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Abstract

Background: The pathological hallmarks of Alzheimer’s disease (AD) involve alterations in the expression of
numerous genes associated with transcriptional levels, which are determined by chromatin accessibility. Here, the
landscape of chromatin accessibility was studied to understand the outline of the transcription and expression of
AD-associated metabolism genes in an AD mouse model.

Methods: The assay for transposase-accessible chromatin by sequencing (ATAC-seq) was used to investigate the AD-
associated chromatin reshaping in the APPswe/PS1dE9 (APP/PS1) mouse model. ATAC-seq data in the hippocampus of
8-month-old APP/PS1 mice were generated, and the relationship between chromatin accessibility and gene expression
was analyzed in combination with RNA sequencing. Gene ontology (GO) analysis was applied to elucidate biological
processes and signaling pathways altered in APP/PS1 mice. Critical transcription factors were identified; alterations in
chromatin accessibility were further confirmed using chromatin immunoprecipitation assays.

Results: We identified 1690 increased AD-associated chromatin-accessible regions in the hippocampal tissues of APP/
PS1 mice. These regions were enriched in genes related to diverse signaling pathways, including the PI3K-Akt, Hippo,
TGF-β, and Jak-Stat signaling pathways, which play essential roles in regulating cell proliferation, apoptosis, and
inflammatory responses. A total of 1003 decreased chromatin-accessible regions were considered to be related with
declined AD-associated biological processes including cellular response to hyperoxia and insulin stimulus, synaptic
transmission, and positive regulation of autophagy. In the APP/PS1 hippocampus, 1090 genes were found to be
upregulated and 1081 downregulated. Interestingly, enhanced ATAC-seq signal was found in approximately 740 genes,
with 43 exhibiting upregulated mRNA levels. Several genes involved in AD development were found to have a
significantly increased expression in APP/PS1 mice compared to controls, including Sele, Clec7a, Cst7, and Ccr6. The
signatures of numerous transcription factors, including Olig2, NeuroD1, TCF4, and NeuroG2, were found enriched in
the AD-associated accessible chromatin regions. The transcription-activating marks of H3K4me3 and H3K27ac were also
found increased in the promoters of these genes. These results indicate that the mechanism for the upregulation of
genes could be attributed to the enrichment of open chromatin regions with transcription factors motifs and the
histone marks H3K4me3 and H3K27ac.
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Conclusion: Our study reveals that alterations in chromatin accessibility may be an initial mechanism in AD
pathogenesis.

Keywords: Alzheimer’s disease, ATAC-seq, Chromatin accessibility, Transcription factors, RNA-seq

Background
Alzheimer’s disease (AD), an age-associated chronic pro-
gressive neurodegenerative disorder, is characterized by
progressive loss of memory, cognitive impairment, and
behavioral changes. It is the most common form of de-
mentia. A global systematic analysis of AD from 1990 to
2016 that included 195 countries showed that the global
number of individuals who lived with dementia was 43.8
million in 2016, showing a 117% increase compared to
1990 [1]. In 2016, dementia was the fifth largest cause of
death globally, accounting for 4.4% of total mortality.
Notably, 8.6% of deaths were observed in individuals
aged more than 70 years, making dementia the second
largest cause of death in this age group [2].
The pathological hallmarks of AD are characterized by

β-amyloid (Aβ) deposition, neurofibrillary tangles in-
duced by phosphorylation of tau protein, upregulation of
inflammation, and neuronal apoptosis. All these pro-
cesses involve alterations in the expression and regula-
tion of numerous genes. The Apolipoprotein E (APOE)
gene is a well-known genetic risk factor identified for
AD. The association of the APOE ε4 allele with AD risk
has been repeatedly demonstrated by different studies,
whereas the ε2 allele has been found to be related to a
protective effect [3, 4]. Rare mutations in APP, PSEN1,
and PSEN2 are discovered to be associated with auto-
somal dominant familial AD, which is found in about
70% of familial AD patients [5–7]. With the develop-
ment of next-generation sequencing (NGS) over the past
few years, multiple AD genes have been identified. Rare
variants in TREM2 are considered a major genetic risk
factor for AD [8–10]. In addition, both SORL1 and
ABCA7 are demonstrated to carry numerous loss-of-
function variants leading to strong increases in AD risk
[11–14]. Moreover, a study from the Alzheimer’s disease
sequencing project, which encompassed more than 5000
cases and controls, reported two new candidate genes,
IGHG3 and ZNF655 [15]. Expression levels of AD genes
are important in AD etiology; however, information on
how they are specifically regulated is still limited. Thus,
exploring the regulatory elements of AD genes and their
corresponding transcription factors (TFs) is critically im-
portant for elucidation of the disease process.
In recent years, it has been recognized that chromatin

