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Abstract

Background: Synapse damage and loss are fundamental to the pathophysiology of Alzheimer’s disease (AD) and
lead to reduced cognitive function. The goal of this review is to address the challenges of forging new clinical
development approaches for AD therapeutics that can demonstrate reduction of synapse damage or loss.
The key points of this review include the following:

� Synapse loss is a downstream effect of amyloidosis, tauopathy, inflammation, and other mechanisms occurring
in AD.

� Synapse loss correlates most strongly with cognitive decline in AD because synaptic function underlies
cognitive performance.

� Compounds that halt or reduce synapse damage or loss have a strong rationale as treatments of AD.
� Biomarkers that measure synapse degeneration or loss in patients will facilitate clinical development of such

drugs.
� The ability of methods to sensitively measure synapse density in the brain of a living patient through synaptic

vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) imaging, concentrations of synaptic
proteins (e.g., neurogranin or synaptotagmin) in the cerebrospinal fluid (CSF), or functional imaging techniques
such as quantitative electroencephalography (qEEG) provides a compelling case to use these types of
measurements as biomarkers that quantify synapse damage or loss in clinical trials in AD.

Conclusion: A number of emerging biomarkers are able to measure synapse injury and loss in the brain and may
correlate with cognitive function in AD. These biomarkers hold promise both for use in diagnostics and in the
measurement of therapeutic successes.
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Background
Alzheimer’s disease (AD) and related dementias afflict
nearly 44 million people worldwide [1]. In the USA,
nearly 6 million people have AD, a number that is ex-
pected to double by 2050 [2]. Only symptomatic treat-
ments are currently available, and disease modeling
techniques suggest that the beneficial effects of current
treatments may peak by 6 months [3, 4]. More effective
symptomatic treatments or first-of-a-kind disease-
modifying therapies for AD continue to be a huge unmet
medical need; these treatments would significantly im-
pact the quality of life annual healthcare expenditure for
AD patients, which were estimated to be $277B annually
in 2018 and up to $1100B annually by 2050 [2].
Hypotheses regarding etiology of AD and potential

targets for pharmacologic intervention have evolved over
the recent decades of intense industry and academic
research. Neurotransmitter hypotheses, while giving rise
to the first drugs approved for treating AD, generated
means for symptomatic relief but failed to generate
disease-altering treatments [5]. Amyloid plaque- and tau
tangle-related hypotheses, focused on aggregated Aβ
peptide and tau protein, appeared to offer promising tar-
gets for disease-altering therapies, but most clinical pro-
grams targeting Aβ generation with small molecules and
Aβ clearance with antibodies have been disappointing [6,
7]. Treatment with several anti-Aβ antibodies (solanezu-
mab, with a high affinity for monomeric Aβ, and aduca-
numab and BAN2401, which target fibrillar Aβ) was
associated with a small slowing of cognitive decline in
subsets of patients with AD, but those targeting fibrils
are associated with vasogenic edema and cerebral micro-
hemorrhages, possibly limiting their clinical usefulness
[7]. Understanding the role of soluble Aβ aggregates has
led to the new hypotheses that these Aβ oligomers may
be responsible for the neurotoxic etiology of AD, with
hopes that therapeutics that reduce their synaptotoxicity
may delay or stop the progression of AD [8]. Monitoring
treatment-related reduction of such toxicity may provide
suitable biomarker endpoints for drug efficacy and is
independent of etiology of disease.
A foundational principle of neuroscience is that synap-

tic function underlies cognition. There is widespread
acceptance of the premise that synapse damage or loss is
the objective sign of neurodegeneration that is most
highly correlated with cognitive decline in AD; this is
supported by clinical, post-mortem, and non-clinical evi-
dence as summarized below. Objective measures of syn-
aptic damage or loss are therefore a special category of
biomarkers expected to be most closely correlated with
cognitive function.
The goal of this paper is to review the concept of bio-

markers of synapse damage as a potential approvable
endpoint for treatment in AD and other neurological

indications and to review the literature in order to assist
biopharmaceutical drug developers and regulators in ad-
dressing the challenges of forging new pathways for the
approval of synaptoprotective AD therapeutics. The first
portion of this manuscript will review the critical role
played by synaptic damage in the pathophysiologic pro-
cesses that underlie AD and their relation to cognitive
decline. The second portion will review currently avail-
able biomarkers that measure synapse damage or loss in
living patients, with a view towards their use as surro-
gate endpoints in clinical trials in AD.

