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Abstract

Background: Alzheimer’s disease (AD) is the most common cause of dementia in the elderly and the sixth leading
cause of death in the United States. AD is mainly considered a complex disorder with polygenic inheritance. Despite
discovering many susceptibility loci, a major proportion of AD genetic variance remains to be explained.

Methods: We investigated the genetic architecture of AD in four publicly available independent datasets through
genome-wide association, transcriptome-wide association, and gene-based and pathway-based analyses.
To explore differences in the genetic basis of AD between males and females, analyses were performed on
three samples in each dataset: males and females combined, only males, or only females.

Results: Our genome-wide association analyses corroborated the associations of several previously detected
AD loci and revealed novel significant associations of 35 single-nucleotide polymorphisms (SNPs) outside the
chromosome 19q13 region at the suggestive significance level of p < 5E–06. These SNPs were mapped to 21
genes in 19 chromosomal regions. Of these, 17 genes were not associated with AD at genome-wide or suggestive
levels of associations by previous genome-wide association studies. Also, the chromosomal regions corresponding to
8 genes did not contain any previously detected AD-associated SNPs with p < 5E–06. Our transcriptome-wide
association and gene-based analyses revealed that 26 genes located in 20 chromosomal regions outside chromosome
19q13 had evidence of potential associations with AD at a false discovery rate of 0.05. Of these, 13 genes/regions did
not contain any previously AD-associated SNPs at genome-wide or suggestive levels of associations. Most of the newly
detected AD-associated SNPs and genes were sex specific, indicating sex disparities in the genetic basis of AD. Also,
7 of 26 pathways that showed evidence of associations with AD in our pathway-bases analyses were significant
only in females.

Conclusions: Our findings, particularly the newly discovered sex-specific genetic contributors, provide novel
insight into the genetic architecture of AD and can advance our understanding of its pathogenesis.
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analysis
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Background
Alzheimer’s disease (AD) is a slowly progressive neuro-
degenerative disorder that usually manifests with insidi-
ous deterioration of cognitive functions such as memory,
language, judgment, and reasoning. Visuospatial deficits
and neuropsychiatric symptoms like anxiety, irritability,
depression, delusion, and personality changes may occur
in the course of the disease, and these are eventually
followed by impairment of most daily activities [1, 2].
The median survival is 3.3–11.7 years after disease mani-
festation [3]. Except for some uncommon autosomal
dominant forms, AD is mainly a complex disorder with
a polygenic nature [2, 4] that predominantly affects eld-
erly individuals, also known as late-onset AD. It is the
most common cause of dementia in the elderly world-
wide [5] and is the sixth leading cause of death in the
United States [6]. Age is the main risk factor for AD.
The annual incidence increases from 1% at age 65 years
to 6–8% after 85 years [7], and its prevalence increases
from 11% to 32% [5]. In addition, AD is more prevalent
in females than males [7–10], with their lifetime risk of
developing the disease being almost twice that of males
[7]. This might be to some extent justified by different
life expectancies of males and females. However, Genin
et al. [11] suggested that the age-adjusted penetrance of
Apolipoprotein E (APOE) was sex dependent as well. For
instance, they found that the lifetime risks for homozy-
gote APOE-ε4 carriers were 51% and 60% in males and
females older than 85 years, respectively. The corre-
sponding risks for heterozygote APOE-ε3ε4 carriers were
23% and 30%, respectively [11]. AD is also more severe
in females than males [9]. Henderson and Buckwalter
[12] reported that female AD patients had greater im-
pairment of naming task, verbal fluency, and delayed re-
call compared to male patients. In another study, Barnes
et al. [13] suggested that females were more likely to de-
velop clinical AD compared to males in response to
pathology changes (e.g., amyloid beta (Aβ) and neurofib-
rillary tangles) in the brain. They found that each add-
itional unit of pathology in the brain would increase the
odds of overt AD by 20-fold and 3-fold in females and
males, respectively [13]. The underlying mechanisms of
sex disparity in AD are not fully clear [9, 14]. This may
raise the possibility that such sex disparities might be in
part due to potential differences in the genetic bases of
AD between males and females. Investigating such dif-
ferences is important, particularly for tailoring more ef-
fective medical interventions [14, 15].
Give the considerable physical, emotional, and eco-

nomic burdens imposed by AD on patients, their fam-
ilies, and societies, exploring the genetic and nongenetic
mechanisms underlying its pathogenesis has become a
public health priority. With increased life expectancy,
the prevalence and global economic costs of AD are

forecast to increase considerably by 2050 [5]. Many
studies have investigated the genetic basis of AD. APOE
was the first gene linked to late-onset AD [16], and, in
particular, the dosage of its ε4 allele was implicated in
increasing the risks of disease and earlier onset [17].
More susceptibility loci were detected with the advent of
genome-wide association (GWA) methodology, although
not all of them were consistently replicated in independ-
ent datasets. In addition to APOE, which was almost
universally replicated, BIN1, CLU, CR1, CD2AP, CD33,
MS4A4E, MS4A6A, EPHA1, and PICALM genes have
been associated with the polygenic form of AD in differ-
ent studies [18, 19]. The narrow-sense heritability (h2) of
AD (i.e., the proportion of its phenotypic variance ex-
plained by additive genetic variance) has been estimated
to be 58–79% by twin studies [20]. Furthermore, Ridge
et al. [19], using a linear mixed models (LMMs) frame-
work, found that 53% of phenotypic variance of AD can
be explained by ~ 8 million single-nucleotide polymor-
phisms (SNPs). They also noticed that SNPs inside known
AD-associated genes or within their 50 kb upstream/
downstream regions can only explain ~ 31% of AD pheno-
typic variance (~ 59% of genetic variance) [19], leaving a
sizable portion of its h2 to be explained.
In this study, we investigated the genetic architecture

of polygenic AD through genome-wide association (GWA),
transcriptome-wide association (TWA), gene-based, and
pathway-based analyses in four independent datasets
(two with family designs and two with population de-
signs) using genetic information for approximately 2
million genotyped and imputed SNPs. Since exploring
the genetic sex disparity of AD was of particular inter-
est, in addition to analyzing the entire sample of males
and females in each dataset, two alternative plans were
also considered in which either only males or only fe-
males were included in analyses.

Methods
Study participants
Four independent datasets were used to fulfill the aims
of this study: Late-Onset Alzheimer’s Disease Family
Study from the National Institute on Aging (NIA--
LOADFS) [21]; Framingham SNP Health Association
Resource (SHARe) project from Framingham Heart
Study (FHS) [22–24]; SNP Typing for Association with
Multiple Phenotypes from Existing Epidemiologic Data
(STAMPEED) project from Cardiovascular Health Study
(CHS) [25]; and University of Michigan Health and Re-
tirement Study (HRS) [26]. All four datasets were ap-
proved by the institutional review boards (IRBs) and
had gathered data after obtaining written informed con-
sent from participants or their legal guardians/proxies.
Details about the designs of the NIA-LOADFS, FHS,
CHS, and HRS studies can be found in the original
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publications. Briefly, the NIA-LOADFS is a family-
based study primarily initiated to investigate late-onset
AD risk factors. It recruited families with multiple af-
fected members if the age at AD onset or diagnosis of
proband was above 60 years. Controls were selected
from unaffected individuals with a minimum age of 50
years who had no history of major neurological/psychi-
atric disorders or life-threatening conditions. Of 9468
participants with phenotype data, 5220 subjects (2319
affected with AD), predominantly Caucasians, were ge-
notyped using Illumina’s Human 610-Quad array. The
FHS is an ongoing longitudinal study with a family-
based design that provides phenotype and genotype in-
formation on individuals from three-generational fam-
ilies with Caucasian ancestry. The main objective of the
study was to investigate cardiovascular disorder risk
factors. It was first initiated by recruiting 5209 partici-
pants (i.e., original cohort) between ages 30 and 62
years with no history of cardiac disease or stroke. Later,
the cohort was expanded by adding the offspring of the
original cohort and their spouses (5124 subjects as the
offspring cohort) and their grandchildren (4095 sub-
jects as the third generation). Of these, 9274 individuals
(1529, 3852, and 3893 individuals from the three afore-
mentioned generations, respectively) were genotyped
using the Affymetrix Human Mapping 500 K array in
the SHARe project. The CHS is a population-based
longitudinal study with the main objective of investigat-
ing risk factors contributing to heart diseases. It was
initiated by recruiting an original cohort of 5221 mainly
Caucasian participants who were older than 65 years
and had not been institutionalized. Later, a new cohort
of 687 participants, predominantly African-Americans,
was added to the study. Of these, 3989 and 803 individ-
uals were genotyped by Illumina’s Human CNV370-
Duo and Human Omni1-Quad arrays, respectively, in
the STAMPEED project. The HRS is a population-
based longitudinal study launched to provide age-re-
lated health and economic information on more than
20,000 individuals older than 50 years. The HRS makes
use of administrative records such as Social Security
and Medicare claims to gather information of interest
about participants. The study was expanded in 2006 to
include a biomarker and genetic component in which
12,595 individuals, predominantly Caucasian, were ge-
notyped by Illumina’s Human Omni2.5-Quad array.
Our study focused on people of Caucasian ancestry