is a dynamic central regulator of transcription. The
chromatin structure defines the scenario where interac-
tions between TFs and their cognate regulatory regions

take place. To successfully interact with cis-regulatory
elements, such as promoters, enhancers, insulators, and
non-coding RNAs (ncRNAs), TFs must induce chroma-
tin remodeling of nucleosomal structures, which results
in different levels of chromatin accessibility [16, 17].
Therefore, open chromatin regions allow transcription
machinery components to access to cis-regulatory ele-
ments and activate gene transcription, while closed chro-
matin regions impair the accessibility of promoters and
enhancers to transcription factors and other regulators
of transcription inducing gene silencing.
Recently, the results of several studies have demon-

strated substantial changes in chromatin accessibility in
human brains [18–20]. McClymont et al. reported the
alteration of open chromatin in mouse dopamine neu-
rons and found Parkinson-associated SNCA enhancer
variants, indicating the utility of chromatin accessibility
in studying the regulation of gene expression in
neurodegenerative diseases [21]. However, the role of
chromatin remodeling in AD processes has not been in-
vestigated yet.
In this work, we used the Assay for Transposase-

Accessible Chromatin by sequencing (ATAC-seq), a sen-
sitive tool for integrative epigenomic analysis, combined
with RNA sequencing (RNA-seq) to investigate the pat-
tern of genome-wide chromatin accessibility in AD in an
APP/PS1 mouse model, which resembles the familial AD
in humans, and characterize the chromatin accessibility
landscape in APP/PS1 mice. We analyzed the differences
in chromatin-accessible regions, which allowed us to
identify the landscape of binding events, regulatory DNA
sequences, and putative TFs that are likely responsible
for these alterations.

Methods
Animal model
Male APPswe/PS1dE9 mice, 8 months of age (n = 3), and
male, age-matched C57BL/6 mice (n = 3) were pur-
chased from Nanjing Biomedical Research Institute of
Nanjing University (Nanjing, China). All animals were
housed in a specific pathogen-free room under a 12-h
light-dark cycle with ad libitum access to food and
water. Mice were acclimatized for a week, after which
they were euthanized by cervical dislocation, and hippo-
campal tissues were collected. All animal procedures
were performed according to the criteria outlined in the
Guide for the Care and Use of Laboratory Animals
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(National Institutes of Health, Bethesda, MD) and with
approval of the Animal Care and Use Committee of
Xuanwu Hospital of Capital Medical University, China.

Nuclei isolation, transposition reaction, and ATAC-seq
library preparation
Nuclei were isolated from frozen hippocampal tissues. In
brief, frozen hippocampal tissue (50–60mg) was homog-
enized with a mortar and pestle on ice. The homoge-
nized samples were placed in 1.0 mL of chilled lysis
solution, mixed gently, and incubated on ice for 20 min.
The mixture was then filtered through a cell-strainer
(BD Biosciences, Franklin Lakes, NJ), mixed with 1.8 mL
1.8M sucrose buffer, and loaded on the surface of a 1.0
mL 1.8M sucrose cushion buffer. The nuclei were cen-
trifuged at 27,550×g at 4 °C for 45 min and the pellets
were resuspended in 0.5 mL chilled nuclei storage buffer
and centrifuged at 500g at 4 °C for 5 min. The quality of
the prepared nuclei was assessed with a light micro-
scope. After the nuclei were counted, 50,000 nuclei were
prepared for transposition reactions. The transposition
reactions and ATAC-seq library preparation generally
followed the steps set out in the original ATAC-seq
paper using Nextera DNA Library Preparation Kit (Illu-
mina, San Diego, CA) [22]. After transposition, DNA
was purified with the MinElute PCR Purification Kit
(Qiagen, Valencia, CA) and eluted in 10 μL elution buf-
fer. The amplified libraries were purified with Ampure
XP beads (Beckman Coulter) and were quantified with
the Qubit dsDNA High Sensitivity Assay (Invitrogen,
Carlsbad, CA) in combination with the High Sensitivity
DNA Assay (Agilent, Santa Clara, CA) on the Agilent
2100 Bioanalyzer.