The roles of synaptic damage and loss in
cognition
The idea that changes in synapses mediate information
storage dates back to Santiago Ramon y Cajal’s anatom-
ical observations of brain structure in the late 1890s [9].
This gained popularity in the mid-twentieth century
with Hebb’s postulate that synapses between neurons
will be strengthened if they are active at the same time,
and that this process contributes to learning [10]. This
was supported experimentally by Kandel’s studies in
Aplysia [11]. This concept was underscored by the dis-
coveries of synaptic long-term potentiation by Bliss and
Lomo [12] and the hippocampal synaptic plasticity in
memory formation by Morris and colleagues [13]. In
recognition of the importance of synaptic function to
cognition, awards including the Brain Prize and the
Nobel Prize have been awarded to multiple scientists for
their work in this field.
Synapse dysfunction and loss correlates most strongly

with the pathological cognitive decline experienced in
Alzheimer’s disease [14–19]. This association was ini-
tially described through two independent methods, the
estimation of synapse number using electron microscopy
techniques [16] and measurements of synaptic protein
concentrations [19], each of which showed a strong cor-
relation between synapse number (or synaptic proteins)
and cognitive scores on the Mini-Mental Status Examin-
ation (MMSE). This concept has been robustly repli-
cated using a variety of approaches [14, 18, 20–26],
including disease models. While the molecular cascades
leading to synapse degeneration in AD have yet to be
fully determined, there is ample evidence from both hu-
man brain and disease models supporting synaptotoxic
roles of soluble pathological forms of Aβ and tau, as well
as glial-mediated neuroinflammation (see [14] for an
excellent recent meta-analysis). This paper will review
evidence of these mechanisms, as well as approaches for
their detection in patients.

Mechanisms of synapse damage and loss in AD
Amyloid plaques formed of aggregated Aβ peptide are
one of the defining pathological lesions of AD [27–29].
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In both human brain and mouse models expressing
familial AD-associated amyloid precursor protein and
presenilin mutations, plaques are associated with local
synapse loss [Fig. 1, [30–34]] as well as memory and syn-
aptic plasticity deficits [35–37]. However, total plaque
load is not the factor most strongly correlated with cog-
nitive decline [38] or synaptic pathology [17, 39] in AD.
Instead, abundant data demonstrate that soluble forms
of Aβ, rather than the large insoluble fibrils in plaques,
are toxic to synapses [15, 40]. Lambert and colleagues
found that fibril-free synthetic forms of Aβ oligomers
(AβO) inhibited long-term potentiation (LTP) ex vivo
[41], and in 2002, Walsh and colleagues demonstrated
that naturally secreted AβO disrupt LTP in vivo [42].
Since then, many studies have shown that AβO may
drive the cognitive impairment found in animal
models of AD [43–45] and potentially also in human
AD [46–48].
Exposure to oligomers in vitro produces rapid reduc-

tion in the expression of many synaptic proteins re-
quired for normal neurotransmission and for learning
and memory formation within hours [49]; longer
exposure produces frank loss of synapses and spines [45,
49–51]. Higher, non-physiological concentrations result
in rapid neuronal cell death.
The presence of AβO has been correlated with synap-

tic plasticity impairment and frank synapse loss in mice
and cell models [45, 49–51] and in human brains in AD
[30, 52, 53]. Furthermore, AβO have been visualized
within individual synapses of both mouse models and
AD cases using high-resolution imaging techniques [30,
31, 54], arguing strongly that they may directly contri-
bute to synaptic and cognitive dysfunction.
While Aβ monomers may interact with many recep-

tors, in model systems, AβO have been demonstrated to
bind to synaptic receptors including cellular prion

protein, NgR1, EphB2, and PirB/LilrB2; additional recep-
tor proteins have yet to be rigorously defined [55–61].
One important regulator of the oligomer receptor com-
plex is the sigma-2 protein receptor complex [62, 63],
the target of the AD disease-modifying drug candidate
CT1812 [64]. Downstream of interacting with synaptic
receptors, robust evidence suggests AβO cause calcium
influx and downstream synaptic dysfunction [15, 65, 66].
Another defining neuropathological lesion of AD is

the aggregation of truncated, misfolded, and hyperpho-
sphorylated tau into neurofibrillary tangles [27]. Tau
pathology correlates with neuron loss and cognitive de-
cline in AD [28, 67]. In accordance with the observation
that tau causes neuron death, mouse models that ex-
press tau mutations that cause frontotemporal dementias
with tau pathology demonstrate neuron loss [68–71],
early synapse loss, and disruption of neuronal network
function [72–77]. As has been observed with Aβ, the
forms of tau that may be toxic are the soluble, non-
fibrillar, and highly reactive forms, the oligomers
[78–80].
Loss of physiological tau function may contribute to

synapse degeneration by impairing axonal transport of
cargoes needed at synapses, including mitochondria [81,
82]. Part of the synaptic and network dysfunction in
tauopathy mice and in AD is likely due to direct effects
of tau at synapses. Along with the canonical microtubule
stabilizing role of tau, this versatile protein has also been
shown to play a physiological role in dendrites including
post-synaptic densities and in pre-synaptic terminals
[83–85]. In human AD brain, small aggregates of
phospho-tau are observed in both pre-synaptic and post-
synaptic regions, and several groups have observed
phospho-tau in biochemically isolated synaptic fractions
[85–87]. Importantly, accumulation of phospho-tau in
synaptic fractions was much higher in people with AD