from the four aforementioned studies to increase the
sample size and power of the analyses. The LOADFS
and FHS datasets directly identify cases with Alzheimer’s
disease and unaffected controls. For the CHS and HRS
datasets, the International Classification of Disease codes,
ninth revision (ICD-9) were used to define cases and con-
trols. Finally, to make the four datasets comparable in

terms of participants age, we only included the original
and offspring cohorts from the FHS dataset. Demographic
information about the cohorts included in our study is
presented in Table 1. Also, Additional file 1: Table S1 lists
the numbers of cases and controls in these cohorts.

Imputation of genotype data
Since the four datasets of interest were genotyped using
different platforms, imputation was conducted to gener-
ate a common set of 2,928,658 SNPs. Only autosomal
SNPs were subject to imputation. Genome coordinates
of SNPs in our data (NCBI build 38/UCSC hg38) were
lifted over to NCBI build 37/UCSC hg19 using LiftOver
software [27]. After removing duplicate SNPs, preimpu-
tation quality control (QC) was performed using PLINK
software [28] to remove low-quality SNPs/subjects by
setting the following QC criteria: minor allele frequency
< 0.01, SNPs and subject call rates < 95%, and Hardy–
Weinberg p < 1E–06. For the LOADFS and FHS cohorts
that have family-based designs, a Mendel error rate of
2% was set to remove SNPs and subjects/families with
high Mendelian errors. The SHAPEIT2 (i.e., Segmented
Haplotype Estimation and Imputation Tool) package
[29] was used to ensure that alleles were aligned to the
same DNA strand in our and the reference data. Haplo-
type phasing was then conducted using SHAPEIT2 to
estimate the haplotypes for subjects in each dataset. Fi-
nally, genotypes were imputed by Minimac3 software
[30] over prephased haplotypes. SHAPEIT2 and Mini-
mac3 were run using default values for input arguments
and European population (EUR) haplotypes from 1000
Genomes Phase 3 data (release October 2014) as the ref-
erence panel.

Postimputation QC
Directly genotyped SNPs along with the imputed SNPs,
for which the squared correlation (r2) between imputed
and expected true genotypes was > 0.7, were selected for
preanalysis QC. This step was performed based on the
same criteria explained earlier for preimputation QC.
Additional file 1: Table S2 contains information on the

Table 1 Demographic information about the four cohorts under
consideration

Cohort Total Female% Case% AgeCase (SD) AgeControl (SD)

LOADFS 3716 62.43 49.78 85.93 (8.39) 71.19 (11.53)

FHS 4409 54.77 9.37 79.85 (8.49) 62.77 (11.65)

CHS 3197 60.28 6.16 74.76 (5.36) 73.01 (5.57)

HRS 6158 57.31 4.56 80.44 (6.71) 73.69 (7.85)

Female% percentage of females in cohort, Case% percentage of patients with
Alzheimer’s disease in cohort Age average age, SD standard deviation, LOADFS
Late-Onset Alzheimer’s Disease Family Study from the National Institute on
Aging, FHS Framingham Heart Study, CHS Cardiovascular Health Study, HRS
University of Michigan Health and Retirement Study
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numbers of genotyped and imputed SNPs that remained
in each of the four datasets of interest after QC.

Population structure
The top 20 principal components (PCs) of genotype
data were obtained through principal component ana-
lysis (PCA) to be included in downstream genetic ana-
lyses to address potential population stratification. In
each dataset, PCA was performed over a subset of un-
related individuals and a subset of SNPs that were not
in high linkage disequilibrium (LD) measured by r2

[31]. KING (i.e., Kinship-based Inference for Genome-
wide association studies) software [32] was used to ob-
tain the subset of unrelated subjects by keeping one
subject per family or relative cluster whose identity-by-
descent (IBD) was > 0.0884 (i.e., closer than third-de-
gree relatives). The genotyped autosomal SNPs on each
chromosome were then pruned by PLINK software [28]
in an unrelated set of subjects such that no SNP pairs
with r2 > 0.2 were kept within any 100-SNP windows.
PCA was then conducted over the selected low-LD
SNPs with the GENESIS R package [33, 34]. Add-
itional file 1: Table S3 contains genomic inflation fac-
tors (λ values) resulting from logistic regression models
for the four datasets under consideration. The λ values
were less than 1.1 in all cases, indicating a subtle im-
pact of population structure on our analyses [35, 36].

Genetic analysis
GWA analysis
The associations between SNPs and AD were investi-
gated by fitting logistic regression models. The genetic
analyses of each dataset were performed under three al-
ternative plans analyzing the entire sample, only males,
and only females. The top five PCs and subject’s birth
cohort (i.e., birth year) were included in the models as
fixed-effects covariates. In addition, sex was considered
a fixed-effect covariate under plan 1. Only additive gen-
etic effects were modeled; dominance effects were ig-
nored. The birth cohort is a proxy for the age and
environmental exposures which are characteristic for a
cohort. Thus, this adjustment controls for age and
overtime trends in the incidence of AD. The logistic
models were fitted using PLINK software (v1.07) [28].
It was previously suggested that for samples with a
family-based design, ignoring family relationships would
not generate considerable bias in effect sizes of SNPs
but may increase type I error rates whose magnitude
depends on pedigree complexity (e.g., nuclear family vs
extended family) and trait heritability. For instance, the
inflation of type I error rates has been suggested to be
trivial in datasets with simple pedigrees. On the other
hand, type I error rates may increase by a factor of 2–3
when family structure is ignored in a dataset with an

extended family pedigree and trait heritability values of
0.6–0.9. Therefore, a two-step screening–validating ap-
proach could be used with such datasets to prevent infla-
tion of type I error rates and decrease the computational
burden of analysis [37]. For the LOADFS and FHS co-
horts, we adopted a two-step approach in which the
SNPs with p < 0.05 in the logistic models explained
earlier were subjected to fitting generalized linear
mixed models (GLMMs) by including all aforemen-
tioned fixed-effects covariates along with family IDs as
a random-effects covariate. GLMMs were fitted using
the lme4 R package [33, 38].
All GWA analyses were conducted in a discovery–rep-

lication manner. Each of the LOADFS, FHS, CHS, and
HRS datasets was considered a discovery set to detect
SNPs in significant associations with AD. Results from
the discovery stage in a particular dataset were then
subject to further replication in the remaining three
datasets. At the discovery stage, a genome-wide signifi-
cance level of p < 5E–08 was set to select statistically
significant associations, and SNPs with p values be-
tween 5E–08 and 5E–06 were considered suggestive
AD-associated markers. These significance levels are
widely accepted by genome-wide association studies in
order to decrease the type I error rate (i.e., false-positive
findings) due to multiple testing issues arising from inves-
tigating associations of millions of SNPs [39, 40]. A Bon-
ferroni-corrected significance threshold of 0.0167 (i.e.,
0.05/3, where 3 is the number of replication datasets for
validating any significant association signals from a discov-
ery dataset) was considered at the replication stage.
Finally, a conventional fixed-effects meta-analysis, using

the inverse variance method, was conducted over the
results under each plan from the four investigated data-
sets to obtain combined statistics for the tested SNPs.
To avoid missing heterogeneous associations of oppos-
ite directions of effects, we also performed a meta-ana-
lysis on absolute values of coefficients in addition to
the conventional meta-test. The results from the
meta-analysis on absolute values of coefficients were
used just as an additional piece of information to de-
termine how heterogeneous effects in different cohorts
can affect the results of a conventional inverse-vari-
ance meta-analysis. The meta-analysis results were
interpreted according to the significance level at the
discovery phase. The meta-analysis was performed
using GWAMA (i.e., Genome-Wide Association Meta-
Analysis) software [41].
Also, for SNPs that had significant p values only in

males or females (i.e., plans 2 or 3), a Wald χ2 statistic
with 1 degree of freedom was calculated according to
the following formula [42] to investigate whether their
odds ratios were significantly different between the two
sexes:

