
confidence AD risk genes identified using genome-wide association studies
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memory of vascular dementia in aged rats [43] (Fig. 4c).
As noted, we identified the potential of sildenafil against
AD using the AD endophenotype module (Fig. 4b,
Z = − 2.44, P = 0.003). Then, clicking the corresponding
“MOA (mechanism-of-action)” button opened the in-
ferred MOA network for sildenafil and the data set
(Fig. 4d). Although sildenafil does not target the genes in
the data set (green) directly, it can potentially alter them
through PPIs with its targets (blue).
Pioglitazone has 8 known targets and is significantly

proximal to 34 data sets (Fig. 4e). Five studies containing
both clinical and non-clinical data were found to be re-
lated to treating AD with pioglitazone. For example, a
clinical study showed that pioglitazone can improve cog-
nition in AD patients with type II diabetes [44] (Fig. 4g).
Similarly, network results and associated MOA networks
suggested that pioglitazone can affect AD risk genes
through PPIs (Fig. 4f, h).

Validation studies
Once candidate agents are identified on AlzGPS, a var-
iety of validation steps can be pursued [6]. The agent
can be tested in animal model systems of AD pathology
to evaluate the predicted MOA of behavioral and bio-
logical effects. Since these are repurposed agents and
have been used for other indications in human health-
care, electronic medical records can be interrogated to
determine if there are notable effects on AD incidence,
prevalence, or rate of progression. Both these methods
are imperfect since animal models have rarely been pre-
dictive of human response, and doses and duration of
exposures may be different for indications other than
AD in which the candidate agents are used. The ultimate
assessment that could make an agent available for hu-
man care is success in a clinical trial and nominated
agents must eventually be submitted to trials. If repur-
posed agents are not entered into trials because of intel-
lectual property limitations or other challenges, the
information from AlzGPS may be useful in identifying
druggable disease pathways or providing seed structures
that provide a basis for creation of related novel agents
with similar MOAs.

Discussion
Dr. Alois Alzheimer first described the condition in
1907, but scientists have not been able to develop any
disease-modifying treatments for AD since. In this study,
we developed a computational platform, termed AlzGPS
(https://alzgps.lerner.ccf.org), which will advance
genome-informed Alzheimer’s patient care and thera-
peutic development, by leveraging all existing multi-
omics knowledge and data. To be specific, AlzGPS
enables searching, sharing, visualizing, querying, and
analyzing multi-omics (genomics, transcriptomics,

proteomics, metabolomics, and interactomics), different
types of heterogeneous bio-networks, and clinical data-
bases for genome-informed target identification and
drug repurposing for potential treatment of AD. In
addition, drug candidates prioritized by AlzGPS may
offer possible tool compounds for investigation of dis-
ease biology or pathobiology of AD. We believe that
AlzGPS will be a valuable tool for the AD drug discovery
community by providing (1) (manually curated) abun-
dant diverse information of AD multi-omics data sets,
genes, and drugs; (2) drug repurposing results using
state-of-the-art network proximity approaches for novel
insights; and (3) highly interactive and intuitive web
interface with informative network visualizations. To the
best knowledge of the authors, this study presents the
first AD multi-omics framework using both network-
based methodologies and genome-informed precision
medicine drug discovery for AD.
We acknowledge several potential limitations in

current AlzGPS. First, we assembled multi-omics data
and clinical trial data from diverse sources. Data
harmonization is a crucial issue which should be ad-
dressed in the future, possibly through machine learn-
ing approaches. Second, although we assembled
comprehensive PPIs based on our sizeable efforts, in-
completeness of human protein-protein interactome
data and potential literature bias may influence per-
formance of AlzGPS. For example, well-studied genes
(such as APOE, MAPT, and BACE1) are top priori-
tized target candidates as they have more accumulat-
ing PPIs, genetic and genomic information. In
addition, the current implementation of AlzGPS does
not differentiate the allele-specific expression. We will
integrate more isoform-specific expression profiles
(such as APOE ε2/ε3/ε4) in the AlzGPS in the future.
Although we integrated large-scale genetic data from
meta-analyses of GWAS, whole-genome/exome se-
quencing data for AD are missing in current AlzGPS.
We will integrate high-throughput next-generation
DNA sequencing from multiple national AD genome
projects, including the Alzheimer’s Disease Sequen-
cing Project (ADSP) and the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), especially DNA/RNA
sequencing from minority population, which will pro-
vide unbiased genomic resources to prioritize novel
drug targets. Systematic evaluation of pharmacokinetic
properties (including brain penetration) for drugs
using in silico approaches and publicly available
in vitro and in vivo assays is highly encouraged in the
future. Finally, we will integrate clinical trial and ap-
proved drug information from other sources, includ-
ing European Medicines Agency, Pharmaceuticals and
Medical Devices Agency at Japan, and the China Food
and Drug Administration, to advance the international
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Alzheimer’s research communities under the AlzGPS
framework. We will continue to add more types of
omics data and update AlzGPS annually or when a
large amount of new data is available.

Conclusions
In summary, AlzGPS presents the first comprehensive in
silico tool for human genome-informed precision medi-
cine drug discovery for AD. AlzGPS contains rich and
diverse information connecting genetics, genomics, pro-
teomics, and metabolomics for disease pathobiology, and
drugs for AD target identification and drug repurposing.
It utilizes multiple biological networks and omics data,
and provides network-based drug repurposing results
with network visualizations. From a translational per-
spective, if broadly applied, AlzGPS will offer a powerful
tool for prioritizing biologically relevant targets and clin-
ically relevant repurposed drug candidates and tool com-
pounds for multi-omics-informed discovery in AD and
other neurodegenerative diseases.
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