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Abstract

Background: Peripheral blood microRNAs (miRNA) have been identified as potential biomarkers for Alzheimer’s
disease (AD). Study results have generally been inconsistent and limited by sample heterogeneity. The aim of this
study is to establish candidate blood miRNA biomarkers for AD by comparing differences in miRNA expression
between participants with brain amyloid imaging-defined AD and normal cognition.

Methods: Blood RNA was extracted from a subset of participants from the Australian Imaging Biomarkers Lifestyle
Study of Ageing cohort (AIBL) with brain amyloid imaging results. MiRNA profiling was performed using small RNA
sequencing on 71 participants, comprising 40 AD with high brain amyloid burden on imaging (amyloid positive)
and 31 cognitively normal controls with low brain amyloid burden (amyloid negative). Cross-sectional comparisons
were made between groups to examine differential miRNA expression levels using Fisher’s exact tests. Replication of
results was undertaken using a publicly available dataset of blood miRNA data of AD and controls. In silico analysis of
downstream messenger RNA targets of candidate miRNAs was performed to elucidate potential biological function.

Results: After quality control, 816 miRNAs were available for analysis. There were 71 significantly differentially expressed
miRNAs between the AD and control groups (p < 0.05). Two of these miRNAs, miR-146b-5p and miR-15b-5p, were also
significant in the replication cohort. Pathways analysis showed these miRNAs to be involved in innate immune system
and regulation of the cell cycle, respectively, both of which have relevance to AD pathogenesis.
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Conclusion: Blood miR-146b-5p and miR15b-5p showed consistent differential expression in AD compared to controls.
Further replication and translational studies in strictly phenotyped cohorts are needed to establish their role as
biomarkers for AD to have clinical utility.
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Background
AD is a neurodegenerative disease characterised by de-
position of amyloid β (Aβ) in neuritic plaques extracellu-
larly and the intracellular formation of neurofibrillary
tangles of hyperphosphorylated tau protein. It is a major
source of disease burden worldwide; however, currently,
there are no effective treatments. It is well recognised
that AD is a biological and clinical continuum. It begins
at a preclinical stage and, as molecular alterations and
neurodegeneration accumulate, progresses through to
mild cognitive impairment due to AD (prodromal AD),
towards mild, moderate, and severe dementia stages [1].
The National Institute on Aging and Alzheimer’s Associ-
ation (NIA-AA) research framework defines AD bio-
logically, by neuropathologic change or biomarkers [2].
Biomarkers are grouped into those of β amyloid depos-
ition (e.g. through cerebrospinal fluid (CSF) measure-
ments or positron emission tomography (PET) imaging),
pathologic tau, and neurodegeneration [AT(N)]. The
relative high cost of PET and invasive nature of CSF
sampling limit the accessibility and feasibility of these
biomarkers for routine clinical use. Blood-based bio-
markers would offer great advantage as they are easily
accessible and well tolerated in the clinical setting.
Current blood biomarkers are limited and there is a
need for the discovery of new blood-based biomarkers
to enable early and accurate diagnosis of the disease. Al-
ternatively, these less-invasive and less-expensive blood-
based biomarkers may play a screening role in selecting
individuals for more expensive/invasive testing [2]. Fur-
thermore, amyloid and tau may explain only some as-
pects of AD pathophysiology; the discovery of new
biomarkers could potentially lead to new insights into
AD biology and therapeutic targets.
MicroRNAs (miRNAs) have been recognised as novel

biomarkers of diseases because of their diverse tissue-
and cell-specific biological and pathological functions
[3]. They are a class of short non-coding RNA, of ap-
proximately 22 nucleotides in length, which in general
post-transcriptionally downregulate protein expression.
MiRNAs bind to complementary sites located in the
three prime untranslated regions (3′ UTRs) of their tar-
get messenger RNAs (mRNAs) resulting in inhibition of
translation [4, 5]. Their dysregulation has been impli-
cated in various pathological conditions. Prior studies