ATAC-seq sequencing, library quality control, and data
analysis
Each ATAC-seq library was sequenced on the Illumina
Hiseq PE150 sequencer to obtain 80–100 million of 2 ×
150 bp paired-end reads per sample. The quality of
sequencing data was evaluated with FastQC (v.0.11.7,
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc)
and reads with Phred quality score > 30 were used for
further analysis. Removing and trimming the adaptor
sequences were performed to obtain clean data. The
clean reads were then aligned to mouse genome
mm10 with Burrows-Wheeler Aligner (0.7.10) [23].
Picard Tools (v.2.2.4, http://broadinstitute.github.io/
picard) was used for duplicate removal. Samtools
(v.1.3.1) was performed to filter multiply mapped
reads, and BED tools were used for filtering out mito-
chondrial reads [24, 25]. Aligned reads from APP/PS1
mouse hippocampal tissues (8 months old, n = 3) or
normal hippocampal samples from aged-matched con-
trol mice (n = 3) were merged and peak calling was

conducted using MACS2 (v.2.1) [26]. Peaks that over-
lapped blacklisted regions were removed. The result-
ing sets of ATAC-seq peaks were considered as high
confidence Tn5 hypersensitive site (THSS) regions.
The annotation of THSS regions to genomic features
was performed using the HOMER suite tool annotate-
Peaks (v.3.12) [27]. For the ACAT-seq enrichment
analysis, we employed BEDTools (v.2.25.0) to obtain
the count of reads overlapping with known transcrip-
tion start sites (TSSs), promoters, exons, introns, etc.
We considered the translation start sites as the
reference point and − 1 Kb upstream of the transla-
tion start codon ATG as the putative promoter re-
gion. Differential accessibility analysis was conducted
using DEseq2 (v.1.4.5) [28]. This analysis takes all the
ATAC-seq peaks called in APP/PS1 mice and control
mice and detects for normalized read count differ-
ences at the peak region. Motif discovery at
chromatin-accessible regions was performed using the
default setting in the HOMER suite function findMo-
tifsGenome.pl tool [27]. Tracks were extracted and
visualized using the UCSC genome browser [29].
Heatmaps showing ATAC-seq enrichment at pro-
moters were built using the R statistical package [30].

RNA-seq profiling and differential gene expression
analysis
Total RNA was extracted using an RNeasy mini extrac-
tion kit (Qiagen), and RNA integrity was quantified by
the Agilent RNA 6000 Nano Kit (Agilent) using the
Agilent Bioanalyzer. Purified RNAs were reverse tran-
scribed, and the resulting cDNA was further tagmented
and PCR-amplified using the Nextera XT DNA sample
kit (Illumina) to add the sequencing adaptors. The li-
braries were pooled and sequenced on the Illumina
Hiseq PE150 sequencer to an average depth of 70 mil-
lion reads per sample. The quality control of sequencing
was performed via FastQC (v.0.11.7, http://www.bioin
formatics.bbsrc.ac.uk/projects/fastqc). Reads were
aligned to mm10 using the STAR splice-aware aligner
(v.2.5.2b). QoRTs (v.1.0.7) were used to gather read
counts per sample per gene for differential gene expres-
sion analysis [31]. Normalized RPKM (reads per kilo
base million reads) values were used as a measure of
gene expression. Differential gene expression analysis
was performed using DESeq2 (5% FDR). The heatmap of
RNA expression was produced using the correlation of
normalized gene-level FPKM (fragments per kilobase
million reads) values across samples with the heatmap.