Nazarian et al. Alzheimer's Research & Therapy            (2019) 11:5 Page 4 of 21



χ2 ¼ bm−b fð Þ2
se2m þ se2f

where bm and bf are the coefficients (i.e., the natural
logarithm of odds ratios) for any SNP in males and fe-
males, respectively, and sem and sef are their correspond-
ing standard errors.
The significant findings from GWA analyses were

compared to previous studies using the GRASP (i.e.,
Genome-Wide Repository of Associations Between SNPs
and Phenotypes) search tool (v2.0.0.0) [43]. Also, LD
between significant SNPs and previously detected
AD-associated loci in their 1-Mb flanking regions (r2 ≥
0.4 or significant p value from χ2 test for LD) was in-
vestigated in the CEU population (i.e., Utah Residents
with Northern and Western European Ancestry)
through the HaploR R package [33, 44] and the LDlink
web-tool [45]. The genes coordinate’s list provided by
PLINK [28] was used to find the closest genes of the
significant SNPs. The chromosomal regions (i.e., cyto-
genetic bands) were determined using the annotation
database from UCSC Genome Browser [46].

Gene-based analysis
Under each of three aforementioned plans, gene-based
analysis was performed over the meta-analysis results
using the fastBAT (i.e., Fast set-Based Association Test)
method [47] implemented in the GCTA (i.e., Genome-
wide Complex Trait Analysis) package (v1.26.0) [48].
This method combines z-statistics for a set of SNPs cor-
responding to each gene into a quadratic form of a
multivariate normal variable. SNPs located within a gene
or its 50 kb upstream/downstream regions were consid-
ered as an SNP set for that gene. The HRS dataset was
used as the reference panel for LD calculation (i.e., r2

metric) in order to remove one of each pair of SNPs
with r2 > 0.9 from any given set. To deal with
multiple-testing issues, the false discovery rate (FDR)
method suggested by Benjamini and Hochberg [49] was
used to rank and select significant findings. Genes with
significant p values at the FDR level of 0.05 were consid-
ered novel AD-associated ones if there were no SNPs
with p < 5E–08 in their 1-Mb upstream/downstream re-
gions in the current or previous studies.

Pathway-based analysis
A pathway-based analysis was also performed using the
fastBAT method using the pathways predefined by the
REACTOME pathway knowledgebase [50] and PID (i.e.,
the Pathway Interaction Database) [51]. These were pro-
vided by the molecular signatures database (MSigDB) at
the Broad Institute gene set enrichment analysis (GSEA)
website [52, 53]. Here, a SNP set corresponding to a par-
ticular pathway was defined as the SNPs within 50 kb of

the genes in that pathway. As with the gene-based ana-
lysis, the HRS cohort was used to prune the SNP sets
based on the pairwise LD measures of SNPs. The signifi-
cant results were interpreted at the FDR levels of 0.05
(plans 1 and 2) and 0.025 (plan 3) to ensure that the
number of possible false-positives was < 1 under each
analysis plan.

TWA analysis
Results from conducted meta-analyses along with sum-
mary data from a publicly available expression quantita-
tive trait loci (eQTLs) study on peripheral blood [54]
were used to perform a transcriptome-wide association
analysis using SMR (i.e., Summary-data-based Mendel-
ian Randomization) software (v0.68) [55]. The eQTLs
summary data were downloaded from the SMR software
website. Both cis-eQTLs and trans-eQTLs were of inter-
est. Trans-eQTLs were defined as eQTLs located at least
5Mb away from a probe on the same chromosome or
located on other chromosomes. Probes for which at least
one eQTL with p < 5E–08 had been detected by Lloyd-
Jones et al. [54] were included in our analyses provided
that the corresponding eQTLs were among the geno-
typed or imputed SNPs in our study. This resulted in
the inclusion of sets of up to 8257 probes with cis-
eQTLs and 2763 probes with trans-eQTLs.
The significance of p values resulting from SMR testing

(i.e., PSMR) was interpreted at an FDR level of 0.025–0.05.
The appropriate FDR level for each of three analysis plans
was chosen so we can ensure that the number of possible
false-positive findings among significant probes was < 1.
To identify the pleiotropic effects of SNPs on gene expres-
sion levels and AD development, probes with significant
PSMR values were then subject to heterogeneity testing
(i.e., the HEIDI test) which can differentiate pleiotropy
from linkage [55, 56]. Genes corresponding to probes that
passed both the SMR and HEIDI tests (i.e., significant
PSMR and PHEIDI ≥ 0.05) were deemed significant as their
expression profiles might be associated with AD because
of the pleiotropic effect of a single variant that affects both
probe expression and AD susceptibility. Selected genes
were considered potentially novel AD genes if there were
no SNPs with p < 5E–08 within their 1-Mb upstream/
downstream regions in the current or previous studies.
Finally, we also performed TWA analyses using sum-

mary results from a publically available tissue-specific
eQTLs study [57] which contains eQTLs data for several
regions of the brain, including the amygdala, anterior
cingulate cortex (BA24), basal ganglia (e.g., caudate, nu-
cleus accumbens, and putamen), cerebellar hemisphere,
cerebellum, cortex, frontal cortex (BA9), hippocampus,
hypothalamus, and substantia nigra. Once again, probes
that had significant eQTLs with p < 5E–08 were included
in our analyses. This resulted in the inclusion of sets of
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597–3566 probes with cis-eQTLs (based on the brain re-
gion). The results of brain-specific TWA analyses were
interpreted at a FDR level of 0.05.

URLs
dbGaP: https://www.ncbi.nlm.nih.gov/gap; GCTA: http://
cnsgenomics.com/software/gcta/#Overview; GENESIS R
Package: https://bioconductor.org/packages/release/bioc/html/
GENESIS.html; GRASP: https://grasp.nhlbi.nih.gov/Search.
aspx; GSEA: http://software.broadinstitute.org/gsea/index.jsp;
GWAMA: https://www.geenivaramu.ee/en/tools/gwama; Hap-
loR R package: https://cran.r-project.org/web/packages/haploR/
index.html; KING: http://people.virginia.edu/~wc9c/KING/;
LDlink: https://ldlink.nci.nih.gov/?tab=home; LiftOver: https://
genome.ucsc.edu/cgi-bin/hgLiftOver; Lme4 R Package: https://
cran.r-project.org/web/packages/lme4/index.html; Minimac3:
https://genome.sph.umich.edu/wiki/Minimac3; PLINK: http://
zzz.bwh.harvard.edu/plink/index.shtml; SHAPEIT: https://
mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html;
SMR: http://cnsgenomics.com/software/smr/#Overview; 1000
Genomes: http://www.internationalgenome.org/data/; https://
mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html

Results
GWA analysis
GWA analyses were performed in four independent
datasets (i.e., LOADFS, FHS, CHS, and HRS). Each of
these datasets served as a discovery set to detect SNPs
with significant association signals (at either a genome-
wide significance level of p < 5E–08 or a suggestive level
between 5E–08 and 5E–06), which were then subject to
further replication (at the significance level of 0.0167) in
the other three datasets. These analyses provided repli-
cated and nonreplicated sets of SNPs. Finally, results
from the individual datasets were combined through
meta-analysis and interpreted according to the signifi-
cance level at the discovery phase. Additional file 1:
Tables S4–S12 provide an overview of replicated, non-
replicated, and meta-analysis sets of SNPs that were
significantly associated with AD in males and females
combined (plan 1) or males and females separately
(plans 2 and 3). As seen in these tables, most of the
newly detected AD-associated SNPs, particularly those
in nonreplicated and meta-analysis sets, had significant
p values only in one of the three study plans. For in-
stance, among 44 and 72 newly detected SNPs in males
and females, 36 and 51 SNPs had sex-specific signifi-
cant p values, respectively. Additional file 1: Figures
S1–S6 show the Manhattan and QQ plots of the GWA
results in the four investigated datasets, as well as in
the conducted meta-analyses under these three plans.
In general, SNPs with p values smaller than the genome-
wide significance threshold were mostly located on
chromosome 19.

