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Abstract

Background: The application of advanced sequencing technologies and improved mass-spectrometry platforms
revealed significant changes in gene expression and lipids in Alzheimer’s disease (AD) brain. The results so far have
prompted further research using “multi-omics” approaches. These approaches become particularly relevant, considering the
inheritance of APOEε4 allele as a major genetic risk factor of AD, disease protective effect of APOEε2 allele, and a major role of
APOE in brain lipid metabolism.

Methods: Postmortem brain samples from inferior parietal lobule genotyped as APOEε2/c (APOEε2/carriers), APOEε3/3, and
APOEε4/c (APOEε4/carriers), age- and gender-matched, were used to reveal APOE allele-associated changes in transcriptomes
and lipidomes. Differential gene expression and co-expression network analyses were applied to identify up-
and downregulated Gene Ontology (GO) terms and pathways for correlation to lipidomics data.

Results: Significantly affected GO terms and pathways were determined based on the comparisons of APOEε2/c
datasets to those of APOEε3/3 and APOEε4/c brain samples. The analysis of lists of genes in highly correlated network
modules and of those differentially expressed demonstrated significant enrichment in GO terms associated with genes
involved in intracellular proteasomal and lysosomal degradation of proteins, protein aggregates and organelles, ER
stress, and response to unfolded protein, as well as mitochondrial function, electron transport, and ATP synthesis. Small
nucleolar RNA coding units important for posttranscriptional modification of mRNA and therefore translation and
protein synthesis were upregulated in APOEε2/c brain samples compared to both APOEε3/3 and APOEε4/c. The analysis
of lipidomics datasets revealed significant changes in ten major lipid classes (exclusively a decrease in APOEε4/c
samples), most notably non-bilayer-forming phosphatidylethanolamine and phosphatidic acid, as well as mitochondrial
membrane-forming lipids.

Conclusions: The results of this study, despite the advanced stage of AD, point to the significant differences in
postmortem brain transcriptomes and lipidomes, suggesting APOE allele associated differences in pathogenic
mechanisms. Correlations within and between lipidomes and transcriptomes indicate coordinated effects of
changes in the proteasomal system and autophagy—canonical and selective, facilitating intracellular degradation,
protein entry into ER, response to ER stress, nucleolar modifications of mRNA, and likely myelination in APOEε2/c
brains. Additional research and a better knowledge of the molecular mechanisms of proteostasis in the early
stages of AD are required to develop more effective diagnostic approaches and eventually efficient therapeutic
strategies.
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Background
The inheritance of APOEε4 allele is the major genetic risk
factor for late-onset AD [1]. The 3 alleles of human
APOE—APOEε2, APOEε3, and APOEε4—translate to 3
protein isoforms, APOE2, APOE3, and APOE4, which dif-
fer only in 2 amino acid residues at positions 112 and 158
[2]. APOE is a 299-amino acid-long protein and a major
component of low-density (LDL) and very low-density
(VLDL) lipoproteins circulating in the blood. APOE is
highly expressed in the brain, is secreted primarily by as-
trocytes, and its major role is to transport cholesterol and
phospholipids as HDL-like particles in the interstitial fluid
[3]. The first and major regulatory step in the formation
of brain HDL is the lipidation of APOE by ATP-binding
cassette transporter A1 (ABCA1) [4]. Properly lipidated
APOE containing lipid particles in the brain affect synap-
togenesis, play an important role in binding Aβ and lipid
species, and facilitate their clearance through the blood-
brain barrier and by microglia (reviewed in [4, 5]).
An increased risk for AD in APOEε4 carriers is undispu-

table: it is materialized in the earlier age of AD onset (ap-
proximately half of ε4-homozygotes will develop AD
before age of 85, compared to only 10% of non-carriers),
accelerated course of the disease, and more pronounced
brain pathology [6–8]. The molecular mechanisms medi-
ated by APOEε4 expression remain poorly understood,
but a role for APOE4 in greater Aβ aggregation/deposition
and neuronal toxicity, reduced clearance, and isoform-
specific effects on neuroinflammation and neurogenesis
have been demonstrated [5, 9]. The protective effect asso-
ciated with APOEε2 is far from understood and ironically,
compared to APOEε3/4 or APOEε4/4, APOEε2/2, and
APOEε2/3 genotypes, APOEε2/c are less represented in
experimental and clinical studies. It is well established,
however, that, excluding “oldest-old,” in the presence of
clinical dementia and neuropathological criteria for AD,
the effect of APOEε2 is unaffected by age, it is independ-
ently associated with lower Braak neurofibrillary tangle
stages, possibly fewer neuritic plaques, milder AD path-
ology, and less severe antemortem cognitive impairment
[10–13].
During the last decade, advanced sequencing technolo-

gies, improved mass-spectrometry platforms, and “omics”
approaches have been constantly providing massive data-
sets comprising tens of thousands of genes, metabolites,
and lipid molecular species with enormous potential to
address questions relevant to disease pathogenesis and de-
velopment, and possibly, drug discovery for neurodegener-
ative disorders [14–20]. In this regard, the established
association between lipid metabolism, Aβ generation, and
its clearance from the brain [21], as well as recent reports
on the changes in transcriptomic profiles in the brain of
AD patients and AD model mice [22], has prompted fur-
ther research using “multi-omics” assays. Their application

is also motivated by the increasing evidence that changes
in cholesterol and bilayer- and non-bilayer-forming phos-
pholipids’ content play a role in the pathogenesis and pro-
gression of AD [5]. The “multi-omics” approaches become
particularly relevant considering the inheritance of the
APOEε4 allele as a major genetic risk factor of AD, earlier
onset, and aggravated AD phenotype, as well as the pro-
tective effect of inherited APOEε2 allele. Studies of brain
lipidomes in AD model mice revealed alterations in
phospholipid composition of the synaptic mitochon-
drial membranes, with cardiolipin (CL) content di-
minished during the early stages of pathology,
connecting specific lipid changes to AD-like neurode-
generative process [22]. Changes in the intracellular
content of phosphatidylethanolamine (PE) as well as
changes in its synthesis and metabolism have been as-
sociated with AD and other neurodegenerative disor-
ders [23, 24]. While the vast majority of lipidomics
studies have compared lipidomes of AD brains to
non-demented healthy controls, there have been no
reports correlating changes in brain transcriptomics
profiles to changes in lipid profiles, particularly in the
context of APOE genotype [25–27]. Here, we present
“multi-omics” profiling of postmortem AD brain sam-
ples from the inferior parietal lobule.
The inferior parietal lobule was chosen for two rea-

