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(PSEN2), respectively (see [5] for references). These mu-
tations result invariably in the generation of longer or
more aggregating forms of A� . As this seems sufficient
for the full development of similar clinical features as
the much more common spontaneous, late-onset AD
(LOAD) [6–8], it is important to investigate the effect of
Aß on the cellular manifestation of the disease [9].
Despite the fact that FAD contributes to less than

0.1% of AD cases, its discovery has boosted the gener-
ation of a variety of transgenic mouse models that carry
a combination of these human mutations and replicate
key aspects of human AD, like amyloid deposition and
progressing cognitive decline [10, 11]. These “first-gen-
eration” transgenic AD mouse models have been invalu-
able for delineating multifarious molecular mechanisms
of disease onset and progression, but they share the limi-
tation that the proteolytic processing of overexpressed
APP results not only in the overproduction of Aß, but
also of some other APP fragments. Thus, in these mice,
pathological changes per se cannot be clearly attributed
to an increased A� production since they could also be
due to the (patho) physiological effects of one or several
of the other APP fragments [12]. To overcome these
drawbacks of APP overexpression, a new generation of
mouse models of sporadic AD has been developed by
the Saido laboratory [13] using a knock-in strategy to
introduce the Swedish mutation, which increases all Aß
species, into the APP gene, together with either the
Beyreuther/Iberian mutation or the Beyreuther/Iberian
plus the Arctic mutation [13, 14]. These new models,
denominated as AppNL-F and AppNL-G-F, express normal
APP levels but develop robust Aß pathology resulting in
synaptic degeneration and memory impairments [14].
More specifically, AppNL-F mice develop high levels of
Aß42 and a high Aß42/40 ratio without changes in the
expression of APP and other fragments (except a shifted
ratio of CTF-� /CTF-ß). Addition of the Arctic mutation
to AppNL-F resulted in mice (AppNL-G-F) that progress
threefold faster to a more severe AD pathology and cog-
nitive deficits compared to AppNL-F mice [12, 13]. Com-
parative studies of these mice with first-generation
transgenic APP models confirmed the hypothesis that
some findings with the latter are likely to be due to “side
effects” of overexpressing APP and non-Aß fragments
rather than the increased levels of Aß or Aß42/40 [12,
13, 15]. With regard to the ongoing characterization of
cognitive performance of AppNL-F and AppNL-G-F mice,
memory deficits were reported at 6 months in AppNL-G-F

and 18months in AppNL-F mice [13, 16–18]. However,
some of the memory deficits observed at 6 months of
age in AppNL-G-F mice have been subtle [17] or could
not be reproduced by others [19]. Together, these data
led to the conclusion that “App knock-in mice should be
considered models of preclinical AD” [12].
Research on preclinical models of AD and their
characterization requires sensitive tools to detect subtle
indications of incipient pathology. Given that AD as the
most common form of dementia [1, 20] is the integrative
result of a complex interplay of multiple multicellular
pathophysiological processes [9] with synaptic failure as a
major downstream pathological deterioration [21, 22],
early signs of pathological changes are likely to be discern-
ible at the level of synapses. Electrophysiological measures
of synaptic transmission and plasticity are sensitive to
even minor changes in pre- and postsynaptic functions
[23–27] and therefore meet these requirements optimally.
However, an evaluation of AppNL-G-F mice at the syn-

aptic level, i.e., the primary locus of the pathological de-
terioration of cognition, is still lacking. To address this,
we used in the current study long-term extracellular re-
cordings in acute slices of the prefrontal cortex (PFC)
and the hippocampus (HC) to evaluate activity-
dependent synaptic changes at two different stages of
AD pathology, 3–4 and 6–8 months. Whole-cell patch-
clamp recordings of mEPSCs and mIPSCs at the age of
6–8 months, i.e., when an almost saturated amyloidosis
is present in these mice [13], complemented these exper-
iments. Measurements of soluble and insoluble Aß40 and
Aß42 tissue levels served as an indicator of the progres-
sion of Aß pathology.
We found first signs of synaptic impairment already at

3–4months of age in AppNL-G-F mice, becoming overt as
faster decay of LTP in PFC. With further progression of
pathology at 6–8months, PFC LTP was severely impaired,
paralleled by a marked reduction in basal synaptic trans-
mission. In contrast, in the hippocampal CA1 region, basal
synaptic transmission, short-term plasticity, LTP, and LTD
were inconspicuous at 3–4months, but at 6–8months,
LTP was clearly impaired and short-term plasticity (paired-
pulse ratio at 10ms interpulse interval) reduced. No
changes were found in basal synaptic transmission and
LTD. Whole-cell patch-clamp recordings at 6–8months,
the age of pronounced synaptic pathology, revealed in-
creased mEPSC and mIPSC frequency pointing to an en-
hanced presynaptic activity. The increase in mIPSC
amplitude suggested that the increase in GABAergic trans-
mission included also postsynaptic mechanisms.
To our knowledge, this is the first electrophysiological

characterization of hippocampal and prefrontal synaptic
functioning of these second-generation AD models,
which are expected to become a standard for identifying
mechanisms and pathways upstream and downstream of
A� amyloidosis [13].

Materials and methods
Animals
The housing conditions and procedures to prepare acute
brain slices were approved by the KU Leuven Ethical
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new staff could not be hired because of the difficult local
grant situation. However, according to our experience, it
seems to be more important that new findings are repli-
cated independently by other laboratories under (usu-
ally) slightly different methodical conditions to get a
more robust picture of the particular phenotype. Thus,
we noticed often in the past that results could be pre-
cisely replicated under the same conditions in one la-
boratory while other laboratories failed consistently to
confirm them. Prominent examples for the latter are the
controversies about the “molecular switch” in the field of
mGluR receptors, the role of NR2A and NR2B NMDA
receptor subunits in synaptic plasticity and learning, and
the function of PKMzeta within the same functional cir-
cuits. Here, the laboratories that first described the func-
tion could consistently reproduce the initial finding,
while other laboratories continued to fail. In relation to
the present study, it would therefore be best if the same
or similar experiments were carried out in other labora-
tories in order to check/validate the reproducibility of
the presented results under different laboratory
conditions.
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