Chromatin accessibility and gene expression correlation
For purposes of assessing the global relationship be-
tween the ATAC-seq signal at promoters and the tran-
scription levels of the corresponding genes, genes were
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categorized into high, medium, and low groups, based
on their mRNA levels according to the RNA-seq data. A
threshold value was determined by dividing the mRNA
values (RPKM normalized values) in three quantile
groups according to their means using the R statistical
package. Violin plots were produced using ‘ggplot2’ from
the R package. For comparison and visualization,
ATAC-seq and RNA-seq enrichment data at various
genomic features are shown on a log2 scale. In addition,
the 25 most highly expressed genes and the 25 least
highly expressed genes in APP/PS1 mice and controls
were identified, and their transcriptional start sites
(Ensembl) were extracted from the UCSC Table
Browser. Regions expanded to 100 kb surrounding these
TSSs were intersected and overlapped with the ATAC-
seq libraries, then quantified and plotted, and the
ATAC-seq signal over the most and least highly
expressed genes was also quantified and plotted. In
addition, the top 50 altered (highest and lowest) ATAC-
seq peaks were extracted by q value, and the expression
of the nearest gene was quantified and plotted as a final
metric to relate the RNA-seq and ATAC-seq datasets.

Gene ontology analysis
Gene ontology (GO) analysis was performed to facilitate
elucidating the biological implications of unique genes
in the significant profiles of the gene. We annotated the
genes associated with the accessible chromatin regions
using the Genomic Regions Enrichment of Annotations
Tool (GREAT, v.3.0.0) [32]. The annotated genes were
then analyzed based on the GO annotations in the data-
base to obtain all the GO involved genes. The significant
level of each GO was calculated by the Fisher test. P
values < 0.05 were considered significant.

Pathway analysis
Pathway analysis was performed to explore the anno-
tated genes or differential genes enriched signaling path-
ways. The annotated genes or differential genes were
analyzed based on KEGG database to obtain all the
involved pathway terms. The significant level of each
pathway term was calculated by the Fisher test. P values
< 0.05 were considered significant.

Chromatin immunoprecipitation and qPCR
Chromatin immunoprecipitation (ChIP) assay was per-
formed using a Pierce™ Agarose ChIP Kit (Thermo
Fisher, Rockford, IL) according to the manufacturer’s
protocol. The hippocampal tissue lysates were incubated
with anti-histone 3 trimethylated lysine 4 (ab8580,
Abcam, Cambridge, UK), anti-histone 3 acetylated lysine
27 (ab4729, Abcam), or anti-rabbit IgG (ab171870,
Abcam). Purified DNA and input DNA were analyzed by

qPCR. The primers used for ChIP-qPCR are listed in
Supplementary Table S1.

Statistical analyses
Data are expressed as mean ± SD. Comparison between
two groups was conducted with Student’s t test.
Differences between groups were considered to be
statistically significant at P < 0.05. Statistical analyses
were performed using the GraphPad Prism 6 software
(GraphPad, La Jolla, CA).

Results
Chromatin accessibility by ATAC-seq is predictive of
active transcription in APP/PS1 mice
As APP/PS1 mouse is a widely used animal model to
study Alzheimer’s disease [33], we employed hippocam-
pal tissues of APP/PS1 mice and age-matched wild type
(WT) mice to generate ATAC-seq libraries. For each
group, we obtained three independent ATAC-seq repli-
cates. The similarity among replicates is high compared
to the similarity between groups (Supplementary Figure
S1). The chromatin was fragmented by Tn5 transposase
into nucleosome-free, mono-nucleosome, and di-
nucleosome patterns, and the similar distribution of
fragment sizes suggested that chromatin is accessible to
Tn5 transposase to the same degree in all samples inde-
pendently between different groups (Fig. 1a). Distance
analysis of ATAC-seq data showed that the location of
THSS regions was mainly focused in a window of 1 kb
upstream from the translation start codon (ATG) and
was scarce at distances greater than 2 kb of the nearest
gene (Fig. 1b). In addition, we found the ATAC-seq sig-
nal is significantly enriched at − 1Kb~+ 1Kb from TSSs
(Fig. 1c). Based on the above findings, we annotated
THSSs as promoters if the peak is located less than 1 kb
upstream from the corresponding ATG (Fig. 1d) and
used this annotation for the following analysis. The
genomic location distribution of peaks showed that
the peaks distributed on the promoter-TSS regions of
APP/PS1 mice were significantly more than those of
WT mice (26.66 ± 1.050% vs 19.14 ± 1.449%), revealing
that the accessibility of chromatin around the TSS re-
gions of APP/PS1 mice was higher than that of WT
mice (Fig. 1e, f).
AD-associated metabolism involves numerous genes