sons: (1) neurofibrillary tangle formation occurs in a
well-defined order, starting in the medial temporal lobe
early in the disease and subsequently progressing to-
wards the lateral temporal, parietal, prefrontal cortices,
and finally the motor and sensory areas [28, 29]. By con-
trast, in the earlier stages of the disease, amyloid de-
posits first affect the posterior association cortices and
inferior parietal cortex; the areas of the medial temporal
lobe might then be affected, but it is not very common
in the early stages [28, 30, 31]. Thus, the goal was to
reveal differential changes in brain transcriptomes and
lipidomes possibly associated with APOE genotype that
favors a delayed neurofibrillary tangle formation and
slower amyloid deposition; (2) morphological and histo-
chemical studies have shown that the initiation and pro-
gression of AD-related destruction inversely recapitulate
primarily the progress of cortical myelination [28]. In
humans, myelination of axons in the prefrontal associ-
ation areas and temporal and parietal lobes has the most
protracted myelination which continues until the end of
the sixth decade of human life. Late-myelinating neocor-
tical areas at the same time are the most vulnerable to
developing the pathognomonic lesions of AD consisting
of neuritic plaques and neurofibrillary tangles [32–34]
(for a detailed review and extensive list of references, see
Bartzokis [35]). Longitudinal MRI data and high-
throughput analysis studies, however, have provided evi-
dence that initial, early signs of mild cognitive
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impairment (MCI), based on Clinical Dementia Rating,
are associated with a similar rate of atrophy across all
medial temporal lobe regions and inferior parietal lobule
[36, 37]. Moreover, comparing individuals without a
diagnosis of MCI or AD but with cognitive complaints
or cognitive decline, studies demonstrated involve-
ment—detectable atrophy of posterior parietal lobule,
more specifically the angular gyrus [38, 39]. Very re-
cently, a study examining the distribution and severity of
tau-PET binding in cognitively normal adults with pre-
clinical AD, as determined by positive β-amyloid PET,
found that the precuneus and inferior parietal cortex
were among the eight regions with the highest tau-PET
binding. The findings were interpreted as consistent with
preclinical involvement of the medial temporal lobe
(MTL) and parietal lobe in AD [40]. It is not known,
however, if there are APOE genotype-associated differ-
ences in transcriptional profiles in the inferior parietal
lobule at those very early—almost impossible to investi-
gate—or very late stages of the disease, brain samples
available at the time of death, and if they can explain the
differences in disease progression.
The results of our study demonstrate APOE allele-

associated gene expression and lipid patterns at ad-
vanced stages of the disease. Weighted gene co-
expression network analysis (WGCNA) revealed 14 co-
expression network modules with a significant correl-
ation to the APOE genotype. Utilizing Gene Ontology
(GO) analysis with highly connected hub genes and lists
of differentially expressed genes, we identified enriched
GO terms associated with myelination, macroautophagy,
regulation of macroautophagy, protein ubiquitination,
and phosphatidylethanolamine biosynthetic process. The
correlation between significantly changed lipid molecular
species and differentially expressed genes indicated that
differences in intracellular catabolic processes that de-
liver cytoplasmic components to lysosomes, as well as
polyubiquitylation—implicated in proteasomal and lyso-
somal protein degradation—are among those underlying
APOE allele-associated differences in AD pathology.

Methods
AD brain samples
All samples (Tables 1 and 2) were provided by the
University of Pittsburgh Alzheimer’s Disease Research
Center (ADRC) brain bank and the Sanders-Brown
Center on Aging at the University of Kentucky. Braak
staging was performed on Bielschowsky-stained sec-
tions [30]. APOE allelic polymorphism was deter-
mined by a PCR-based assay [41]. Gray matter
samples of APOEε2/3 (later in the text and figures,
the genotype is marked as APOEε2/c), APOEε3/3,
APOEε3/4, and APOEε4/4 (later in the text and fig-
ures, the last two genotypes are marked as APOEε4/c)

genotypes from the right inferior parietal lobule were
dissected and used for further processing. Age match-
ing was confirmed by one-way ANOVA. Postmortem
intervals (PMI) ranged between 1 and 15 h, with no
significant difference between the groups (analysis by
ordinary one-way ANOVA, Table 1).

RNA isolation, processing, and sequencing
RNA isolation and purification were performed using
RNeasy mini kit (Qiagen). To increase sample purity,
rRNA was removed with Ribo-Zero Gold rRNA Removal
Kit (Illumina) and libraries were generated using mRNA
Library Prep Reagent Set (Illumina) with the incorpor-
ation of barcodes for multiplexing. A targeted size selec-
tion was performed using Pippin Prep (Sage Science),
the quality of the libraries was assessed on a 2100 Bioa-
nalyzer (Agilent) and sequenced on Illumina HiSeq 2000
at the Functional Genomics Core, University of Pennsyl-
vania, Philadelphia, PA.