Fig. 1 High-resolution array tomography imaging reveals plaque-associated synapse loss in human temporal cortex. Scale bar 10 μm
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(cases) than in people with high pathological burdens
who did not exhibit dementia symptoms [48]. Together,
these data strongly indicate that pathological forms of
tau at synapses contribute to synaptic dysfunction.
Based on the genetic causes of rare forms of familial

AD, which all act to increase Aβ accumulation, and the
timing of pathological development where plaque path-
ology is an early pathological feature preceding appre-
ciable tau pathology by many years, it is widely thought
that Aβ is “upstream” of tau in initiating AD pathogen-
esis [88]. One of the key challenges in this field is under-
standing the links between Aβ and tau, and recent data
indicate that these proteins may cooperate to cause syn-
aptic degeneration. Several pathways involving tau have
been implicated in AβO-mediated synapse loss. AβO ac-
tivation of the NMDA receptor has been reported to
cause excitotoxicity through the recruitment of Fyn kin-
ase by tau to the post-synaptic density in mice [83, 89,
90]. Lowering tau levels also protects against some of
the synaptic effects of AβO [91, 92].
Beyond the direct effects of these pathological proteins

on neurons and synapses, epidemiologic and genetic
data strongly implicate inflammatory mechanisms in
synapse damage in AD. In particular, recent data indi-
cate that microglia may play an active role in synapse
loss [93]. The most important genetic risk factor for
late-onset AD is inheritance of the apolipoprotein E ep-
silon 4 (APOE ε4) allele [94]. The ApoE4 isoform is
highly expressed in astrocytes under physiological condi-
tions, but its expression is upregulated in microglia in
mouse models of AD [95]. The effects of AβO at synap-
ses are exacerbated by ApoE4 in plaque-bearing mouse
models and human AD brain and are ameliorated by re-
moving endogenous ApoE [30, 96, 97]. Triggering recep-
tor expressed on myeloid cells 2 (TREM2), complement
receptor 1 (CR1), and CD33 are all expressed in micro-
glia, where they may affect phagocytosis of synapses
[93]. The complement system has emerged recently as
particularly interesting in AD because the tagging of
synapses with C1q downstream of both Aβ and tau
pathology causes CR3-mediated microglial phagocytosis
of synapses [98–102]. While several members of the
complement pathway have been observed to be upregu-
lated in AD brain and to correlate with tau pathology
[101, 102], it remains unknown whether microglial
phagocytosis of synapses in human disease actively
drives synapse loss or simply removes synapses after
damage has occurred.
Importantly, in mouse models of AD, the effects on

synapses of key elements of AD pathogenesis—AβO,
tau, or inflammation—are reversible. In multiple studies,
deficits in LTP, memory impairment, and synapse loss
recover in mice when levels of AβO, tau, or inflamma-
tion are lowered [69, 103–108]. This plasticity of

synaptic connections and their potential for recovery
lends hope for therapeutics that reduce synaptotoxicity
in AD. Regardless of the causative role of AβO and the
contributions to disease progression of tau, p-tau, glia,
and inflammation processes, synapse dysfunction has a
number of downstream neurophysiological conse-
quences including altered neuronal oscillatory behavior
and an imbalance between excitation and inhibition.
These alter neural circuit function and adversely impact
behavior. As such, normal synapse number and function
is the basis for cognitive performance and is an ideal
measure of brain damage due to disease.