have proposed candidate miRNA biomarkers for AD,
with differential expression of miRNAs in AD compared
to control groups [6–8]; however, results of these bio-
marker studies have been inconsistent with a lack of re-
producibility and validation of candidate miRNAs across
studies. One constraint is the phenotypic variability
across cohorts [6]. Most of the current studies define
their cohorts based on clinical criteria. There is signifi-
cant discordance between the clinical diagnosis of AD
with post-mortem examination for AD pathology [9].
Furthermore, individuals without cognitive impairment
in the control cohort may harbour amyloid pathology at
post-mortem. When searching for new biomarkers, it is
important that cohort phenotypes are strictly defined,
and the addition of brain amyloid imaging using posi-
tron emission tomography (PET) to identify Aβ burden
in life improves the robustness of the diagnostic groups,
especially when examining pre-clinical or early AD [2].
In this study, peripheral blood miRNA expression

was examined in a well-phenotyped cohort with as-
sessment of brain amyloid burden to support the clin-
ical diagnosis of AD and a non-AD comparison group.
Using small-RNA sequencing, differential miRNA ex-
pression among participants with amyloid-positive AD
compared to amyloid-negative cognitively normal con-
trols was assessed. Replication was undertaken in an
independent cohort. The potential biological functions
of candidate miRNAs and role in AD pathology were
assessed using in silico analyses of mRNA targets and
pathways.

Methods
Sample selection
This study is a cross-sectional analysis of a subset of par-
ticipants from the Australian Imaging Biomarkers Life-
style Study of Ageing (AIBL) cohort. The methodology
of recruitment for the AIBL study has been previously
described [10]. AIBL is a longitudinal study involving
participants with AD, mild cognitive impairment, and
healthy controls. A subset of the AIBL cohort underwent
amyloid PET imaging at baseline and at 18-monthly in-
tervals to measure brain Aβ burden [11]. Four different
Aβ tracer compounds have been used in the AIBL co-
hort and participants were characterised as amyloid-
positive or amyloid-negative based on tracer-specific
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standardised uptake value ratio (SUVR) defined by the
AIBL research group using their CSIRO-developed
CapAIBL PET quantification algorithm. The thresholds
used were PiB (SUVR 1.4), NAV4694 (SUVR 1.4), Flute-
metamol (SUVR 0.55), and Florbetapir (SUVR 1.05) [12].
The thresholds were selected as per their association
with risk of disease progression.
From the subset of the AIBL cohort with amyloid

scans, participants were selected for our study if they
met the following criteria:

1. PAXgene tubes of whole blood available for RNA
extraction AND

2. Amyloid imaging data indicating high Aβ burden
(amyloid positive) for the AD group OR

3. Amyloid imaging data indicating low Aβ burden
(amyloid negative) for the non-AD cognitively nor-
mal control group

Additional criteria for the amyloid negative control
group include the following:

1. A minimum of 36 months of cognitively normal
diagnosis AND

2. A minimum of two amyloid negative scans (36
months follow-up) on PET imaging

Those who converted to MCI or AD during the
follow-up period of up to 108months were excluded.
The institutional ethics committees of Austin Health,

St. Vincent’s Health, Hollywood Private Hospital, and
Edith Cowan University granted ethics approval for the
AIBL study. All volunteers gave written informed con-
sent before participating in the study.

RNA extraction
Total RNA including miRNA was isolated using the
PAXgene Blood miRNA Kit (Qiagen, Germany) follow-
ing the manufacturer’s recommendations. RNA integ-
rity was analysed using Bioanalyzer 2100 (Agilent,
USA), and concentration and purity of total RNA (includ-
ing miRNA) were quantified using the NanoDrop 2000
UV-spectrophotometer (Thermo Scientific, Wilmington,
DE, USA). RNA samples were concentrated by Speedy
vacuum to standardise samples to 60 ng/ul followed by
quality checks using the Xpose (Trinean) and TapeStation
(Agilent). The amount of RNA used for the sequencing
assay was 5 μl (i.e. 300 ng).