Weighted gene co-expression network analysis
Unsupervised hierarchical clustering and WGCNA were
performed as previously [42–44], using sequencing data-
sets of 42 samples. The co-expression network was cre-
ated with a raw count exclusion so that genes below 5
reads per million (RPM) mapped were removed to elim-
inate noise. Samples were clustered by gene expression
profiles to identify the potential outliers. A scale-free
topology model was applied, and a weighted network
was constructed by Pearson correlation between all pairs
of genes. Modules (functional networks) were detected
using automatic block detection with a minimum mod-
ule size of 20 and a merge height of module clustering
for genes of 0.25. The dataset was adjusted for batch ef-
fects using an Empirical Bayes-moderated linear regres-
sion model which removes covariates potentially
introduced due to variability between sequencing runs.
The modules were assigned an arbitrary color then cor-
related with trait data—APOE2/c, APOE3/3, and
APOE4/c. Within the modules, hub genes were identi-
fied by module membership (MM > 0.8), which is the
connectivity between genes and a given module, and
gene significance (GS > 0.2), which is the correlation be-
tween gene expression and APOE genotype. Modules for
further analysis were selected only if their correlation
within the expression network was significant (p < 0.05)
and if the genes of a given module generated significant
GO terms with false discovery rate (FDR) < 0.05.

Differential gene expression analysis
For read mapping and summarization (human reference
genome, hg38), we applied Subread (http://subread.sour-
ceforge.net) averaging 15.2 million successfully aligned
reads per library. Differential expression was analyzed
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using “edgeR” (http://www.bioconductor.org/packages/
release/bioc/). To accommodate the experimental de-
sign, we applied a generalized linear model, and to
account for gene-specific variability from both bio-
logical and technical sources, the working hypothesis
was tested in a quasi-negative binomial framework
[45]. The test for significant differential expression
(DE) in each gene was performed by quasi-likelihood
F test [45, 46]. Multiplicity correction was performed
by applying the Benjamini-Hochberg method on p
values, to control the FDR. The total number of DE
genes, therefore, is a sum in each direction of p
values at an FDR of 1%. Volcano plots were generated
by comparing the genotypes with a calculated FDR and
fold change (FC) for each gene. The calculated values were
log-transformed (−log10 for FDR and log2 for FC) to gen-
erate the classic volcano shape of the data. Each point on
the plots indicates a single gene, and genes that are signifi-
cantly different (FDR < 0.05; −log10(0.05) = 1.3) between
the groups are highlighted in red or blue depending on
the direction of the alteration. Functional annotation of
differentially expressed genes was performed using Data-
base for Annotation, Visualization and Integrated Discov-
ery (DAVID) (https://david.ncifcrf.gov).

Lipidomics
Multi-dimensional mass spectrometry shotgun lipido-
mics (MDMS-SL) assays [18, 47, 48] were performed to
determine the effects of APOE alleles on brain lipidome
(demographics in Table 2). Brain samples were homoge-
nized in PBS and protein content determined using the
BCA protein assay kit (Pierce). Internal standards for
measuring individual molecular species of the major
lipid classes were added to the homogenates prior to
lipid extraction. Lipid extraction was performed by the
methyl-tert-butyl ether (MTBE) method, with resuspen-
sion in chloroform/methanol (1:1 v/v) solution and ni-
trogen flush. The samples were analyzed on a triple-
quadrupole mass spectrometer (Thermo Fisher)
equipped with an automated nanospray apparatus Nano-
Mate and Xcalibur system [47]. Identification and quan-
tification of all reported lipid molecular species were
performed using an in-house automated software pro-
gram [47].

Table 1 AD case demographics and neuropathological
characteristics for transcriptomics

APOE Age Sex Braak stage

APOE2 carriers 2/3 93 F 3

2/3 92 F 6

2/3 92 F 3

2/3 90 F 2

2/3 91 F 5

2/3 96 M 5

2/3 67 M 6

2/3 94 M 3

Age ± SD (years) 89.38 ± 9.2

PMI (range; mean) hours 1.4-3.3; 2.48

APOE3/3 3/3 80 F 6

3/3 87 F 6

3/3 81 F 6

3/3 91 F 6

3/3 89 F 6

3/3 80 F 6

3/3 80 F 6

3/3 86 M 6

3/3 85 M 6

3/3 83 M 6

3/3 81 M 6

3/3 92 M 6

Age ± SD (years) 84.5 ± 4.4

PMI (range; mean) hours 2-9; 4.08

APOE4 carriers 3/4 83 F 6

3/4 80 F 6

3/4 89 F 6

3/4 88 F 6

3/4 84 F 6

3/4 89 F 6

3/4 90 F 6

3/4 87 F 6

3/4 88 M 6

3/4 79 M 6

3/4 76 M 6

3/4 82 M 6

3/4 84 M 6

3/4 91 M 6

3/4 80 M 6

3/4 79 M 6

4/4 79 F 6

4/4 80 F 6

4/4 82 M 6

Table 1 AD case demographics and neuropathological
characteristics for transcriptomics (Continued)

APOE Age Sex Braak stage

4/4 82 M 6

4/4 84 M 6

4/4 84 M 6

Age ± SD (years) 83.6 ± 4.2

PMI (range; mean) hours 1-15; 4035
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General data analysis
General statistical analyses and graphs were performed
and presented using GraphPad Prism (v7) or R (v3.6.0).
The results are reported as means ± SEM. Differences
were considered significant when p < 0.05. Specific statis-
tical and mathematical approaches are presented in the
sections above. Detailed descriptions of those exist in
the citations as indicated.

Results
APOE genotype is differentially associated with AD brain
transcriptome
To determine the association of APOE alleles with gene
expression, we performed RNA-seq using samples of the
inferior parietal lobule of AD postmortem brains. We
compared three groups/genotypes: APOEε2/c, APOEε3/
3, and APOEε4/c (Table 1), age- and sex-matched. All of
the samples were confirmed AD Braak stages 2–6. The
analysis of PMI did not reveal any differences between
the groups.
To determine differentially expressed genes, we used

edgeR and analyzed the 3 groups simultaneously. Com-
paring APOEε2/c vs APOEε4/c (Fig. 1a) and APOEε2/c vs
APOEε3/3 (Fig. 1b), we identified a large number of sig-
nificant, up- and downregulated transcripts at FDR < 0.05
cutoff. When APOEε4/c were compared to APOEε3/3, we
did not find differentially expressed genes at FDR < 0.05.
Within the first two comparisons, we identified 3405
genes that were commonly upregulated (in APOEε2/c vs
APOEε4/c and APOEε2/c vs APOEε3/3; Fig. 1c—shown in
white on the Venn diagram). Enrichment analysis revealed
that common genes, with increased expression in
APOEε2/c, clustered primarily in highly significant GO
terms involved in translation, proteasome-mediated
ubiquitin-dependent protein catabolic process, response
to unfolded protein, signal recognition particle (SRP)-
dependent protein targeting, endoplasmic reticulum (ER)
translational translocation, ER stress response, autophagy,
and mitochondrial electron transport. (Fig. 1c). The 3094
common downregulated genes of APOEε2/c samples clus-
tered in GO terms representing positive regulation of
GTPase activity, Ca ion transmembrane transport, actin
cytoskeleton organization synapse assembly, and cilium
movement (Fig. 1d).