that participate in multiple signaling pathways. To inves-
tigate the functional role of the chromatin-accessible re-
gions in the regulation of gene expression involved in
signaling pathways and gene function, we analyzed dif-
ferent pathways and biological processes in AD model
mice and WT mice. Our results showed that 204 anno-
tated genes were associated with chromatin-accessible
regions in AD mice and were involved in active signaling
pathways. These regions were enriched in different
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signaling pathways including the PI3K-Akt, Hippo, TGF-
β, and Jak-Stat signaling pathway that play essential roles
in regulating of cell proliferation, cell apoptosis, and

inflammatory responses (Fig. 2a, Supplementary Table
S2). In consideration that neuronal death and microglia
proliferation increase in AD mice, they may account for

Fig. 1 ATAC-seq chromatin accessibility analysis in hippocampus of Alzheimer’s disease (AD) model mice and wild type (WT) mice. a Distribution
of ATAC-seq fragment size in AD and WT mice. b Density plot showing the position of THSSs in AD and WT mice. The left dashed line indicates
the putative promoter region located 1 kb upstream. c Chromatin accessibility around the TSS in AD and WT mice. d Annotation of THSSs to
genomic features: Exons, intergenic regions, introns, promoters, and TTS. THSSs located up to 1 kb upstream of the ATG are determined as
promoter regions. e Representative distribution of chromatin-accessible regions across the genome in AD and WT mice. f The percentage of
annotate peaks on promoter region in AD and WT mice. Data are shown as mean ± SD. *p < 0.05
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Fig. 2 Pathway analysis and Gene Ontology (GO) analysis in AD mice. a Signaling pathway associated with chromatin accessibility in AD mice. b
GO analysis of biological process associated with accessible chromatin regions in AD mice. c GO analysis of cellular component associated with
chromatin-accessible regions in AD mice
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some of changes of signaling pathway above in AD
[34–38]. Meanwhile, 237 annotated genes were found
to associate with chromatin accessibility in decreased
signaling pathways including RAS signaling pathway,
glutamatergic synapse, and glycosaminoglycan biosyn-
thesis (Fig. 2a, Supplementary Table S3). GO analysis
showed that several AD-associated biological pro-
cesses were reduced including cellular response to
hyperoxia and insulin stimulus, synaptic transmission,
and positive regulation of autophagy (Fig. 2b, Supple-
mentary Table S4), while ventricular septum morpho-
genesis, negative regulation of protein ubiquitination,
and protein homooligomerization were induced in
AD-associated biological processes (Fig. 2b, Supple-
mentary Table S5). In addition, some critical cellular
components were deficient in the hippocampus of AD
mice, such as synapse, postsynaptic membrane, den-
drite, axon, neuronal cell body, etc (Fig. 2c, Supple-
mentary Table S6), and the increased cell components
were also identified (Fig. 2c, Supplementary Table
S7).