High-throughput expression profiling of miRNAs
Library preparation and sequencing was performed by
the Ramaciotti Centre for Genomics, University of New
South Wales. Small RNA samples were converted to
Illumina sequencing libraries using the QIAseq Small

RNA-seq prep (Qiagen, Germany), following the manu-
facturer’s protocol. Libraries were normalised to 6 nM
and then pooled adding 26 libraries per pool. Each pool
was sequenced using one NextSeq 500 1 × 75bp High
Output flowcell and NextSeq 500/550 v2 kits, generating
75 bp single-end reads, with approximately 10 million
reads per sample. A pass threshold of > 85% of bases
higher than Q30 was used. FASTQ files were generated
using bcl2fastq2.
The sRNAnalyzer pipeline [13] was used for pre-

processing, alignment, and summarising the read counts
of the miRNA sequenced data. The quality of the raw se-
quenced data was initially examined using FastQC
V0.11.5. The 5′ adapter GTTCAGAGTTCTACAGTC
CGACGATC, the 3′ adapter AACTGTAGGCACCA
TCAAT, and sequences below 15 nucleotides in length
were removed in the pre-processing step. The Illumina
TruSeq stop oligo sequences were also removed. sRNA-
nalyzer uses Cutadapt [14] to trim the adapter sequences
and uses the software Prinseq [15] to remove low quality
and short reads (nt < 15). The quality of the pre-
processed data was examined using the multiqc software
[16]. The alignment module in sRNAnalyzer uses Bowtie
[17] for alignment and provides choices for various
miRNA and small RNA databases for mapping. For this
study, miRBase (v21) and miRNA precursor annotations
in MirGeneDB [18] with a single read assignment option
in which each read is counted only once to its first best
alignment were used. The alignment module uses a local
probabilistic model to find the best possible assignment
of those reads that have multiple matches. The counts
for individual mature or precursor miRNA were ob-
tained using the summarisation module.

Statistical methodology for differential expression
analysis
Sequencing count data were normalised and miRNAs
with more than 30% missing observations were ex-
cluded. Additionally, very lowly expressed miRNAs (< 5
for more than 10% of the samples) and those with very
low average counts (< 5) were excluded from the ana-
lysis. All the differential expression analyses including
the normalisation of read counts and comparison of two
groups were done using the Bioconductor package
edgeR [19]. Differential miRNA expression was exam-
ined between the amyloid-positive AD and amyloid-
negative control groups using the Fisher’s exact test in
edgeR. A p value of < 0.05 was considered nominally sig-
nificant and because of the high number of tests per-
formed, all p values were corrected for multiple testing.
A false discovery rate (FDR) of < 0.1 was considered sig-
nificant for this study. The FDR p values were obtained
using the Benjamini and Hochberg (1995) procedure as
implemented in edgeR [20]. The receiver operating
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characteristic curve (ROC) and the area under the ROC
(AUC) based on the logistic regression analysis of case-
control status with the set of predictors were obtained
using the R package pROC [21].

Replication of results in an independent cohort
Replication of significantly differentiated miRNAs be-
tween AD and cognitively normal controls in the discov-
ery AIBL cohort was performed in an independent
sample with previously published miRNA data by
Leidinger and colleagues [22]. The AD group fulfilled
the NINCDS-ADRDA criteria for probable AD, but this
study cohort was not biomarker-defined with brain
amyloid imaging. The raw small-RNA sequencing data
from this cohort were downloaded as FASTQ-formatted
files from the DDBJ Sequence Read Archive (DRA)
(trace.ddbj.nig.ac.jp/DRASearch) under the accession
number SRP022043. The data were processed using the
same pipeline as this current study and differential
miRNA expression analyses between AD and control
groups performed as outlined above.

MiRNA target and biological function analyses
Candidate replicated miRNAs were assessed for putative
target genes and pathways. Using Ingenuity® Pathway
Analysis (IPA) (www.ingenuity.com), putative target
genes were identified using the ‘microRNA Target Filter’
tool. Only target genes which were predicted in silico
with high confidence and/or were experimentally vali-
dated were included. Gene-Enrichment/Functional An-
notation analysis for the lists of mRNA targets was
conducted using DAVID (the database for annotation,
visualisation and integrated discovery; https://david.
ncifcrf.gov/home.jsp) bioinformatics resource 6.8 [23].
DAVID functional annotation clustering was performed
for each target mRNA gene list derived from each se-
lected candidate miRNA (using IPA miRNA target filter
tool described above). Relevant pathways using DAVID
pathway viewer was accessed where applicable when
there was an overrepresentation of genes in the selected
lists in a relevant KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway [24].