Table 2 AD case demographics and neuropathological
characteristics for lipidomics

APOE Age Sex Braak stage

APOE2 carriers 2/3 93 F 3

2/3 92 F 6

2/3 92 F 3

2/3 90 F 2

2/3 91 F 5

2/3 96 M 5

2/3 67 M 6

2/3 94 M 3

Age ± SD (years) 89.38 ± 9.2

PMI (range; mean) hours 1.4-3.3; 2.48

APOE3/3 3/3 80 F 6

3/3 87 F 6

3/3 81 F 6

3/3 91 F 6

3/3 89 F 6

3/3 80 F 6

3/3 80 F 6

3/3 86 M 6

3/3 85 M 6

3/3 83 M 6

3/3 81 M 6

3/3 92 M 6

Age ± SD (years) 84.5 ± 4.4

PMI (range; mean) hours 2-9; 4.08

APOE4 carriers 3/4 83 F 6

3/4 80 F 6

3/4 89 F 6

3/4 88 F 6

3/4 84 F 6

3/4 89 F 6

3/4 90 F 6

3/4 87 F 6

3/4 88 M 6

3/4 79 M 6

3/4 76 M 6

3/4 82 M 6

3/4 84 M 6

3/4 91 M 6

3/4 80 M 6

3/4 79 M 6

4/4 79 F 6

4/4 80 F 6

4/4 82 M 6

Table 2 AD case demographics and neuropathological
characteristics for lipidomics (Continued)

APOE Age Sex Braak stage

4/4 82 M 6

4/4 84 M 6

4/4 84 M 6

Age ± SD (years) 83.6 ± 4.2

PMI (range; mean) hours 1-15; 4035
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Fig. 1 (See legend on next page.)
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WGCNA identified modules of gene co-expression
network that differentially correlated to APOE genotype
To analyze transcriptomic data of all samples and to
reveal the gene co-expression network, we applied
WGCNA using the methodology and statistical ap-
proaches previously described [43, 49, 50]. The
WGCNA started out from 18,170 genes, and the
identified modules of co-expressed genes were related
to APOE genotypes and GO information. Since gene
modules correspond to biological pathways, the ana-
lysis of modules and their highly connected intra-
modular hub genes amounts to a biologically
meaningful data reduction scheme. Highly correlated
module genes are represented and summarized by
their first principal component, referred to as the
module eigengene, or ME, which can be considered a
representative of gene expression profiles in the mod-
ule [51, 52]. The ME is used to quantify how close a
gene is to a given module. Module definition in this
study was based on the gene expression level in the
inferior parietal lobule of 42 samples. Thus, module
membership measures allowed annotation of all genes
in the sequencing dataset (excluding those with an
expression level indistinguishable from the sequen-
cing noise) and screening for APOE genotype related
intramodular hub genes. We used functional enrich-
ment analysis to present the biological significance of
the ME and to identify putative APOE genotype-
associated pathways.
First, using WGCNA, we correlated the networks of

co-expressed module eigengenes—ME—to three traits,
sex, age, and APOE genotype (Additional file 6: Figure
S1). As visible, the age did not have a significant effect,
and MEsalmon was the only module that correlated sig-
nificantly to sex. This correlation of this module is
driven primarily by genes important for sex determin-
ation such as UTY and DDX3Y located on the Y
chromosome or DDX3X and XIST located on the X
chromosome. There were no significant GO terms gen-
erated by the genes of this module. Second, since
APOEε2/c genotype correlated significantly to the ME of
seven modules, we analyzed their correlation to
APOEε3/3 and APOEε4/c genotypes (Fig. 2a and Add-
itional file 1: Table S1). As shown, in addition to the

eigengenes of the seven already mentioned modules with
highly significant correlations with APOEε2/c genotype,
there was only one of those significantly correlated with
APOEε4/c. GO enrichment analysis for those modules
was performed using DAVID (Fig. 2b). We identified
hub genes as those with module membership (MM)
above 0.8 and gene significance (GS) of 0.2 (Fig. 2c;
highlighted are genes of interest within some of the GO
terms. The calculated z-scores of the genes within the
modules and the average z-score within each module of
each sample are presented as a heatmap and whisker
plots on Fig. 2d & e correspondingly).
MEmagenta correlated positively to APOEε2/c and

negatively to APOEε3/3 and APOEε4/c and is enriched
for GO terms related to protein folding and response to
unfolded protein (Fig. 2b). MEgreenyellow was repre-
sented by GO terms associated with signal recognition
particle (SRP)-dependent protein targeting and trans-
lational initiation. Functionally, very close to GO
terms in MEgreenyellow were signal transduction
pathways identified in MEturquoise—ubiquitin and
proteasome-mediated protein catabolism, ER to Golgi
vesicle-mediated transport, and protein folding. GO
term regulation of autophagy and macroautophagy
with differentially upregulated genes in APOEε2/c
samples were identified in MEturquoise and MEblue.
MEyellow was the only positively upregulated module
in APOEε4/c samples, comprising GO term RNA pro-
cessing, regulation of transcription from RNA poly-
merase promoter and axonogenesis. As seen from
Additional file 1: Table S1, MEcyan is unique and
consists entirely of genes coding for small nucleolar
RNAs (snoRNA). Differentially expressed individual
and clustered snoRNAs coding units are spread out
across the entire genome and their host genes are un-
related. SnoRNA coding units are of both H/ACA
and C/D boxes [53]. At FDR < 0.05, 22 SNORAs and
SNORDs altogether were differentially upregulated in
APOEε2/c vs APOEε4/c; 19 of those were upregulated
in APOEε2/c vs APOEε3/3. These snoRNAs, however,
did not generate any significant GO terms. There is
no published information that any of those have been
implicated, or associated in any way, with the patho-
genesis of AD or other neurodegenerative disorders.