Replicated sets of SNPs
The replicated sets of SNPs under plans 1–3 contained
31, 20, and 23 SNPs, respectively (Additional file 1:
Tables S4–S6). These SNPs had significant p values at
the genome-wide level or a suggestive level of associa-
tions at the discovery stage and were then replicated in
another dataset. Additional files 2, 3, and 4 contain de-
tailed information (e.g., allele frequencies, odds ratios
(ORs), p values, etc.) about the replicated SNPs in the
four tested datasets under the three analysis plans. Not-
ably, 12, 8, and 8 replicated SNPs, respectively, had not
been previously associated with AD. The other SNPs
had some evidence of direct association signals [43].
Among previously detected SNPs, rs9882471 (plan 2)
was nominally associated with AD in previous studies
(5E–06 ≤ p < 5E–02) [58].
Most of the newly detected SNPs were located inside a

previously well-known susceptibility region for AD on
chromosome 19q13 (i.e., APOE cluster gene region) and
were mostly significant under different analysis plans.
This subset of newly detected SNPs mostly had p < 5E–
08, the same directions of effects in discovery and repli-
cation datasets, and significant p values (at genome-wide
or suggestive levels of significance) in the meta-analysis.
Table 2 summarizes information about the four newly

detected SNPs located outside the chromosome 19q13
region. Among these SNPs, rs62402815 was significant
under plan 1 (i.e., males and females) and plan 3 (i.e.,
only females); and rs9918162 and rs726411 were signifi-
cant only in males (i.e., plan 2). Their association signals
were significant only at the suggestive level of associa-
tions (except rs62402815, which had a genome-wide
level significant p = 1.2E–08 in females) in the discovery
stage. The two SNPs that were significant in males did
not have p < 5E–06 in conventional fixed-effects meta-
analyses, which might be partially due to the hetero-
geneity of their effects across different datasets. These
heterogeneous effects were reflected by high i2 incon-
sistency metrics and significant Q-statistics in Cochran’s
heterogeneity test (Pq < 0.05). A meta-analysis based on
the absolute values of the coefficients confirmed a sub-
stantial role of heterogeneity by providing smaller p values
for most of these SNPs.
Also, rs62402815 and rs726411 had the same direction

of effects in the discovery and replication datasets.
The directions of effects of rs9918162 were opposite in
the discovery and replication sets. While genetic vari-
ants that have the same direction of effects in multiple
independent cohorts are generally of more interest,
those with opposite effects can be important as well
because they may be indicative of the genetic hetero-
geneity of the studied trait in different cohorts arising,
for example, from the epistasis or differences in LD
patterns [59–61].
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Although no evidence of direct association with AD
was found in previous studies for the newly detected
subsets of replicated SNPs, their 1-Mb upstream/down-
stream regions harbor AD-associated SNPs. We there-
fore investigated their LD with AD-associated loci in
their 1-Mb flanking regions in the CEU population
[45]. Newly detected SNPs were considered informative
AD markers if their p values were smaller than those of
the top AD-associated SNPs in their neighborhood or
they were not in LD with previously AD-associated loci
whose p values were smaller than those detected in this
study. Additional file 1: Table S13 contains LD infor-
mation about those newly detected SNPs for which
proxy AD-associated loci have been reported. As seen
in Additional file 1: Table S13, all newly detected SNPs
on chromosome 19q13 had larger p values than the top
AD-associated loci in their neighborhood and were in LD
with them. Therefore, they were likely to relay the same
information as their neighboring AD-associated SNPs.
On the other hand, the p values of SNPs located out-

side the chromosome 19q13 region were mostly smaller
than the previously detected association signals in
their flanking regions and were not in LD with such
loci. As seen in Table 2, among the closest genes to
these SNPs, only ADCY8 (corresponding to rs726411
located in the 8q24.22 region) was associated with AD
in previous GWAS at a suggestive level of associations
(rs263238 with p = 2.40E–06 [62]). In addition, none
of the chromosomal regions (i.e., cytogenetic bands) in
which other SNPs are located contained any previ-
ously AD-associated SNPs with p < 5E–06 [43]. De-
tailed information about the genes and chromosomal
regions corresponding to the newly detected SNPs
that contain previously AD-associated SNPs can be
found in Additional files 2, 3, and 4.

Nonreplicated sets of SNPs
Additional file 1: Tables S7–S9 (corresponding to plans
1–3) show that 54, 40, and 46 SNPs had significant p
values at genome-wide or suggestive levels of associa-
tions in only one of the four datasets of interest. Most of
them were newly detected (41, 33, and 40 SNPs, respect-
ively), as there was no evidence of their direct associ-
ation with AD in previous studies [43]. Also, they were
mostly plan specific and demonstrated evidence of sex
disparity. Most were located in chromosomal regions
other than 19q13 and were significant at a suggestive
level of associations. Detailed information about nonre-
plicated sets of SNPs (e.g., allele frequencies, ORs, p
values, etc.) can be found in Additional files 2, 3, and 4.
Of those SNPs previously associated with AD, rs110
38106, rs9597722, rs723804, rs17697225 [63], rs2065706
[64] (plan 1), rs4679840 [58] (plan 2), and rs1359176
[65] (plan 3) were only nominally significant (5E–06 ≤ p

< 5E–02) in previous studies. Once again, SNPs located
outside the chromosome 19q13 region either had
smaller p values than previously detected AD-associated
loci in their proximity or were not in LD with them, ex-
cept for rs34779859 on chromosome 2 (plan 3) which was
significant in females. LD information about those newly
detected SNPs for which proxy AD-associated loci have
been previously identified can be found in Additional file 1:
Table S13.
Among the closest genes to newly detected SNPs out-

side the chromosome 19q13 region, BIN1, FRMD4A,
and CDH4 that were significant under plan 3 were previ-
ously associated with AD with p < 5E–06 (rs744373 with
p = 2.60E–14 [66], rs7921545 with p = 5.40E–07 [67], and
rs4925189 with p = 6.30E–07 [68], respectively). Also, sev-
eral other genes were located in AD-associated chromo-
somal regions. Information about these genes/regions is
summarized in Additional files 2, 3, and 4.

Meta-analysis sets of SNPs
Additional file 1: Tables S10–S12 show that 17, 4, and
24 SNPs that were not among replicated or nonrepli-
cated sets of significant SNPs under analysis plans 1–3
passed the significance threshold in the meta-analysis.
Additional files 2, 3, and 4 summarize the GWA results
for these SNPs. The meta-analysis p values of these
SNPs were mostly significant at the level of suggestive
associations, except for rs76366838, rs115881343 (plan
1), rs73048293, rs57537848, and rs76366838 (plan 3) on
chromosome 19q13 which had p < 5E–08. Also, they
were mostly located outside chromosome 19q13 and
were plan specific (i.e., they were not among replicated,
nonreplicated, or meta-analysis sets of significant SNPs
under other plans). For example, significant SNPs in
males were not significant in females and vice versa. In
addition, most SNPs (14, 3, and 24 SNPS under plans 1–3,
respectively) were not associated with AD in previous
studies [43]. Summary information about the newly de-
tected subset of meta-analysis sets of SNPs that were out-
side chromosome 19q13 is presented in Table 2. As with
the replicated and nonreplicated sets of SNPs, most of the
newly detected SNPs not on chromosome 19q13 had
smaller p values than the ones reported for their nearby
AD-associated loci or were not in LD with them. These
SNPs, therefore, were considered novel and informative
AD markers. On the other hand, proxy AD-associated
SNPs were found for all newly detected SNPs that were lo-
cated on chromosome 19q13 (Additional file 1: Table S13).
As seen in Table 2, among the closest genes to newly

detected SNPs outside the chromosome 19q13 re-
gion, AP2A2 (corresponding to rs10794342), MYO16
(corresponding to rs9555561 and rs912322 in the
13q33.3 region) and STK32B (corresponding to
rs17675640, rs6838792, and rs895681 in the 4p16.2
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region) were previously associated with AD with p <
5E–06 (rs17393344 with p = 1.70E–08; and rs78647349
with p = 5.20E–07, respectively [69]). In addition, sev-
eral chromosomal regions including 3p14.1 (KBTBD8),
6p21.33 (TNXB), 7q22.1 (TRIM56), 12q24.33
(SFSWAP), 18q12.1 (MIR302F), 21q21.3 (MIR155HG,
LINC00515, and MRPL39), and 23q21.31 (KLHL4) were
associated with AD at a suggestive level of associations
by previous GWAS. However, no AD-associated SNPs
with p < 5E–06 have been previously detected in
chromosomal regions corresponding to C9orf92,
PAX5, LHX1, and LINC00158 genes (i.e., 9p22.3,
9p13.2, 17q12, and 21q21.2, respectively) that were
significant under plan 1; and ANTXR1 and SYK genes
(i.e., 2p13.3 and 9q22.2, respectively) [43]. Detailed in-
formation about these AD-associated genes and
chromosomal regions is provided in Additional files 2, 3,
and 4.