Results
AIBL cohort selection and demographics
From the AIBL cohort, 80 participants (45 amyloid posi-
tive AD and 35 controls) had PAXgene tubes of whole

blood available for RNA extraction. Following RNA ex-
traction, 9 samples were excluded due to low RNA in-
tegrity number (RIN) of less than 6.5. Subsequently, 71
samples (40 AD and 31 controls) underwent miRNA
profiling. The sample demographics are shown in
Table 1. The mean age and standard deviation (SD) for
the cohort (n = 71) was 73.0 ± 6.3. The mean Mini-
Mental State Examination (MMSE) [25] score for the
AD group was 21.1 (SD 4.6), and for the control group
29.1 (SD 1.0). There was an overrepresentation of indi-
viduals with one or more APOE Ɛ4 alleles in the AD
(80%) group, with the control group having only 32%
positive for the presence of an APOE Ɛ4 allele.

Differential miRNA analysis: AD versus controls
Following normalisation and quality control checks, 816
unique miRNAs were examined between individuals
with amyloid-positive AD and amyloid-negative controls.
There were 71 miRNAs differentially expressed between
the two groups (p < 0.05) and four of these remained sig-
nificant after controlling for multiple testing (FDR < 0.1).
The 71 differentially expressed miRNAs are shown in
Table 2. Of these, 43 miRNAs were upregulated and 28
were downregulated in AD compared to controls. The
top FDR significant miRNA (hsa-miR-218-1-5p) had a
high fold change of 7.15. The magnitude of fold change
for the remaining miRNAs ranged from 0.34 to 2.90. In
addition, there were no significant changes to the results
shown in Table 2 after adjusting for the covariates of age,
sex, education, and MMSE (Supplementary Table 1).

Replication of dysregulated miRNAs in an independent
cohort
Using the same bioinformatics pipeline as the original
analysis of differential blood miRNA expression in
amyloid-positive AD and amyloid-negative controls, an
independent blood miRNA-seq dataset derived from 48
AD and 22 cognitively normal control individuals was
used to replicate the identified significant miRNAs
shown in Table 2 [22]. This cohort comprised an AD
group of 23 males and 25 females with average age
70.3 ± 7.9 years and MMSE score of 18.7 ± 3.5, as well as
a normal control group of 11 males and 11 females with
average age 67.1 ± 7.5 years and MMSE score 29.3 ± 1.2.
In this cohort, 567 mature miRNAs were examined fol-
lowing data cleaning and normalisation using our bio-
informatics pipeline. Of the 816 miRNAs examined in

Table 1 Cohort demographics

Sample group N Age (mean ± SD) Sex (m/f) MMSE (mean ± SD) Amyloid PET status APOE Ɛ4 carrier, N (%)

Whole cohort 71 73.0 ± 6.3 33/38 24.6 ± 5.3 n/a n/a

AD 40 74.9 ± 6.0 19/21 21.1 ± 4.6 Positive 32 (80%)

Controls 31 71.0 + 5.9 14/17 29.1 ± 1.0 Negative 10 (32%)
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Table 2 Dysregulated miRNAs between amyloid-positive AD and amyloid-negative cognitively normal controls

MiRNA Log2 FC (AD vs controls) Fold changea p value (unadj) p value (FDR-corrected)