(See figure on previous page.)
Fig. 1 APOE genotype is differentially associated with brain transcriptome. RNA-seq datasets of APOEε2/c (N = 8), APOEε3/3 (N = 12), and APOEε4/c
(N = 22) samples were analyzed using edgeR. a, b Volcano plots representing the differentially expressed transcripts, colored in blue (downregulated)
and red (upregulated) at FDR < 0.05. c Venn diagram with expanded GO terms generated from the genes that are upregulated in APOEε2/c vs APOEε4/
c and APOEε2/c vs APOEε3/3. Shown are the number of genes that are upregulated in both comparisons (3405, white), genes uniquely upregulated in
APOEε2/c vs APOEε4/c comparison (803, bright red), and genes uniquely upregulated in APOEε2/c vs APOEε3/3 (269, coral). d Venn diagram showing
the number of genes downregulated in both comparisons (3094, white), uniquely downregulated in APOEε2/c vs APOEε4/c comparison (814, dark
blue), and genes uniquely downregulated in APOEε2/c vs APOEε3/3 (288, light blue), as well as the associated GO terms for each group. Next to the
Venn diagrams are the lists of the GO terms generated by DAVID using unique and common genes separately for each comparison
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In AD brain, APOE allele combinations are associated with
distinct lipid profiles
Because APOE is a major lipid transporter and the most
important one in the brain, we analyzed the lipid com-
position of the inferior parietal lobule of AD brains of
APOEε2/c, APOEε3/3, and APOEε4/c genotypes (demo-
graphics in Table 2). We applied shotgun lipidomics to
measure the major phospholipid classes and their
molecular species. The analysis identified 14 major lipid
classes, comprising 215 molecular species. The differ-
ences between the lipid species are graphically presented
in Fig. 3a–e. Significantly changed lipid species between
genotypes are presented in 3 separate volcano plots
(Fig. 3a–c). The heat map in Fig. 3d illustrates the level
of each of the molecular species in each of the brain
samples, and the comparison between the normalized
total values of lipids in each of the lipid classes and ge-
notypes is further illustrated by the bar plots in Fig. 3e
(Additional file 2: Table S2; Additional file 3: Table S3,
Additional file 4: Table S4, and Additional file 5: Table
S5 for color codes and abbreviations). Ten of the lipid

classes showed differences in their total normalized
amounts in at least 1 of the comparisons, and in each of
the comparisons, the levels of lipids in APOEε4/c were
significantly lower. Moreover, PA, PC, PE, SM, and ST
were significantly lower in APOEε4/c samples compared
to either APOEε2/c or APOEε3/3. All of the mitochon-
drial membrane bilayer-forming phospholipids—PC, PS,
PI, and 2 of the 3 non-bilayer-forming phospholipids, PE
and PA, except CL—were significantly diminished in
APOEε4/c samples. In a sharp contrast to transcriptomic
profiles, the difference between APOEε3/3 vs APOEε4/c
brain lipidomes was very significant. Moreover, in 4 of
the lipid classes—LPS, PE, PI, and PS—a highly signifi-
cant difference was identified only between APOEε3/3 vs
APOEε4/c samples.

Discussion
The goal of this study was to reveal and analyze a differ-
ential association of APOE genotype with transcriptomic
and lipidomic profiles in postmortem AD brain samples
and to determine correlations. Since APOEε2 allele is

Fig. 2 Gene co-expression network modules—correlation to APOE genotype and GO enrichment. WGCNA was applied to determine the correlation of
module eigengenes (ME) to APOE allele combinations. a The relationship table shows the correlation between the module eigengene (rows) and genotype
(columns) with Pearson correlation values and p values in parentheses. Red denotes a positive, and blue denotes a negative correlation. b Top GO terms (10 or
less) generated from the genes associated with modules significantly impacted by APOE genotype (Benjamini correction for multiple comparisons, shown in
parentheses). c Module membership (MM) vs gene significance (GS) plots for all genes within a given module. Genes above 0.8 MM and 0.2 GS are identified
as hub genes, with genes of interest labeled on the plots. d Heatmaps of genes within modules’ z-scores with values ranging from 7 (red, above average) to −
7 (blue, below average). eWhisker plots of the average z-score within a module for each sample; min and max values are indicated with tails; the numbers of
transcriptomes of each genotype are as on Table 1
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Fig. 3 (See legend on next page.)
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significantly related to a reduced disease risk, especially
in people under the age of 85 years [6–8], in groups with
no statistical difference by age at death, we would expect
APOEε2/c postmortem brains at lower Braak stages and
not as severe brain pathology. Thus, transcriptomic pro-
filing of APOEε2/c, APOEε3/3, and APOEε4/c postmor-
tem brains would likely reveal changes associated with
the corresponding APOE allele.
Our study provides RNA-seq and mass-spectrometry