Nominally significant sets of SNPs
Under each of the three analysis plans, there were sev-
eral SNPs associated with AD at a nominal level of sig-
nificance (5E–06 ≤ p < 5E–02) in all datasets they were
present in. They were mostly present in three datasets as
they were excluded from one dataset by the QC proced-
ure. These SNPs (30, 28, and 28 SNPs under plans 1–3,
respectively) are listed in Additional files 2, 3, and 4. Al-
though they did not have highly significant p values, they
are reported here due to the consistency in their associ-
ation signals that was observed in multiple tested data-
sets. With the exception of rs575088, which had
nominally significant p values in all datasets under plans
1 and 3, the significance pattern of the other SNPs was
observed under only one plan. Also, rs2282079 (detected
in females) was among the meta-analysis set of SNPs
under plan 1 as well. None of these SNPs had p < 5E–06
in the conducted meta-analyses. The lack of meta-
analysis power could be due to the small sample size,
weak association signals, absence of some SNPs in one
dataset, or heterogeneous effects of some SNPs across
the different datasets as evidenced by their high i2

values, significant Q tests, and smaller p values in meta-
analysis on absolute values of coefficients. The SNPs
whose associated signals were reported here for the
first time were not in LD with previously detected
AD-associated loci (p < 5E–06) in their 1-Mb flanking
regions (Additional file 1: Table S13). Interestingly, 22
out of 28 SNPs detected in males had the opposite
pattern of significance in females (i.e., p > 0.05 in all
datasets). Also, 26 out of 28 SNPs detected in females
had the opposite pattern of significance in males
(Additional file 5). Not all SNPs with opposite patterns
of significance in females-only vs males-only analyses
had the same pattern in the meta-analysis. Closest

genes to some of these SNPs were located in chromo-
somal regions that were previously associated with AD
with p < 5E–06. Information about these genes/regions
can be found in Additional files 2, 3, and 4.

Adjustment by APOE SNPs
For the AD-associated SNPs that were located on
chromosome 19, we further investigated whether their
association signals may change after adjustment for
APOE genotypes in the models. For each subject, the
APOE genotype was determined based on its geno-
types at rs429358 and rs7412 loci using the coding
schema provided in Additional file 1: Table S14. We
found that none of the tested SNPs had p < 5E–06
once APOE was added as a covariate to the models.
Additional file 1: Table S15 summarizes the informa-

tion regarding the LD between SNPs detected in our
study and APOE SNPs. Among newly AD-associated
SNPs, only six SNPs were in LD with one or both of the
APOE SNPs. Others were not in LD with the two APOE
SNPs (i.e., r2 = 0.001–0.072) [45]. Therefore, it should be
noted that despite a major impact of the APOE geno-
types on the associations of other SNPs inside the
chromosome 19q13 region with AD, this result would
not automatically imply that the APOE SNPs (i.e.,
rs429358 and rs7412) are the only contributors to AD
pathogenesis because APOE-adjusted models highlighted
the statistical correlations rather than biological (i.e.,
genetic) linkage. Further analyses such as those examin-
ing the role of haplotypes and epistatic interactions
would be helpful to more comprehensively dissect the
genetic heterogeneity of this region, and to elucidate the
biological relevance of the APOE-adjusted models [70].

Sex-specific effects
We also investigated the sex-specific effects of SNPs
that were significantly associated with AD only in males
or females by performing a Wald χ2 test to determine
whether their odds ratios were significantly different
between males and females. Additional file 1: Tables
S16 and S17 summarize the results from this test for
replicated, nonreplicated, and meta-analysis sets of
AD-associated SNPs. We found that the differences be-
tween odds ratios of the SNPs in males and females
were significant (p < 0.05) in most cases, except rs62
405605, rs1062851, rs62510850, rs7000333, rs6572843
(among nonreplicated set of SNPs in females), and
rs12386284 (among meta-analysis set of SNPs in fe-
males). Detailed information about the results from the
Wald χ2 test can be found in Additional file 6.
In addition, the SNPs that had significant p values only

in males or females were searched against the GRASP
catalog [43] to find out whether they were among the
known sex-linked autosomal SNPs or were associated
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with any other diseases/traits at suggestive level of asso-
ciations. We noticed that there was no evidence of such
associations in previous studies.

Gene-based analysis
The significant findings from gene-based analyses cor-
responding to plans 1–3 are summarized in Table 3.
Under all plans, most genes with significant p values at
the FDR of 0.05 were located in the chromosome
19q13 region. Since the chromosome 19q13 region har-
bors several SNPs with p < 5E–08 in both current and
previous studies, significant genes in this region are not
discussed here as they do not meet the criteria set for
detecting novel AD genes. The only significant genes
outside the APOE cluster region were LINC00158
under plan 1 and LINC00158, MIR155HG, MIR155,
LINC00515, MRPL39, and JAM2 under plan 3 that were
located in the chromosome 21q21.3 region. None of the
SNPs inside or within 1-Mb flanking regions of these
genes had significant p values at the genome-wide level in
our study, although several had suggestive-level p
values in conducted meta-analyses under plans 1 and 3.
Also, SNPs in 1-Mb nearby regions of these genes were
only nominally associated with AD (8.0E–04 < p < 5E–
02) in previous studies [58, 65, 71–73]. However, the

chromosome 21q21.3 region was associated with AD by
previous GWAS at a suggestive level of associations
(rs239713 with p = 5.00E–07 [68]). This SNP is located ~
1.6Mb away from significant genes reported in our study.

Pathway-based analysis
We found that 19, 10, and 19 pathways were signifi-
cantly associated with AD under plans 1–3, respectively
(Table 4). The proper FDR levels at which the numbers
of possible false-positives were less than 1 were 0.05
under plans 1 and 2, and 0.025 under plan 3. We found
that 12 pathways were significant under two or three
analysis plans (i.e., they were not plan specific). There
were also seven pathways that were significant only
under plan 1 (males and females), and seven others were
significant only in females (i.e., plan 3). No pathways
were specifically significant in males (i.e., plan 2).

TWA analysis
Analyzing probes with cis-eQTLs
Using eQTLs data from peripheral blood, we found that
four, eight, and four probes/genes passed both the SMR
(PSMR < 6.03E–05) and HEIDI (PHEIDI ≥ 0.05) tests under
plans 1–3, respectively. The significant FDR level for
interpreting the results from the SMR test was set to

Table 3 Significantly AD-associated genes from gene-based analyses

Gene Chromosomal
region

Start End Number
of SNPs

Plan 1 (males and females) Plan 2 (only males) Plan 3 (only females)