hsa-miR-218-1-5p 2.84 7.15 5.32E-08 4.34E-05

hsa-miR-4482-3p − 1.54 0.34 8.79E-05 0.035865

hsa-miR-16-2-3p 0.78 1.72 0.000409 0.095074

hsa-miR-4669-3p 1.30 2.45 0.000466 0.095074

hsa-let-7b-5p 0.75 1.69 0.000771 0.125787

hsa-miR-320a-3p 0.56 1.47 0.001074 0.132259

hsa-miR-574-5p 0.78 1.71 0.001135 0.132259

hsa-miR-5010-5p 0.72 1.65 0.001754 0.178899

hsa-miR-181a-1-5p 0.46 1.38 0.004002 0.277468

hsa-miR-1306-3p 0.68 1.60 0.004171 0.277468

hsa-miR-320c-1-3p 0.53 1.45 0.004248 0.277468

hsa-miR-3682-3p 0.68 1.60 0.004318 0.277468

hsa-miR-7113-5p 0.67 1.59 0.004566 0.277468

hsa-miR-30a-5p 0.67 1.59 0.00476 0.277468

hsa-miR-6793-3p 0.50 1.41 0.005823 0.316788

hsa-miR-3135a-5p 0.60 1.51 0.006553 0.328554

hsa-miR-548ae-2-5p 1.10 2.14 0.007103 0.328554

hsa-mir-3138 − 1.14 0.45 0.007248 0.328554

hsa-miR-6884-5p 0.58 1.49 0.008981 0.385731

hsa-miR-25-5p 0.44 1.36 0.010531 0.404056

hsa-miR-320b-1-3p 0.43 1.35 0.010797 0.404056

hsa-miR-4772-3p − 0.60 0.66 0.011461 0.404056

hsa-miR-3064-5p 0.56 1.47 0.011532 0.404056

hsa-mir-3607 − 0.53 0.69 0.012026 0.404056

hsa-miR-421-3p − 0.25 0.84 0.013088 0.404056

hsa-mir-3922 0.50 1.42 0.013536 0.404056

hsa-miR-3605-5p 0.46 1.37 0.014781 0.404056

hsa-miR-4649-3p − 0.53 0.69 0.01502 0.404056

hsa-miR-30a-3p 0.67 1.59 0.015235 0.404056

hsa-miR-542-3p 0.54 1.46 0.015267 0.404056

hsa-miR-4732-5p 0.42 1.34 0.01535 0.404056

hsa-miR-337-3p − 0.51 0.70 0.016418 0.412266

hsa-miR-320d-1-3p 0.47 1.38 0.017108 0.412266

hsa-mir-1273 g 0.36 1.29 0.017178 0.412266

hsa-miR-3913-1-3p − 0.34 0.79 0.018048 0.420787

hsa-miR-3691-3p − 0.35 0.78 0.020256 0.459135

hsa-miR-5701-1-5p − 0.57 0.67 0.023849 0.475508

hsa-miR-589-3p − 0.26 0.84 0.023928 0.475508

hsa-mir-202 − 0.62 0.65 0.02398 0.475508

hsa-miR-23b-5p 0.33 1.26 0.02412 0.475508

hsa-miR-3138-3p 0.46 1.38 0.024643 0.475508

hsa-miR-641-5p − 0.32 0.80 0.025083 0.475508

hsa-miR-15b-5p − 0.25 0.84 0.025333 0.475508

hsa-mir-1248 − 0.62 0.65 0.026133 0.475508
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our AIBL cohort, 478 of these overlapped with miRNAs
examined in the replication cohort.
In the replication cohort, there were 163 differentially

expressed miRNAs between AD and controls with FDR-
corrected p value < 0.1 and 191 differentially expressed
miRNAs with unadjusted p value of 0.05. The results are
presented in Supplementary Table 2. Of the original 71
differentially expressed miRNAs between AD and con-
trols in the AIBL cohort, there were 34 miRNAs overlap-
ping, of which only two miRNAs were significantly
differentially expressed (p < 0.05) and in the same direc-
tion of dysregulation (Fig. 1). MiR-15b-5p was downreg-
ulated in AD compared to controls in both the original
cohort and in the replication cohort with fold change
0.84 and 0.78 (log2 fold change − 0.25 and − 0.35), re-
spectively. Similarly, miR-146b-5p was downregulated in
AD compared to controls with fold changes of 0.82 and
0.78 (log2 fold change − 0.29 and − 0.35), respectively.

To identify any relationships with demographic mea-
sures, correlation analyses were performed in the AIBL
cohort for miR-15b-5p and miR-146b-5p with age, sex,
years of education, and MMSE. There were no signifi-
cant correlations identified between the two miRNAs
and the above demographic variables (p > 0.05).
A ROC analysis was performed for the two replicated

miRNAs, miR-15b-5p and miR-146b-5p. ROC fit was
based on a model using these two miRNAs and the
demographic predictors of age, sex, education, and
APOE4 carrier status. The area under the curve (AUC)
was 0.875 with a 95% bootstrap confidence interval of
0.796–0.954 (Fig. 2).