Biomarkers of synapse damage or loss
The importance of synapses in cognition and the strong
links among synapses, AD pathophysiology, and the
symptoms observed in AD make a compelling case for
the use of biomarkers of synapse damage or loss as
proxies for synaptic and cognitive function in AD. A re-
cent publication of the NIA-AA Research Framework
emphasized the necessity of a biological definition of the
disease for clinical progress and established the A/T/N
biomarker classification system, where “A” stands for
amyloid beta, “T” for tau, and “N” for neurodegeneration
[109], a broad concept that includes destruction of
system-level circuits and regional volume loss, as well as
injury to individual cellular elements such as axons, den-
drites, and synapses. The extent to which this A/T/N
biomarker classification system is confined to studies of
the pathobiology of AD, versus used to define patient
populations that are enrolled into clinical trials, will be
subject of valuable scientific discussion [110]. In the re-
mainder of this paper, we will focus on “N” type bio-
markers specifically related to synapse damage or loss.
Visualization of synapses in the living brain has re-

cently been described through the labelling of synaptic
vesicle glycoprotein 2A (SV2A) with the [11C]UCB-J
positron emission tomography (PET) ligand [111–113].
(Additional SV2A radioligands, [11C]UCB-A and
[18F]UCB-H, have also been under development.) Com-
paring a group of AD cases with cognitively healthy aged
cases, a reduction of approximately 40% of SV2A signal
was observed in the hippocampus in AD cases [114].
The use of this PET ligand to measure synapse loss lon-
gitudinally in AD is not yet well established. However, as
a direct measure of synapse density, this biomarker in
combination with other cerebrospinal fluid (CSF) bio-
markers and functional imaging approaches, such as
magnetic resonance imaging (MRI), quantitative electro-
encephalogram (qEEG), or fluorine-18 fluorodeoxyglu-
cose PET (FDG-PET), is independent of the disease
hypothesis and has the potential to be a strong indicator
of brain degeneration and cognitive status (Fig. 2).
Recent innovations such as this ability to sensitively
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measure synapse density in the brain of a living patient
via SV2A PET imaging, low concentrations of synaptic
protein proteolytic fragments in the CSF via sensitive
ELISAs or LC/MSMS methods, changes in cortical
synaptic currents measured by qEEG, or disruption of
glucose metabolism measured by FDG-PET promise to
revolutionize the ability to stage patients and to define
disease more precisely. Furthermore, as synapses are a
fundamental brain structure responsible for cognitive
output, measures of synapse density have the most value
in their ability to assess responses to disease-modifying
treatments.
Following the identification of synaptic protein frag-

ments of neurogranin, SNAP-25, and synaptotagmin in

CSF [115, 116], specific protein biomarkers of synapse
degeneration have begun to emerge in recent years. Pro-
tein fragments of neurogranin, a dendritic protein in-
volved in LTP, are increased in CSF of patients with AD,
and full-length neurogranin is decreased in post-mortem
brain tissues [117, 118]. Furthermore, encouraging data
show that increased neurogranin fragments in CSF cor-
relate with future cognitive decline, brain atrophy, and
glucose metabolism, even at early stages of the disease
[117, 119–121], and that the increase in CSF neurogra-
nin seems to be specific for AD [122, 123]. This use of
CSF measurement of neurogranin concentration under-
lies the concept that an accurate biomarker of synapse
loss reflects cognitive function based on the correlation

Fig. 2 Amyloid and tau biomarkers can be used to confirm AD pathology, and biomarkers of synaptic damage and loss will be useful for
predicting cognitive decline
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between cognitive function and synaptic proteins in the
post-mortem brain.
Other synaptic proteins including SNAP25, RAB3A,

GAP43, AMPA receptor subunits, and a number of
other proteins also show promise as CSF biomarkers of
synaptic damage and loss [24, 25, 124, 125]. In addition,
recent research proposes inflammatory markers, detect-
able in the CSF, as possible biomarkers of neurodegener-
ation in AD, though their correlation to synapse loss in
particular remains unclear [126]. Biomarkers of glial ac-
tivation such as CSF TREM2, chitotriosidase, CCL2, and
YLK-40 have been observed in AD CSF [127–130].
Eventually, a panel of synaptic protein biomarkers may
be a reliable readout for the different aspects of synapse
loss (pre-synaptic, synaptic vesicle, and dendritic) and a
predictor of memory decline. Indeed, a recent study
found that a group of synaptic proteins changes in CSF
before markers of neurodegeneration are observed in
AD [131]. Although CSF collection is more invasive than
blood sampling, robust blood-based biomarkers of syn-
aptic damage are not yet available. It is, for example,
possible to measure neurogranin concentration in
plasma, but there is no plasma-CSF correlation [119,
132]. It may be possible to develop higher sensitivity as-
says and analyses of neuron-derived exosomes in blood
with advancing technologies [130, 133].
Finally, functional imaging approaches are additional