χ2 p value χ2 p value χ2 p value

CEACAM16 19q13.32 44,699,150 44,710,714 83 330.47 7.52E–06 NS NS NS NS

BCL3 19q13.32 44,748,720 44,760,044 63 274.81 3.95E–06 NS NS 254.31 5.44E–06

MIR8085 19q13.32 44,758,656 44,758,721 52 235.68 8.72E–06 NS NS NS NS

CBLC 19q13.32 44,777,868 44,800,646 62 419.91 2.02E–10 NS NS NS NS

BCAM 19q13.32 44,809,058 44,821,421 51 455.39 1.07E–10 NS NS 298.41 5.00E–07

PVRL2 19q13.32 44,846,135 44,889,228 90 3861.00 4.74E–72 1357.12 4.52E–25 2304.33 7.11E–43

TOMM40 19q13.32 44,891,219 44,903,689 73 3664.74 9.12E–86 1288.14 8.98E–30 2171.92 1.26E–50

APOE 19q13.32 44,905,781 44,909,393 70 3590.18 4.32E–85 1262.22 1.09E–29 2121.68 3.58E–50

APOC1 19q13.32 44,914,663 44,919,349 67 3482.70 4.76E–87 1230.83 1.63E–30 2049.54 4.25E–51

APOC1P1 19q13.32 44,926,802 44,931,386 57 3427.13 6.60E–93 1209.89 1.01E–32 2008.34 2.00E–54

APOC4 19q13.32 44,942,237 44,945,496 46 3063.64 5.63E–89 1058.60 7.90E–31 1792.11 3.94E–52

APOC4–APOC2 19q13.32 44,942,237 44,949,565 46 3063.64 5.63E–89 1058.60 7.90E–31 1792.11 3.94E–52

APOC2 19q13.32 44,945,981 44,949,566 42 2242.85 8.65E–73 760.49 1.16E–24 1347.91 9.14E–44

CLPTM1 19q13.32 44,954,584 44,993,346 47 2037.76 3.42E–60 700.13 9.56E–21 1217.18 5.03E–36

LINC00158 21q21.3 25,385,819 25,431,701 39 223.58 1.20E–06 NS NS 181.03 2.27E–05

MIR155HG 21q21.3 25,562,144 25,575,168 27 NS NS NS NS 170.35 1.52E–05

MIR155 21q21.3 25,573,979 25,574,044 22 NS NS NS NS 152.69 7.00E–06

LINC00515 21q21.3 25,582,774 25,583,224 24 NS NS NS NS 156.49 9.36E–06

MRPL39 21q21.3 25,585,655 25,607,489 36 NS NS NS NS 269.62 4.20E–06

JAM2 21q21.3 25,639,281 25,717,562 53 NS NS NS NS 276.76 3.02E–05

Genomic coordinates based on Human Genome version 38 (hg38)
AD Alzheimer’s disease, SNP single-nucleotide polymorphism, NS nonsignificant
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0.05 under plan 1 and 0.025 under plans 2 and 3 to en-
sure that the expected number of false-positive findings
was < 1. Table 5 presents information about these 16
probes/genes, their top eQTLs, and the respective p
values. The top eQTLs corresponding to these probes/
genes were all nominally significant in our GWA ana-
lyses (2.01E–04 ≤ PGWAS ≤ 2.47E–02). Moreover, we did
not identify any SNPs with significant p values at the
genome-wide significance level within 1Mb of these

genes. However, several SNPs within 1Mb of MS4A6A
[64, 66, 74, 75] and UQCC [76] were associated with
AD with p < 5E–08 in previous studies. Among 14 other
genes, SNPs in regions around TRA2A [64], IRAK3 [77],
and ESPN [78] were previously associated with AD at
the suggestive level of associations. In addition, ATG10
[77] and LPXN [74] were located in chromosomal regions
(i.e., 5q14.1 and 11q12.1) that contained AD-associated
SNPs with p < 5E–06.

Table 4 Significantly AD-associated pathways from pathway-based analyses

Pathway Pathway
GSEA ID

Number
of genes

Plan 1 (males and females) Plan 2 (only males) Plan 3 (only females)

χ2 p value χ2 p value χ2 p value

Mitochondrial protein
import

M590 58 4939.52 3.83E–44 2741.07 4.65E–12 3622.61 7.07E–25

Chylomicron-mediated lipid
transport

M14162 16 4180.44 1.11E–41 1968.73 7.13E–14 2854.57 4.86E–25

Nectin adhesion pathwaya M72 30 5872.18 6.52E–39 3393.55 6.09E–09 4310.19 1.39E–19

HDL-mediated lipid transport M5056 15 4184.21 5.08E–38 2195.67 1.98E–12 2779.67 6.00E–20

Lipoprotein metabolism M3462 28 5221.10 2.11E–37 3011.78 1.86E–10 3825.74 3.47E–20

Lipid digestion, mobilization
and transport

M1023 46 5889.33 5.64E–36 3631.17 4.67E–09 4448.01 2.37E–18

E-cadherin stabilization
pathwaya

M232 42 5976.76 1.72E–27 3670.50 9.69E–05 4517.86 3.67E–12

Immunoregulatory interactions
between a lymphoid and a
nonlymphoid cell

M8240 70 6335.34 4.04E–19 4056.72 2.39E–07 4720.40 8.48E–11

Adherens junctions interactions M11980 27 7432.11 7.54E–18 5204.26 1.54E–05 6110.31 1.67E–10

Cell–cell junction organization M820 56 8940.07 1.34E–17 6464.13 2.61E–04 7758.51 4.48E–11

Cell junction organization M19248 78 10,542.40 1.71E–17 NS NS 9337.94 6.78E–11

NF-κB atypical pathwaya M26 17 1630.19 3.26E–07 NS NS NS NS

Platelet sensitization by LDL M919 16 994.69 5.38E–04 NS NS 1002.45 4.21E–04

Signaling by EGFR in cancer M563 109 8116.41 6.44E–04 NS NS NS NS

Trans-Golgi network
vesicle budding

M539 60 2967.31 7.13E–04 NS NS NS NS

FAS (CD95) signaling pathwaya M94 38 2322.57 7.15E–04 NS NS NS NS

Golgi-associated vesicle
biogenesis

M1877 53 2758.56 7.26E–04 NS NS NS NS

Signaling by PDGF M2049 122 9443.31 7.57E–04 NS NS NS NS

mRNA processing M2531 161 6183.56 7.93E–04 NS NS NS NS

Prostacyclin signaling through
prostacyclin receptor

M926 19 NS NS NS NS 1579.24 4.50E–05

G-protein activation M13115 27 NS NS NS NS 2138.82 6.18E–05

ADP signaling through P2Y
purinoceptor 12

M841 21 NS NS NS NS 1680.25 1.54E–04

ADP signaling through P2Y
purinoceptor 1

M811 25 NS NS NS NS 2101.01 2.71E–04

Glucagon-type ligand receptors M10322 33 NS NS NS NS 2483.81 4.51E–04

Signal amplification M9379 31 NS NS NS NS 2412.57 4.99E–04

Gβγ signaling through PI3Kγ M14301 25 NS NS NS NS 1808.24 5.30E–04

AD Alzheimer’s disease, GSEA Gene Set Enrichment Analysis Platform, HDL high-density lipoprotein, LDL low-density lipoprotein, EGFR epidermal growth factor
receptor, PDGF platelet-derived growth factor, NS nonsignificant
aDefinition of pathway is based on the Pathway Interaction Database (PID). Other pathways are from the REACTOME pathway knowledgebase
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Our TWA analyses on brain-specific eQTLs data re-
vealed associations of two probes/genes with AD in
males (i.e., CRIPAK and PRDM10), and two others in fe-
males (i.e., AHSA2 and ATG10) at the FDR level of 0.05
(Table 6). No probe/gene passed the SMR and HEIDI
tests under analysis plan 1. The probe corresponding to
the AHSA2 gene was significantly associated with AD in
several brain regions (i.e., caudate basal ganglia, cerebel-
lum, cortex, hypothalamus, nucleus accumbens, puta-
men basal ganglia, and substantia nigra). Also, ATG10
was significantly associated with AD in the nucleus ac-
cumbens and putamen basal ganglia. The corresponding
top eQTLs were nominally significant in our GWA ana-
lyses in males and females (4.30E–05 ≤ PGWAS ≤ 9.33E–
02). There were no SNPs with significant p values at the
genome-wide significance level within 1Mb of these
genes in our study; however, SNPs with significant p
values at the suggestive level of significance were found
in flanking regions of ATG10 in the nonreplicated set of
SNPs in females (see Additional file 4). In addition, the
SNPs within 1Mb of these four genes were only nomin-
ally associated with AD in previous studies [43]. In
terms of chromosomal regions, in addition to ATG10 as
explained earlier, SNPs in the chromosome 11q24.3

region (PRDM10 gene) were also previously associated
with AD at a genome-wide significance level [69].