MiRNA target analysis
Target mRNA information for miR-15b-5p and miR-
146b-5p were sought bioinformatically (IPA). Results
were filtered to include only experimentally validated or

Table 2 Dysregulated miRNAs between amyloid-positive AD and amyloid-negative cognitively normal controls (Continued)

MiRNA Log2 FC (AD vs controls) Fold changea p value (unadj) p value (FDR-corrected)

hsa-miR-664b-5p 0.43 1.34 0.026223 0.475508

hsa-miR-579-5p 0.33 1.26 0.027033 0.479535

hsa-miR-2277-3p 0.37 1.29 0.027747 0.481733

hsa-miR-1287-5p 0.47 1.38 0.031054 0.525366

hsa-miR-627-3p − 0.29 0.82 0.032362 0.525366

hsa-miR-423-5p 0.30 1.23 0.032829 0.525366

hsa-miR-92b-5p 0.41 1.33 0.032835 0.525366

hsa-miR-548n-3p − 0.40 0.76 0.035717 0.541575

hsa-miR-3607-3p − 0.51 0.70 0.035911 0.541575

hsa-miR-146b-5p − 0.29 0.82 0.036279 0.541575

hsa-miR-3667-5p 0.59 1.50 0.03678 0.541575

hsa-miR-185-3p 0.31 1.24 0.03858 0.541575

hsa-miR-10a-5p − 0.41 0.75 0.038723 0.541575

hsa-miR-628-5p − 0.30 0.81 0.039484 0.541575

hsa-miR-190a-5p 0.52 1.44 0.04009 0.541575

hsa-miR-1284-5p − 0.24 0.84 0.04149 0.541575

hsa-let-7a-3 0.50 1.41 0.042166 0.541575

hsa-miR-4742-3p − 0.32 0.80 0.04264 0.541575

hsa-miR-196a-1-5p 0.80 1.74 0.04283 0.541575

hsa-miR-6513-3p − 0.25 0.84 0.043181 0.541575

hsa-miR-1294-5p 0.39 1.31 0.043499 0.541575

hsa-miR-3130-1-5p − 0.27 0.83 0.043804 0.541575

hsa-miR-643-3p − 0.38 0.77 0.04469 0.544284

hsa-miR-6729-3p 0.40 1.32 0.045509 0.546106

hsa-mir-1229 0.48 1.40 0.046396 0.548684

hsa-miR-654-3p − 0.46 0.73 0.048297 0.563006

hsa-miR-128-1-3p − 0.23 0.85 0.049922 0.56594

Log2FC log2 fold change, directionality denoted by + (upregulated) or – (downregulated) value when comparing AD to controls
aMagnitude of fold change between AD compared to controls
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highly predicted targets. MiR-146b-5p had 158 mRNA
targets fulfilling these criteria, and miR-15b-5p had 526
mRNA targets. To assess the biological function of these
target mRNAs, gene enrichment functional annotation ana-
lysis using DAVID 6.8 was performed. Messenger RNA
gene lists of miR-15b-5p and miR-146b-5p were uploaded
for functional analysis. The results of the functional annota-
tion analysis are summarised in Table 3, with the top anno-
tation clusters with FDR significance listed. Messenger
RNA targets of miR-146b-5p were centred around the in-
nate immune system and cytokine pathways. MiR-15b-5p
appears to target mRNAs involved in cell cycle and apop-
tosis. Pathways analysis showed the mRNAs targeted by
miR-146b-5p to be involved in the toll-like receptor signal-
ling pathway, with 14 mRNAs (9.2%) of the target list in-
volved. This is consistent with the results of annotation
clustering as this pathway is critical to the innate response
system. Cancer pathways feature predominantly for miR-
15b-5p, consistent with its annotation clustering of apop-
tosis and regulation of cell cycle.

Discussion
Prior studies seeking to identify miRNA blood bio-
markers for AD have had inconsistent results, with most
candidates lacking replication across independent co-
horts. One factor contributing to the variation in results
across studies is the different phenotypic definitions
used to classify participant groups. This includes poten-
tial inclusion of controls that may have pre-clinical AD

or the use of AD participants that may not have AD
pathology. To minimise this issue in our study, partici-
pants were selected with the aid of brain amyloid burden
data. This study, with the use of a cohort of amyloid
imaging-defined phenotypes in combination with robust
longitudinal data, is one of the most strictly phenotyped
AD biomarker studies to date.