Differential chromatin accessibility in APP/PS1 mice
associated with gene expression
To explore the relationship between chromatin accessi-
bility and transcription genome-wide, we performed
RNA-seq and integrated with ATAC-seq data that com-
puted the ATAC-seq signal level at known TSSs in
groups of genes categorized with low, medium, and high
mRNA level. Results revealed that the level of enrich-
ment in ATAC-seq signal at the TSS region positively
correlated with mRNA abundance of the annotated gene
(Fig. 3a), indicating that highly transcribed genes showed
a more open chromatin landscape than genes with low
transcriptional level. Moreover, we found that the gene
expression differed significantly between AD model mice
and WT mice. We examined 1690 increased AD-
associated chromatin-accessible regions and 1003 de-
creased AD-associated chromatin-accessible regions
from ATAC-seq data. Meanwhile, a total of 1090 upreg-
ulated and 1081 downregulated genes were identified in
AD model mice from RNA-seq data (Fig. 3b). In
addition, we detected 740 genes associated with an in-
creased ATAC-seq signal, of which 43 exhibited upregu-
lated mRNA levels, and 722 were associated with
decreased ATAC-seq signal, of these, 44 genes displayed
downregulated mRNA levels (Fig. 3c, Supplementary
Table S8, Supplementary Table S9). Furthermore, the re-
gion around high expression genes in the AD hippocam-
pus, such as Prnp, Olfr31, and Ifi44, had gained open
chromatin architecture, whereas regions around low ex-
pression genes, for example Cox8b, Selenov, and Pax7,
showed lost chromatin signals (Fig. 3d, e).

The heatmap of RNA-seq is shown in Fig. 4a, and the
50 most variable genes in AD mice are listed. The APP
gene, which encodes the amyloid protein precursor, was
also found upregulated in AD mice (Supplementary
Table S10). Furthermore, we observed the chromatin ac-
cessibility of cis-regulatory elements in the APP gene.
The results showed that the locus containing the
upstream APP enhancer exhibited higher chromatin
accessibility (Fig. 4b). These results indicate that the
AD-associated open chromatin regions play a functional
role in AD-specific transcriptome aberrations. In
addition, the upregulated differential genes expressed in
AD mice were enriched in the MAPK signaling pathway,
osteoclast differentiation, estrogen signaling pathway,
and neuroactive ligand-receptor interaction (Fig. 5a).
Meanwhile, the downregulated differential genes
expressed in AD mice were enriched in metabolic path-
ways, valine, leucine, and isoleucine degradation and
fatty acid degradation (Fig. 5b). Moreover, the GO ana-
lysis showed that the upregulated genes in AD were
enriched in nervous system development, histone H3-K4
methylation, and glial cell development (Fig. 5c), and
downregulated genes in AD were enriched in oxidation-
reduction process, ion transport, and lipid metabolic
process (Fig. 5d).

Chromatin accessibility footprints identify critical
transcription factors in AD mice
To elucidate potential mechanisms of the relationship
between over-expression genes and open chromatin re-
gions, we investigated DNA transcription factor binding
at AD-associated chromatin-accessible sites. The 50
most differential peaks of ATAC-seq in AD model mice
and WT mice are shown in Fig. 6a. Moreover, we identi-
fied 15 most enriched transcriptional factor motifs in the
increased chromatin-accessible regions in AD (Fig. 6b).
Among the top 15 enriched motifs, those of Olig2,
NeuroG2, NeuroD1, Atoh1, and TCF4 have been dem-
onstrated to play key roles in AD. Furthermore, the
TCF4 motif was identified in the open chromatin region
around the TSS in AD-specific genes such as APP,
GSAP, and SORL1 (Fig. 6c). In addition, motif enrich-
ment for regions of decreased chromatin accessibility in
AD is showed in Supplementary Figure S2.

Histone H3K4me3 and H3K27ac marks are enriched in
open chromatin regions in AD model mice
It is well established that active histones are important
marks for gene regulation, as H3K4me3 and H3K27ac
are characteristic of TSS/promoter region and are asso-
ciated with TF binding [39–41]. Thus, we investigated
the histone modifications in open chromatin regions of
the most upregulated genes in AD mice, including Sele,
Ccr6, CD300lf, Clec7a, and Cst7. The results showed
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that four of the five most upregulated genes, except for
CD300lf, displayed a higher level for both H3K4me3 and
H3K27ac marks in chromatin-accessible gene regions in
the hippocampus of AD model mice than in WT mice.
Notably, the level of H3K27ac in the Cst7 gene and the

levels of H3K4me3 and H3K27ac in the Ccr6 gene ex-
hibited more than fivefold increases (Fig. 7). These re-
sults indicate that H3K4me3 and H3K27ac marks
correlating positively with chromatin accessibility regu-
late gene expression.