Analyzing probes with trans-eQTLs
Using eQTLs data from peripheral blood, one probe
mapping to the SFN gene on chromosome 1p36 had
significant PSMR at the FDR level of 0.05, and passed
the HEIDI test under plan 2 (Table 5). The corre-
sponding top eQTL was located on chromosome 4p16
in the intronic region of the MAEA gene and was
nominally associated with AD in our study (PGWAS =
4.10E–04). There were no significant association sig-
nals at the genome-wide significance level in the SFN
gene or its 1-Mb flanking regions in current or previ-
ous studies [43].

Discussion
The genetic architecture of AD has been widely studied
in recent years, and so far more than 60,000 SNPs have
been associated with AD with p < 0.05. Of these, 281
SNPs (mapped to 49 genes) and 593 SNPs (mapped to
165 genes) had significant p values at the genome-wide
and suggestive levels of associations, respectively [43].
Despite these efforts, a major proportion of h2 of AD

Table 5 Significantly AD-associated probes/genes from transcriptome-wide analyses

Probe ID Gene Top eQTL Chromosomal
region

Position A1 A1 Freq PGWAS PeQTL bSMR SESMR PSMR PHEIDI

Plan 1—males and females

ILMN_1754501 C2orf74 rs720201 2p15 61,149,328 C 0.413 6.94E–04 1.34E–164 0.189 0.047 5.54E–05 6.64E–01

ILMN_2206098 ATG10 rs11741569 5q14.1 82,030,091 G 0.090 9.96E–04 9.69E–27 −0.391 0.097 5.66E–05 8.32E–02

ILMN_2359800 MS4A6A rs7108663 11q12.2 60,260,669 C 0.412 2.17E–04 1.41E–48 0.380 0.088 1.59E–05 8.57E–01

ILMN_2343047 ABCB9 rs641760 12q24.31 123,034,319 T 0.214 2.75E–04 9.79E–17 −0.650 0.162 6.03E–05 1.14E–01

Plan 2—only males

ILMN_1700307 ZNF815 rs117856560 7p22.1 5,852,503 C 0.048 1.50E–02 8.23E–49 0.389 0.092 2.22E–05 8.80E–02

ILMN_1731043 TRA2A rs1046135 7p15.3 23,530,965 T 0.135 1.89E–03 4.32E–115 −0.294 0.067 1.07E–05 2.51E–01

ILMN_1671603 MED30 rs10111328 8q24.11 117,525,450 T 0.426 3.79E–04 1.67E–20 1.011 0.232 1.30E–05 8.22E–02

ILMN_1742789 LPXN rs7928565 11q12.1 58,587,146 C 0.012 2.47E–02 7.17E–86 −0.287 0.056 2.68E–07 6.20E–01

ILMN_1913678 IRAK3 rs1436849 12q14.3 66,181,338 T 0.416 1.25E–03 6.14E–35 −0.656 0.160 4.11E–05 6.60E–02

ILMN_1737561 N4BP2L2 rs718444 13q13.1 32,572,915 T 0.375 1.16E–03 1.80E–53 −0.489 0.119 3.96E–05 2.90E–01

ILMN_1724734 UQCC rs2425062 20q11.22 35,335,763 G 0.383 2.01E–04 4.58E–13 −1.356 0.321 2.42E–05 7.78E–01

ILMN_2296950 APOBEC3F rs11089928 22q13.1 39,133,424 A 0.068 2.42E–03 7.21E–20 −0.724 0.168 1.60E–05 8.31E–02

ILMN_1806607 SFNa rs3817604 1p36.11/4p16.3 1,297,549 T 0.120 4.10E–04 5.77E–10 1.179 0.292 5.49E–05 3.92E–01

Plan 3—only females

ILMN_1806710 ESPN rs12074379 1p36.31 6,434,683 T 0.040 7.26E–03 8.51E–40 0.421 0.101 3.38E–05 2.84E–01

ILMN_1696003 GNAI3 rs2301229 1p13.3 109,594,056 T 0.175 4.92E–04 1.45E–211 −0.209 0.045 4.00E–06 1.21E–01

ILMN_1741881 C9orf72 rs2282240 9p21.2 27,572,636 T 0.264 2.49E–04 1.18E–90 −0.327 0.070 3.27E–06 5.39E–02

ILMN_1803925 MTMR3 rs41174 22q12.2 30,030,080 T 0.325 8.34E–04 3.03E–76 0.321 0.078 4.21E–05 4.12E–01

Genomic coordinates are based on Human Genome version 38 (hg38)
AD Alzheimer’s disease, eQTL expression quantitative trait loci, A1 effect allele, A1/A1 freq effect allele and its frequency, GWAS genome-wide association study,
SMR summary-data-based Mendelian randomization, SE standard error, HEIDI Heterogeneity in Dependent Instruments
aTrans-eQTL
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has remained unexplained. Exploring the genetic risk
factors contributing to AD is highly important from a
precision medicine perspective where the goal is to
personalize diagnostic and therapeutic interventions.
The current study provides further insight into the gen-
etic architecture of AD through GWA, TWA, gene-
based, and pathway-based analyses of four independent
datasets. These datasets, particularly the LOADFS co-
hort, were partially used in previous genetic studies of
AD [21, 72, 75, 79–87].
Our GWA analyses corroborated the associations of a

number of previously detected AD loci and revealed
some significant novel association signals. Among previ-
ously detected AD-associated SNPs, we found several
SNPs with p values that were smaller than those re-
ported before. Also, the significant association signals
for three SNPs inside the chromosome 19q13 region
(i.e., nonreplicated rs2965169 SNP under plan 1, rs10
426423 from the meta-analysis set of SNPs under plan 1,
and rs769450 from the replicated set of SNPs under plan
1 and the nonreplicated sets of SNPs under plans 2 and
3) were previously reported only in African-Americans
(p = 2.6E–8, p = 9.9E–7, and p = 5.3E–27, respectively
[88]). Most newly detected AD-associated SNPs, particu-
larly those outside the chromosome 19q13 region, can
be considered informative AD markers because their p
values in our study were smaller than those for other
AD-associated loci in their 1-Mb upstream/downstream
regions and they were not in LD with such loci. For in-
stance, as seen in Table 2 that summarizes the replicated
and meta-analysis sets of SNPs, 11, 4, and 21 novel
AD-associated SNPs were detected under plans 1–3,
respectively. These SNPs were mapped to 21 genes in
19 chromosomal regions (i.e., cytogenetic regions). Of
these, four genes had been associated with AD in pre-
vious GWAS with p < 5E–06. Also, nine genes were lo-
cated in eight chromosomal regions that contained
previously AD-associated SNPs that were > 1 Mb away
from the SNPs detected in our study. The other
eight genes/regions had not been associated with AD
in previous studies at genome-wide or suggestive levels
of associations [43].
Our GWA analyses also revealed associations of a

number of SNPs (41, 33, and 40 SNPs under plans 1–3,
respectively) with AD that were present only in one of
the four investigated cohorts. While successful replica-
tion of a discovered association in an independent co-
hort has become the gold standard in genome-wide
association studies for substantiating the real genetic ef-
fects, failure to replicate SNP–disease associations does
not necessarily indicate that they are false-positive find-
ings. Instead, they might be real genetic contributors
that confer population-specific risks due to the genetic
heterogeneity of the disease [2, 60, 89, 90]. Other

reasons for nonreproducibility can be the lack of statis-
tical power due to insufficient sample sizes, the presence
of environmental or gene–gene interactions, and a lack
of genotyping information for particular loci in different
studies. For instance, small between-population allele
frequency differences at an interacting locus may result
in a lack of power to detect the main effect of a genuine
association signal in independent cohorts [60]. These
reasons can also justify why not all previously discovered
AD-associated SNPs were replicated in our study.
Of particular interest was to investigate the sex dispar-

ity in the genetic basis of AD. Addressing sex differences
in biomedical research has been emphasized by the Na-
tional Institutes of Health as an approach that can even-
tually bolster the personalized medicine paradigm [14,
15]. Our results revealed a number of new sex-specific
genetic contributors to AD at the SNP, gene, and tran-
scriptome levels. For instance, most of the newly de-
tected SNPs, particularly SNPs outside chromosome
19q13, were sex specific as they had significant p values
either in males or females and, in addition, their odds ra-
tios were significantly different between the two genders.
Interestingly, there were two additional subsets of SNPs
that were nominally associated with AD in all datasets in
one sex while they were nonsignificant in all datasets in
the other. Such consistent sex-specific association sig-
nals, although weak, might be important in exploring
the differences in genetic risk factors of AD between
males and females and may demonstrate genome-wide
significance in larger samples. Another level of sex dis-
parity was observed in the gene-based and TWA ana-
lyses where several genes were significantly associated
with AD in either males or females. Also, there were
several pathways that were specifically significant in fe-
males. These will be further discussed in the following
paragraphs.
In the gene-based analysis, LINC00158, MIR155HG,