Differentially expressed miRNAs between AD and controls
Using a non-hypothesis driven, 71 differentially
expressed miRNAs were found between AD and con-
trols. In a replication cohort, utilising a publicly available
dataset and applying our bioinformatics pipeline, two of
the original 71 differentially expressed miRNAs were
replicated (miR-15b-5p and miR-146b-5p). We propose
these two miRNAs as candidate biomarkers for AD for
further investigation. Indeed, there is already evidence
from existing literature of their ability to differentiate
AD from cognitively normal controls. MiR-15b-5p has
been previously shown to be downregulated in the blood
of individuals with AD compared to controls, with a re-
ported sensitivity of 0.85, specificity of 0.88, and area
under the curve (AUC) of 0.96 in differentiating those
with AD from controls [5]. In another study examining
differential blood miRNA expression among discordant
twins (n = 22 twin pairs) for dementia (including AD,
vascular, or unspecified), miR-146b-5p was downregu-
lated in twins who were diagnosed with dementia [26].
Although this study was not specific for AD, the use of

Fig. 1 Replicated significant miRNAs identified in the current study (AIBL cohort) in an independent cohort [22]. logFC = log2 fold change,
directionality denoted by + (upregulated) or – (downregulated) value when comparing AD to controls
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the discordant MZ twin model is a powerful tool for
epigenetic studies as it controls for potential con-
founders encountered in case-control studies, such
as differences in genetic factors, age, gender, mater-
nal effects, and most in utero and early environmen-
tal influences.

Messenger RNA targets and biological function analysis
To further our understanding of the biological function
of the two candidate miRNA biomarkers and their poten-
tial role in AD pathology, in silico analysis of the target
mRNAs of miR-146b-5p and miR-15b-5p was performed.
Annotation clustering for miRNA-146b-5p gene targets

Fig. 2 ROC and AUC based on the predictors’ age, sex, education, APOE4 carrier status, and the two microRNAs: miR-15b-5p and miR146b-5p

Table 3 Functional annotation analysis of predicted gene targets of identified candidate miRNAs

Candidate miRNA Number of annotation clusters
with enrichment score > 1.3
for predicted gene targets