lipidomics data derived from the inferior parietal lobule
of APOEε2/c, APOEε3/3, and APOEε4/c postmortem
brains at known age of death and sex, at an advanced
stage of AD, and allows interpretations in the context
of gene expression and differences in brain lipidomes.
We analyzed the changes in the gene expression using
two different statistical approaches with their corre-
sponding computational tools: WGCNA [51] with an
initial normalization step executed by DESeq2 [54], and
edgeR [45]. WGCNA builds gene co-expression net-
works and reveals the relationship between biologically
meaningful modules based on all transcripts excluding
those indistinguishable from the sequencing noise, in
all samples; edgeR performs RNA-seq profiling and
identifies differentially expressed (DE) genes and mo-
lecular pathways between two or more biological condi-
tions. In our study, lists of genes that belonged to
individual modules within the network—WGCNA—or
identified as DE genes based on the comparisons be-
tween genotypes in edgeR were further processed to
reveal GO terms and categories and to demonstrate dif-
ferences between APOE genotypes.
We found that four of the significantly correlated

modules of the network contained hub genes that are in-
volved in GO terms with highly significant enrichment.
The modules enclosed pathways with biological func-
tions that are considered or suspected as impaired
and associated with AD molecular pathology. In
MEmagenta, MEgreenyellow, and MEturquoise mod-
ules, with highly positive correlations to the network,
a number of GO terms remarkably overlapped with
GO terms generated by genes found differentially up-
regulated by edgeR in APOEε2/c samples when com-
pared to APOEε3/3 and APOEε4/c (Figs. 1 and 2).
These highly enriched GO terms were represented by

pathways associated with proteostasis in ER, response
to unfolded protein, intracellular protein, and organ-
elle degradation—selective and basal autophagy,
macroautophagy and its regulation, ubiquitination and
ubiquitin-mediated proteasomal degradation, and SRP-
dependent protein targeting.
Intracellular catabolic processes deliver cytoplasmic

components to lysosomes through autophagic vacuoles.
During the course of AD, autophagy and macroauto-
phagy have a range of effects—deleterious as well as pro-
tective, depending on the stage of the pathologic process
[55, 56]. In recent years, the results of research aiming at
a better understanding of proteostasis in neurons have
identified interrelated regulatory mechanisms and post-
translational modifications that are part of the ubiquitin
proteasomal system and autophagy-lysosomal pathway,
operating in concert to achieve intracellular protein
balance [57]. Importantly, as discussed above, in a num-
ber of modules of the co-expression network, numerous
highly significant GO terms are associated with
macroautophagy, regulation of macroautophagy, protein
ubiquitination, and proteasome-mediated ubiquitin-
dependent catabolic process (Fig. 2b).
We found particularly interesting module MEcyan and

the set of its genes—all snoRNAs. Functionally, box C/D
and H/ACA snoRNAs play an important role in post-
transcriptional modifications of mRNAs, impacting
translational machinery and ultimately protein synthesis.
C/D guide ribonucleoproteins to conduct the methyla-
tion of the 2′-OH group of ribose, while H/ACA rotate
and convert C-5 ribosyl isomer of uridine into pseudo-
uridine through a rotational break of C–C glycosidic
bond and formation of an N–C one [53]. The most well-
studied box C/D snoRNAs—SNORDs—are located in
two large, imprinted gene clusters at human chromo-
some region 15q11q13 (the SNURF-SNRPN domain)
and at 14q32 (the DLK1-DIO3 domain) [58]. They are
expressed respectively only from the paternally and ma-
ternally inherited alleles. While there is evidence to con-
sider the altered expression of SNORD115 and
SNORD116, a primary cause of Prader-Willi syndrome,
most recently those two and some other snoRNAs, has
been implicated in the pathogenesis of schizophrenia
[59–63]. If and how exactly SNORDs are involved in

(See figure on previous page.)
Fig. 3 Association of APOE allele combinations with AD brain lipidome. MDMS-SL was performed to quantify 14 lipid classes and 216 molecular
lipid species of inferior parietal lobule brain samples of APOEε2/c (N = 8), APOEε3/3 (N = 6), and APOEε4/c (N = 11) genotypes. a–c Volcano plots
show all 216 molecular lipid species quantified by MDMS-SL. Each point represents log2 fold change and −log10 p value of a particular lipid
species. Significantly affected species at p < 0.05 cutoff are colored in blue (decreased) or red (increased). d Heatmap of all lipid subspecies of the
14 lipid classes. Each row in the heatmap represents unique lipid subspecies, denoted by lipid class code; within a class, rows are ordered by
molecular mass; each column represents a sample. Data is presented as a z-score where red values are above average and blue values are below
average. e Bar plots of the sum of all species within a lipid class. Statistics is by one-away ANOVA (p values shown at the bottom of each graph),
followed by Tukey post hoc test (significant differences shown on the graph: *< 0.05, **< 0.01, N.S. no significance)
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altered mRNA splicing in the pathogenesis of schizo-
phrenia is not clear yet, but none of those has been so
far associated with AD. The biology and function of box
H/ACA snoRNAs—SNORAs—have been extensively
studied [64], and their role in cancer is well established
[65]. Studies addressing the role of SNORAs in AD and
results of research so as to compare our findings are not
available. The role of snoRNAs in the pathogenesis of
AD, however, will evolve as an important research topic,
and we believe further research will definitely reveal im-
portant aspects of their biogenesis, structure, and mech-
anisms implicated in the pathogenesis of the disease.
There were significant and consistent changes in the

total amount of lipids and numerous individual molecu-
lar species in 10 of the 14 lipid classes analyzed in this
study (Fig. 3). In all of those instances, there was a sig-
nificant decrease of phospholipids in APOEε4/c vs either
APOEε2/c or APOEε3/3 or vs both genotypes, like in
PA, PC, SM, and ST. While in agreement with previ-
ously published alterations/decrease of phospholipids
during the course of pathogenic processes in AD [66],
the differences between the lipidomes revealed in our
study become particularly important since they can be
correlated with the changes in the transcriptomic pro-
files of the exact same brain area. These correlations
help to better understand the contribution of different
APOE allelic combinations towards differences in the
disease progression and possibly AD pathogenesis. In
this regard, particularly relevant are the metabolic and
regulatory pathways that are involved in the maintaining
of a healthy cellular proteome, a process collectively
called proteostasis, through highly coordinated intracel-
lular protein and organelle degradation. A fundamental
challenge in proteostasis is the protection against mis-
folded or damaged proteins and protein aggregates that
severely disturb cellular functions. If we consider the
most significant differences in the transcriptomic profiles
associated with APOE2/c genotype vs APOEε4/c and
APOEε3/3, we can link the enriched metabolic and regu-
latory pathways to the differences in proteostasis. Thus,
we are suggesting a model explaining the protective
effect of APOEε2 allele in AD by the differences in some
well-defined steps of the unfolded protein response, ER
stress and ER-associated degradation (ERAD), and pro-
teasomal and lysosomal intracellular degradation. We
are assuming that transcriptional upregulation of genes,
an important part of the pathways discussed below, facil-
itates sustained ER homeostasis that provides better pro-
tection against misfolded or damaged proteins and
organelles. Such a model is supported by the following
correlated APOE genotype-associated lipidomic profiles:
First, key genes in the pathways that target proteins to