Fig. 3 The association between the AD-specific chromatin-accessible regions and gene expression in AD mice. a ATAC-seq signal at TSSs
correlates quantitatively with gene expression, the left figures (in blue) show the correlation between ATAC-seq signal at TSS and gene
expression in AD mice, and the right figures (in pink) show the correlation between ATAC-seq signal at TSS and gene expression in WT mice. b
Volcano plot of differentially expressed genes in AD, upregulated genes are shown by red dots and downregulated genes are shown by blue
dots. c Venn diagram showing genes associated with the chromatin-accessible regions in AD and differentially expressed genes. d Upregulated
genes in AD that are associated with AD-specific open chromatin regions. e Downregulated genes in AD that are associated with AD-specific
closed chromatin regions
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Discussion
The genome-wide landscape of AD has been studied
widely, and the gene expression patterns involved in in
the process of AD have been described in detail [42, 43].
However, the mechanism of functional genome
alterations in AD requires further investigation. Recent
advances in chromatin profiling, especially genome-wide
chromatin accessibility profiling methodologies, includ-
ing MNase-seq, DNase-seq, FAIRE-seq, and ATAC-seq,
have made it possible to analyze the alterations in the
accessible chromatin state and allow us to better
understand the molecular mechanisms of numerous dis-
eases such as cancer, malaria, and metabolic disorders
[44–47]. Although DNase-seq and MNase-seq can pro-
vide some subsets of the information obtained by
ATAC-seq, they still have some limitations, for example
large cell numbers, longer experimental time, and lim-
ited applicability to many systems. ATAC-seq offers sub-
stantial advantages over existing technologies due to its
speed, simplicity, and low input cell number require-
ment [48]. In the present study, we performed ATAC-
seq to examine the chromatin accessibility in AD model
mice, demonstrated significant alterations in chromatin
accessibility, and described transcriptional profiles in AD
hippocampal samples.
Our results showed that the most accessible regions

localize around the TSS and that open chromatin at
these sites is predictive of active transcription, in

agreement with the pattern reported in previous studies
[46]. Given that recent large-scale association studies
suggested genes related to AD risk are involved in many
different biological pathways [42], we analyzed different
biological processes and pathways in AD model mice
and WT controls. Among the signaling pathways, we
found to be strongly associated with AD were the Hippo
and TGF-β, known to induce cell apoptosis [49, 50]. Re-
garding Hippo signaling, a recent study reported that the
precursor of Aβ can promote the nuclear translocation
of Foxo3a by inducing MST1-dependent phosphoryl-
ation of Foxo3a. The MST-Foxo pathway is considered a
branch of the Hippo pathway; it activates a proapoptotic
member of the Bcl-2 family triggering an intrinsic apop-
totic pathway, thus resulting in neuronal death [51].
Relevant to TGF-β signaling, different studies have
shown increased expression of TGF-β1 and TGF-β2 in
brains of individuals with AD [52–54]. Given the exten-
sive evidence of microglial dysfunction in neurodegener-
ation, including changes in microgial phagocytic activity,
it is possible that changes in brain TGF-β signaling in
AD could alter microglial state and trigger their patho-
genic functions [55].
We also found the Jak-Stat and PI3K/Akt signaling

pathways to strongly associate with AD. Several studies
have demonstrated the Jak-Stat signaling as a possible
underlying pathogenetic mechanism of AD, showing the
importance of inflammatory pathways involved in AD

Fig. 4 RNA-seq gene expression analysis in the hippocampus of AD and WT mice. a Heatmap of 50 most variable genes are listed based on
RNA-seq. b Changes in chromatin accessibility downstream of the APP gene. Track in blue shows normalized and input-corrected ATAC-seq
signal in WT mice and track in red shows normalized and input-corrected ATAC-seq signal in APP/PS1 mice. The chromatin-accessible regions are
indicated with blue bars (WT mice) or red bars (AD mice) on the middle area of the graph and the TSS is shown by blue arrow
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[56, 57]. Besides, the PI3K/Akt pathway has been found
to be related to tau protein hyper-phosphorylation [58].
The alterations of the chromatin accessibility in these
signaling pathways may partly elucidate the mechanism
of pathological changes in AD such as neurofibrillary
tangles induced by phosphorylation of tau protein, the
upregulation of inflammation, and neuronal apoptosis.
To observe the differential chromatin accessibility in