Annotation cluster Gene count* Enrichment score p value FDR

miR-146b-5p 34 Innate immune response 24 13.8 6.1E−13 3.0E−10

Cellular response to cytokine stimulus 33 11.72 1.9E−15 3.21E−12

Defence response to bacterium 25 9.43 2.4E−12 4.03E−09

Interleukin-1 receptor binding 7 6.35 3.66E−10 4.83E−07

Regulation of interleukin-6 production 13 4 7.4E−11 1.26E−07

Regulation of interleukin-12 production 7 3.87 3.89E−06 0.006623

Lipopolysaccharide-mediated signalling
pathway

8 3.82 1.50E−07 2.55E−04

Regulation of cytokine secretion 10 3.68 4.44E−06 0.007556

miR-15b-5p 31 Apoptotic process 91 6.08 2.2E−9 4.04E−06

Regulation of protein metabolic process 119 5.71 9.9E−10 1.80E−06

Regulation of cell cycle 36 2.55 3.2E−6 0.005875

Functional annotation clustering analysis of target mRNA gene lists of candidate miRNAs using DAVID. Top annotation clusters are listed
*Number of genes from the target mRNA gene list submitted for each miRNA (158 genes for miR-146b-5p and 526 genes for miR-15b-5p) that are involved in the
annotation cluster
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was found to be centred around the innate immune sys-
tem and cytokine production. This was further supported
by the overrepresentation of those genes in the KEGG
pathway for the toll-like receptor signalling pathway, a
crucial pathway involved in the innate immune response.
Interestingly, in recent years, neuroinflammation has been
recognised as an important component of AD pathology.
Experimental, genetic and epidemiological evidence now
indicate a crucial role for activation of the innate immune
system as a disease-promoting factor [27]. Annotation
clustering for miRNA-15b-5p gene targets showed they
are involved in apoptosis and regulation of the cell cycle.
Pathway analysis of these mRNAs showed involvement in
a number of cancer pathways. The relationship between
cancer and AD has been of great interest to the research
community. An inverse association between AD and can-
cer has been previously noted, with AD individuals devel-
oping cancer at a slower rate than the general population,
and those with a history of cancer developing AD at a
slower rate [28]. The pathomechanism is not clear, but it
is postulated that in cancer, cell regulation mechanisms
are disrupted with augmentation of cell survival or prolifer-
ation, whereas conversely, AD is associated with increased
neuronal death, driven by beta amyloid (Aβ) and tau depos-
ition [29]. As discussed in a review by Holohan et al., a
number of dysregulated miRNAs have been identified in
both AD and cancer, suggesting that miRNAs play multiple
regulatory roles in pathways active across both cancer and
AD [30]. Interestingly, miR-15b-5p has been reported to
promote gastric cancer metastasis and to be upregulated in
gastric cancer cell lines, tissues, and plasma samples [31]. In
this AD cohort, miR-15b-5p was downregulated in AD
compared to controls. Despite these postulations, future
studies into the biological role of miRNAs will need further
targeted experiments to confirm the validity and the bio-
logical significance of the identified in silico and experimen-
tal miRNA-mRNA interactions.

Limitations of study and future direction
This study has several limitations. Firstly, despite using the
same bioinformatics pipeline, only two of the original 71
differentially expressed miRNAs were similarly dysregulated
in the replication cohort. Reasons for this are largely attrib-
utable to the differences in study cohorts. The case-control
phenotypes in the current study were defined by amyloid
imaging, whereas the replication cohort did not have amyl-
oid biomarker support. There were further differences in
disease severity and demographics of the two cohorts, in-
cluding age (older in the present study) and MMSE (mean
MMSE in replication AD sample being 18.9 (SD ± 3.4)
compared to 21.1 (SD ± 4.6) in the present study).
Secondly, only one of the many bioinformatics methods

available was used to analyse results (Edge-R). Indeed, it is
well recognised that different statistical methods will result

in different significant miRNAs. When the full results ob-
tained in the replication cohort using our bioinformatics
pipeline (data not shown) were compared to the results
published by the original investigators using their method-
ology, only 45 significant miRNAs overlapped. The discrep-
ancy has also been demonstrated by Satoh and colleagues,
who took the same publicly available dataset from Leidinger
et al. and processed the FASTQ files with a different bio-
informatics pipeline [32]. Their pipeline yielded only 27 dif-
ferentially expressed miRNAs between AD and controls,
and of which only two were reported to be significant by
the original investigators. There is an urgent need for
consistency of data analysis across studies; however, this is
problematic as there are no best practice methods and con-
sensus for the most appropriate method. Moreover, a new
methodology is continually being published, thus con-
founding the comparison of results across different studies.
Thirdly, our results were not experimentally vali-

dated using a different technology such as q-PCR, al-
though replication in independent cohorts is a more
robust approach to strengthening candidate miRNA
biomarker findings, which was performed here using
data from a previously published study. Finally, the
expression of miRNA blood may not reflect the
changes occurring in the target organ—the brain.
MiRNA-146b-5p and miR-15b-5p are not brain- or
AD-specific miRNAs. Therefore, these differentially
expressed miRNAs need further experimental valid-
ation to elucidate their role in pathobiology and ef-
fects at the target organ.

Conclusion
Two miRNAs identified in this study, miR-146b-5p and
miR15b-5p, showed a consistent relative change in expres-
sion levels between AD and controls. Their biological
function may also be related to AD pathogenesis. Further
replication studies are needed to establish their role
as biomarkers for AD, including determining absolute
value cut-offs and sensitivity/specificity analyses. To
minimise differences in methodologies confounding
results when comparing across studies, large consortia
cohorts using a consensus approach are best posi-
tioned to drive further translational studies. Experi-
mental validation of mRNA targets and further
elucidation of the role these miRNAs play in biology
may harbour insights into AD pathogenesis and po-
tential therapeutic targets.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13195-020-00627-0.

Additional file 1 : Supplementary Table 1. Dysregulated miRNAs
between amyloid positive AD and amyloid negative cognitively normal
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controls adjusted for age, sex, years of education, and MMSE score.
Supplementary Table 2. Results of nominally significant (p<0.05)
differential miRNA expression between AD and controls in the validation
set (Leidinger cohort).
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