the ER are differentially upregulated in APOEε2/c: (a) in
the co-translational translocation pathway SRP68 and

SRP72, encoding the subunits of the SRP; (b) SEC61 (all
three subunits of the heterotrimeric complex), SEC62,
and SEC63 at key regulatory steps of both co-
translational translocation and SRP-independent post-
translational translocation pathways. Importantly, SEC62
functions as a LC3-II receptor, and the interaction with
LC3-II promotes the maintenance and recovery of ER
homeostasis through clearance of select ER constituents
by autolysosomes [67]; (c) within the pathway of tail-
anchored proteins, gene orthologs WRB and ASNA1 that
target proteins to ER are significantly upregulated in
APOEε2/c samples, too. Similarly, in ER stress pathways
and unfolded protein response activation, genes coding
for proteins in all three key axes—transcription factor
XBP1, HSPA5 (GRP ortholog), and EIF2K3 (PERK ortho-
log), and transcription factor ATF6—are differentially
upregulated in APOEε2/c AD samples; (d) a cellular
pathway that recognizes unfolded/misfolded proteins
in the ER and targets them for ubiquitination and
subsequent degradation by the proteasome in the
cytosol is called ERAD. Three of the key genes,
EDEM2, EDEM3, and OS9, are upregulated in
APOEε2/c samples. The genes are coding for proteins
responsible for recognition of N-glycan structures,
targeting and routing misfolded proteins for ubiquiti-
nation and subsequent degradation by the proteasome
in the cytosol [68, 69].
Second, LC3-PE conjugation is an indispensable step

for autophagy-related genes (ATG) to exert their func-
tion in autophagy, and for that reason, the availability of
sufficient PE is critical, too. The first step of phagophore
formation is the conjugation of PE to the mammalian
orthologs of yeast ATG8/LC3. Five of those mammalian
orthologs MAP 1LC3A, MAP 1LC3B, GABARAP,
GABARAPL1, and GABARAPL2 are upregulated in
APOEε2/c brain samples. The subsequent generation of
a covalent bond between ATG8 and PE requires a com-
plex composed of ATG5-ATG12/ATG16L1; the genes
of this complex are also upregulated in APOEε2/c.
Third, autophagy receptors (similarly to LC3-II/SEC62

complex) bind to cytosolic LC3 conjugated to PE and have
a major role in selective autophagy, which is a process that
regulates the abundance of specific cellular components
[70]. Autophagy receptors target protein complexes, ag-
gregates, and whole organelles into lysosomes. Selective
autophagy pathways, named after the cargo—aggrephagy,
mitophagy, xenophagy, and pexophagy—can be ubiquitin
(Ub)-dependent and Ub-independent. Four autophagy re-
ceptors—p62, NBR1, OPTN, and BNIP3—that can act on
one or several pathways were upregulated in APOEε2/c
brain samples as common genes for both comparisons,
against APOEε3/3 and APOEε4/c (p62 only in APOEε2/c
vs APOEε4/c). Numerous upregulated genes involved in
the proteasome-mediated Ub-dependent protein catabolic
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process were significantly upregulated in APOEε2/c brain
samples, as well.
Fourth, Beclin1 (BECN1), acting as a molecular plat-

form assembling an interactome which regulates the ini-
tiation of the autophagosome, is upregulated in
APOEε2/c brain samples. Although results from a previ-
ous study [71] that demonstrated decreases in Beclin1
levels in AD midfrontal cortex gray matter still remain
to be confirmed [72, 73], numerous reports show the in-
hibition of Beclin1 interactome impairs autophagy and
promotes AD-like pathology in in vitro and in vivo
model systems [71, 74].
Fifth, but not least, autophagy is highly dependent on

the proper lipidation through PE conjugation of several
proteins critical for phagophore formation, elongation,
and autophagosome generation [75–77]. Significantly
lower amounts of PE in APOEε4/c brains likely pro-
vide conditions for less efficient initiation of autoph-
agy [78, 79].
In the “Results” section, we indicated that the com-

parison of APOEε3/3 vs APOEε4/c did not reveal differ-
entially expressed genes at FDR < 0.05. While results of a
study with a design and selection of groups as in our
own have not been published so far, the differences in
the expression profiles of APOEε3/3 vs APOEε4/4 and
APOEε3/4 (the latter two groups similar to our APOEε4/
c) were a goal of a study published in 2007 by Xu et al.
[27]. The study concluded that the expression pattern of
APOE3/4 and APOE4/4 in the hippocampus of AD pa-
tients differed substantially from that of APOE3/3 AD
patients. Since we have found no difference between the
transcriptomic profiles of APOEε4/c and APOEε3/3
brain samples, there is an obvious discrepancy. The
technologies used for transcriptomic profiling in both
studies—SAGE, Xu et al. [27], and NGS on Illumina
platform, together with the methodology to analyze the
differential gene expression—edgeR—in our study could
be a reason for the differences; other explanations are
possible as well: (1) stage of the disease—all our
APOEε4/c samples are at advanced Braak stage 6 vs
stages 3–4 for the samples in Xu et al.; (2) brain area
used for transcriptomic profiling—the inferior parietal
lobule in our case vs MTL in Xu et al. While WGCNA
analysis after clustering within APOEε4/c group in our
study was precluded by the insufficient number of sam-
ples, the questions raised by the discrepancy of the two
studies should be addressed in the future, and hopefully,
the answers would elucidate important aspects of the
protective effect of APOEε2 allele in AD.
The most recent study [80], addressing APOE