tools for visualizing the health and function of neurons
affected by AD. EEG represents a dynamic measurement
of synaptic function in cortical pyramidal neuronal den-
drites that can capture the summed excitatory and in-
hibitory post-synaptic potentials at a macroscopic spatial
scale with millisecond time resolution [134–137]. Over-
all, quantitative EEG analysis provides the most direct
and dynamic clinical representation of neuronal and
synaptic function in AD patients; however, while it is
sensitive to changes in neuronal circuit responses result-
ing from synaptic dysfunction, it cannot discriminate be-
tween the exact mechanisms of action underlying
synaptic dys/function. Alterations in quantitative mea-
sures derived from EEG data in patients with AD have
been widely described and have been shown to be sensi-
tive to disease progression [134, 138, 139] and to correl-
ate with CSF biomarkers of AD [140]. Furthermore, EEG
is non-invasive, robust, efficacious, and widely available
in hospitals. Although EEG itself is an “old” technique,
quantitative instead of visual analysis of EEG signals pro-
vides a wealth of information and is a novel and rapidly
developing method in modern neuroscience. Spectral
power measures (i.e., the percentage of the total brain
activity accounted for by a specific wave frequency) in
task-free EEGs can be calculated and reflect the oscilla-
tory activity of the underlying brain network responsible
for cognitive functioning. In patients with AD, the EEG

shows distinct changes in spectral power indicating a
gradual, diffuse slowing of brain electrical activity with
progression of the disease [138]. In particular, the grad-
ual relative increase of neuronal theta (4–8 Hz) activity
appears to be a robust sign in early AD. It has been re-
cently demonstrated that theta band activity is a marker
of future cognitive decline in non-demented amyloid-
positive subjects with additive value above other markers
of disease progression such as medial temporal atrophy
on MRI [141] and importantly that its increase can be
reversed in response to approved AD therapeutics [142–
151].
In addition to EEG, the use of fluorine-18 fluorodeoxy-

glucose PET (FDG-PET), which enables the visualization
of glucose metabolism rates in the brain, has been inves-
tigated for its use in AD. In neurons, the demand for
glucose is driven partly by synaptic terminals, which
generate ATP needed for synthesis, release, and recyc-
ling of neurotransmitter molecules, for the maintenance
of the normal resting potential and for the recovery from
action potentials. The cerebral metabolic rate of glucose
as measured with FDG-PET provides a direct index of
synaptic functioning and an indirect measure of synaptic
density [152]. Therefore, a disruption in glucose metab-
olism may be a very direct determinant of synaptic dys-
function [reviewed in [153]]. The ability to detect
changes in glucose metabolism prior to the onset of clin-
ical symptoms of AD may aid earlier diagnosis of AD
[153]. Data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) have confirmed longitudinal associa-
tions between FDG-PET and clinical measures [154] and
have suggested that FDG-PET may help to increase the
statistical power of diagnosis over conventional cognitive
measures, aid subject selection, and substantially reduce
the sample size required for clinical trials [155, 156],
though these findings must be confirmed in broader
sample sizes and longer studies, and require further
clarification regarding their applicability to AD or other
types of dementias. Therapeutic trials have provided
strong support for the use of FDG-PET as a clinically
relevant primary biomarker outcome in proof of concept
studies that has the power to detect active-placebo
differences less than half as great as the best clinical
measures [157]. However, additional studies showing a
relationship between an effective treatment’s FDG-PET
and clinical findings are needed to provide further
support for its “theragnostic” value.
A key further issue for future exploration is the longi-

tudinal relationship between biomarkers and cognitive
outcome measures. Even modest correlations between
the two would yield helpful evidence of clinical rele-
vance. Recent studies have observed modest correlations
between the International Shopping List Test, a measure
of episodic memory, with various volumetric MRI
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measures and especially hippocampal volume [158].
Change over time correlations would provide further
helpful support. Furthermore, as understanding of these
biomarkers improves, their use may help in discerning
AD from other types of dementias, in particular through
localization of compromised synapses to the frontal lobe,
temporal lobe, and other brain regions. Finally, oppor-
tunities for biomarker validation are offered by the
extension of assessment to domains of cognition known
to be compromised early in the disease process. Recent
FDA draft guidance has called for trials to feature the
use of “sensitive neuropsychological measures.” Com-
mentators on the draft guidance have highlighted the
need for trials to include measures of spatial memory
skills, working memory, attention, and executive
function [159].

Conclusions
Synapses are essential parts of neurons that form the
requisite connections of the neuronal networks that
underlie cognition. The cognitive impairment in AD
closely parallels the loss of synapses due to the toxic ef-
fects of Aβ, tau, and inflammation. Emerging biomarkers
of synapse damage reflect such synapse injury and loss
in the brain due to disease. Hence, biomarkers of syn-
apse damage and loss, especially the use of multiple cat-
egories of biomarkers in combination with one another,
hold great promise as biological measures that should
correlate with cognitive function in AD.
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