APP/PS1 mice associated with gene expression, we
examined 740 chromatin-accessible regions in AD
with 43 upregulated associated genes and identified
several genes with a notable increasing expression, in-
cluding Sele, Clec7a, Cst7, Ccr6, and CD300lf, which
may have profound significance in the AD process.
The Sele gene encodes a cell-surface glycoprotein E-

selectin that has a role in immunoadhesion [59]. It is
thought to be responsible for the accumulation of
leukocytes at sites of inflammation by mediating the
adhesion of cells to the vascular lining. Li et al. re-
ported that E-selectin in CSF was significantly ele-
vated in clinically diagnosed AD patients without the
typical AD CSF biomarker signature compared to
those with a positive biomarker signature [60]. Clec7a
and Cst7 play key roles in immune regulation. Recent
studies have demonstrated that Clec7a and Cst7 are
upregulated in the switch from homeostatic microglia
to disease-associated microglia, which is found in AD
at the proximity of the Aβ plaques [61, 62]. Addition-
ally, highly significant increases of Ccr6 expression
were observed in the brain and spleen of both the

Fig. 5 Gene enrichment in signaling pathways and GO analysis. a Upregulated gene enrichment in signaling pathways (20 most enrichment
signaling pathways are listed). b Downregulated gene enrichment in signaling pathways (20 most enrichment signaling pathways are listed). c
Upregulated gene enrichment in biological process (20 most enrichment biological process are listed). d Downregulated gene enrichment in
biological process (20 most enrichment biological process are listed). The rich factor is defined as the ratio of the number of differential genes
enriched in the pathway to the number of annotated genes
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younger and older 3 × Tg-AD mice, implicating Ccr6
may be a possible biomarker for the development of
AD-like disease [63]. On the other hand, we also
identified enriched motifs at chromatin-accessible re-
gions in AD, for example motifs for Olig2, NeuroG2,
NeuroD1, Atoh1, and TCF4. Several of the most up-
regulated genes and AD-specific genes, we identified
possess the enriched motif binding sites around the
chromatin-accessible regions of TSS, indicating that

the motifs enriched in open chromatin regions may
play important roles in regulating the gene expression
that participates in the AD process.
Accessibility at regulatory regions modulated by

chromatin remodeling processes involves not only
nucleosome occupancy, but also histone modifica-
tions, especially H3K4me3 and H3K27ac, which are
necessary for transcription factor binding. Therefore,
we investigated these histone modifications in the

Fig. 6 Motif enrichment at chromatin-accessible regions in AD mice. a Heatmap of 50 most enrichment ATAC-seq peaks at accessible chromatin
regions. b The 15 motifs with the greatest enrichment. c Tracks for AD sample at the APP, GSAP, and SORL1 genes with predicted TCF4 binding
sites. The predicted TCF4 binding sites are shown with orange bars on the upper areas of the tracks. The TSS is indicated by blue arrow
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upregulated genes in AD. We found that both
H3K4me3 and H3K27ac marks are highly expressed
in the promoter regions of Sele, Clec7a, Cst7, and
Ccr6 genes. A recent study has reported the patterns
of H3K27ac in entorhinal cortex samples from AD
cases and identified several H3K27ac-associated tran-
scriptional variation genes, suggesting that histone
marks may indeed be critical events causing activa-
tion of genes favoring the progression in AD [64].

Conclusion
In summary, our work provides a novel strategy to
study transcriptional regulation in AD through the
description of open chromatin profiling by ATAC-seq.
The utilization of this technique in AD allows us to
identify the regulatory elements that play critical roles
in the AD process. Furthermore, our data present an
association between TF binding, chromatin-accessible
regions, and gene regulation, providing new insights
into the molecular mechanisms of AD. However, the
future challenge is to elucidate how the alteration of
TF influences the malfunctioning of critical genes in-
volved in AD pathogenesis.
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