genotype-associated differences in transcriptional pro-
files of postmortem AD samples, was published just a
week before the submission of this article. While the
most important difference with our study is the relative

heterogeneity of their samples (combining traumatic
brain injury and AD samples), the authors made very
important conclusions that, to some extent, strongly
support the results we are presenting here: regardless of
the sex, the observed difference in transcription patterns
for all brain regions analyzed including parietal cortex
significantly correlated to the presence or absence of
APOE4 allele. Moreover, it should be noted that in the
group of APOE4/4 brain samples, only a marginal, but
statistically non-significant, difference between males
and females was revealed.
Altogether, the differences in brain lipidomes and

transcriptomic profiles associated with APOE genotypes
demonstrated in our study strongly support the idea that
the efficiency of unfolded protein response, response to
ER stress, intracellular proteasomal and lysosomal deg-
radation, and better preserved mitochondrial function
provides a molecular background for APOE-associated
differences in AD pathology, interpreted as driven by the
APOEε2/c group. In studies like ours, however, signifi-
cant differences in “omics” profiles could raise a concern
that the differences might be either due to age or AD
brain pathology, including the integrity of RNA as a
PMI-dependent variable. We present results based on
the methodology for processing AD brain samples and
statistical analyses of high-throughput datasets according
to the widely accepted and rigorous standards [81]. Since
the age of patients at the time of death between the
groups is statistically indistinguishable (one-way
ANOVA), the age as a factor, most probably, does not
play a significant role. To discern whether the differ-
ences can be clearly attributed to APOEε2 or there is a
significant contribution of AD pathology is a more diffi-
cult task. The difficulties are primarily associated with
the availability and thus an insufficient number of sam-
ples of APOEε2/2 and APOEε2/c genotypes. The nearest
consequence is that APOEε2/c cases are overwhelmingly
of lower Braak stages, and thus, within a relatively small
pool of only several hundred of AD samples, a random-
ized, yet homogenous group of APOEε2/c samples, age-
matched to the other two groups—APOEε3/3 and
APOEε4/c—and at advanced level of AD pathology is
difficult, or impossible, to construct. An alternative ex-
planation of the demographic structure of APOEε2/c
cases with samples predominantly in lower Braak stages
would be that unlike APOEε3/3 and APOEε4/c,
APOEε2/c genotype confers genomic and likely epige-
nomic environment or promotes metabolic pathways
that altogether have a protective effect and slow down
the progression of AD and neurodegenerative pathology.
The initial analysis of the APOEε2/c group of samples
included in this study did not identify differential gene
expression between the subgroups based solely on Braak
stage—2, 3, and 4 vs 5 and 6 (data not shown). Since
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APOEε2/c genotype (excluding APOEε2/4) is consist-
ently associated with lower Braak stages and less prom-
inent AD brain pathology, early activation and properly
functioning autophagic-lysosomal degradation, improved
myelination and slower myelin breakdown might explain
the better clinical outcomes observed overwhelmingly in
patients of APOEε2/c genotype. With the relatively small
sample size of the APOEε2/c group, intrinsic difficulties
in obtaining samples at the early stages of the disease re-
gardless of the genotype and lack of experimental de-
signs allowing functional studies using postmortem AD
brain prevent immediate testing of this hypothesis. In a
study aiming at gene expression profiles differentially as-
sociated with APOE genotype at the time of death, there
are additional limitations: for postmortem samples, age
matched at the time of death and segregated by APOE
genotype, the age when the cognitive decline was first
recorded, and thus the duration of the disease remains
unknown. It is known, however, that age is an important
variable in the earlier stages of the disease, and signifi-
cantly affects the progression, depending on the APOE
genotype [7, 82] particularly if APOEε2/c is included in
the comparisons. Finally, while we are far from under-
standing the role of remote mechanisms above local in-
teractions in the evolution of AD [83], the pattern of
metabolic brain alteration is likely a result of changes in
the gene expression including brain areas far from MTL.
Availability and transcriptomic analysis of samples of
other brain areas would certainly strengthen the conclu-
sions of a study like ours.
Despite the limitations, the results presented here

support the future investigation to reveal the signifi-
cance of improved myelination, more efficient
autophagic-lysosomal degradation, response to ER
stress, and reduced levels of intracellular toxic Tau
oligomers in APOEε2/c individuals, ultimately slowing
down the development and progression of the disease.
While we still do not know if an impaired
autophagic-lysosomal pathway and ER stress response,
per se, is critical in prodromal AD, and how import-
ant relevant changes of the genome-wide regulatory
networks are for AD progression, a systematic multi-
omics approach, using postmortem AD brain samples
provided by multiple AD Research Centers, will
greatly facilitate the next steps towards identifying
meaningful therapeutic targets.

Conclusions
This study provides detailed transcriptomic profiling
of APOEε2/c, APOEε3/3, and APOEε4/c postmortem
brain samples of the inferior parietal lobule and dem-
onstrates that major APOEε2 allele-associated differ-
ences in gene expression are related to intracellular
protein and organelle degradation, unfolded protein

response, mitochondrial function, and posttranscrip-
tional modifications of mRNA conducted by small
non-coding RNA. The analysis of lipidomics datasets
and the correlation of changes to expression levels of
individual genes allow us to conclude that dysregu-
lated expression of those involved in the control of
autophagy are a characteristic for inferior parietal
lobule at late stages of AD. The results of multiple
analyses, within and between lipidomes and transcrip-
tomes, also indicate that the availability of lipids and
their APOE mediated transport are likely very import-
ant for the differences between the phenotypes.
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