MIR155, LINC00515, MRPL39, and JAM2 were signifi-
cantly associated with AD when the entire sample of
individuals and/or only females were analyzed. These
genes are located near each other on chromosome
21q21.3 in a ~ 332-kb region. The APP gene implicated
in early onset familial AD or Down syndrome-related
AD [4] is also located 163–449 kb from these genes.
There were no AD-associated SNPs with p < 5E–08
within their 1 Mb in current or previous studies [43].
However, there were several SNPs with significant p
values at the suggestive level of associations in that
chromosomal region among meta-analysis sets of SNPs
under plan 1 (i.e., rs76252969 and rs2298369) and plan
3 (i.e., rs12386284, rs1783012, rs1783013, rs926963,
rs1893650, rs2226326, rs2829803, rs2298369, rs282
9823, and rs2829832). The SNPs in the 1-Mb upstream/
downstream regions of these genes were previously
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associated with some potential AD risk factors such as
type 2 diabetes, hypertension, coronary artery disease,
and lipid profile changes at the genome-wide signifi-
cance level. They have also been associated with traits
such as alcohol and nicotine codependence, age at on-
set of Parkinson’s disease, and pattern recognition
memory at the suggestive significance level of associ-
ation [43]. Furthermore, functional studies have pro-
vided insight into the potential roles of some of these
genes in AD pathogenesis. For instance, MIR155HG
and MIR155 encode two microRNAs. MIR155 overex-
pression was previously implicated in downregulation
of complement factor H (CFH) expression in AD and
other neurodegenerative diseases which in turn may
prevent spontaneous immune system activation [91].
MRPL39 encodes a mitochondrial ribosomal protein in-
volved in the oxidative–phosphorylation pathway. Im-
paired mitochondrial function has been reported in
neurons of patients with AD [92, 93]. Lunnon et al.
[92] reported that the expression levels of MRPL39 and
another nearby gene (i.e., ATP5J involved in the oxida-
tive–phosphorylation pathway) were slightly reduced in
AD patients compared to controls. JAM2 encodes a mem-
brane protein found at the tight junctions of epithelial and
endothelial cells that acts as an adhesive ligand for im-
mune cells. It belongs to the immunoglobulin superfamily
of adhesive molecules that has been implicated in AD
pathogenesis [94]. Also, duplication of an ~ 600-kb region
on chromosome 21 containing the JAM2, ATP5J, and APP
genes has been reported in autosomal dominant AD [95].
In TWA analyses using brain-specific eQTLs data,

four probes/genes were associated with AD (two in
males and two in females). Also, using eQTLs data from
peripheral blood, the expression level of 17 probes/genes
passed both the SMR and the HEIDI tests, indicating
that variants influencing the expression of these genes
may also have pleiotropic effects on developing AD [55,
56]. It should be noted that due to the tissue-specific ex-
pression of genes, using data from eQTLs studies on
blood is not ideal for capturing associations between the
transcriptome levels and AD. However, it increases the
power of SMR analysis since such studies take advantage
of more samples compared to brain-specific eQTLs
studies [55]. Significant SNPs with p < 5E–08 were de-
tected within 1Mb of MS4A6A and UQCC genes (sig-
nificant in TWA analyses of blood eQTLs data) in our
GWAS or previous reports [43]. SNPs with p < 5E–06
were present only in 1-Mb upstream/downstream re-
gions of ATG10 (significant in brain-specific TWA ana-
lyses) in our GWA analyses of females, although several
AD-associated SNPs with p < 5E–06 were reported in re-
gions around TRA2A [64], IRAK3 [77], and ESPN [78].
This is likely indicative of the lack of power of con-
ducted GWAS due to insufficient sample sizes [55].

Taken together, all AD-associated genes in our TWA
analyses except MS4A6A and UQCC can be considered
novel potential AD-associated genes. Further functional
analyses are needed to explore their potential roles in
AD pathogenesis as detected associations do not imply
causation. Instead, they provide a list of prioritized can-
didates for follow-up studies. SNPs in 1-Mb upstream/
downstream regions around these genes have been pre-
viously associated with some other traits (e.g., auto-
immune diseases or serum cholesterol levels) with p <
5E–06. Examples include associations of SNPs corre-
sponding to ABCB9 with college completion and years
of education, ATG10 with vascular dementia, C9orf72
with amyotrophic lateral sclerosis, frontotemporal lobar
degeneration, and response of rheumatoid arthritis pa-
tients to anti-TNF treatment, GNAI3 with total and
low-density lipoprotein cholesterol (LDL-C) and major
depression, LPXN with inflammatory bowel disease,
MED30 with rheumatoid arthritis and fasting blood glu-
cose, PRDM10 with type 2 diabetes, and SFN with high-
density lipoprotein cholesterol (HDL-C) [43].
Notably, none of the novel AD-associated genes de-

tected in males were among the significant genes in fe-
males and vice versa. Among the significant genes
detected in females, a pathologic hexa-nucleotide repeat
expansion in the C9orf72 gene has been linked to fron-
totemporal dementia and may contribute to AD patho-
genesis [96–99]. Also, the GNAI3 gene was reported to
be overexpressed in AD intact mice compared to AD
impaired ones [100]. CRIPAK, which was among signifi-
cant genes detected in brain-specific TWA analyses in
males, is an inhibitor of the PAK1 gene [101]. The PAK
gene family was found to play roles in learning and
memory, and the dysregulations were implicated in AD,
Huntington disease, and mental retardation [102]. Also,
rs1923775 located ~ 700 kb away from CRIPAK has
shown relatively strong association (p = 5.60E–6) with
AD in African Americans [88].
Of 26 pathways that were significantly associated with

AD in our pathway-based analyses, 12 were not plan
specific, seven were specifically significant only under
plan 1 (males and females), and seven were specifically
significant only in females (i.e., plan 3). Pathways that
were significant in more than one plan were mostly in-
volved in processes such as mitochondrial function, lipid
metabolism, cell junctions, and immune and inflamma-
tory responses that were implicated in AD [93, 103–
106]. There are several lines of evidence in previous em-
pirical studies substantiating the potential roles of some
of the detected plan-specific pathways in AD pathogen-
esis. For instance, it was suggested that deactivation of
the epidermal growth factor receptor (EGFR) signaling
pathway may attenuate the Aβ-induced memory loss in
Drosophila and mice models [107]. Also, the fragmentation
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and dysfunction of Golgi apparatus, an organelle in-
volved in the posttranslational modifications and traffick-
ing of proteins, has been implicated in AD pathogenesis
[108, 109]. The upregulation of the Fas signaling path-
way, involved in the apoptosis and modulating immune
responses, was reported to contribute to the Aβ-induced
cell death and neurodegeneration in AD [110, 111].
Also, dysregulation of the platelet-derived growth factor
(PDGF) signaling pathway was suggested to increase
Aβ production and contribute to the neurodegenera-
tion in AD [112, 113].
Among the female-specific pathways, G-protein activa-

tion is a signal transduction pathway that can modulate
the production and action of different intracellular ef-
fector proteins. The G protein-coupled receptors play
important roles in the initiation and regulation of in-
flammatory responses such as phagocyte chemotaxis and
cytokine production [50, 114]. The pathologically in-
creased inflammatory responses were reported in the
brain of patients with AD [93]. Gβγ signaling through
the PI3Kγ pathway is involved in the regulation of im-
mune system responses and platelet activation [115].
Also, the ADP signaling, signal amplification, and pros-
tacyclin signaling pathways are involved in the regulation
of platelets activation in response to injury or in healthy
blood vessels [50]. Platelets, as the major sources of
amyloid precursor protein (APP) and Aβ in blood, were
reported to be overactivated in AD patients possibly due
to their stimulation by injured cerebral endothelial cells
or by their cell membrane abnormalities [116, 117]. The
glucagon-type ligand receptors are found in the gastro-
intestinal epithelium and brain neurons. Glucagon-like
peptide-1 (GLP-1) has been suggested as a potential
treatment to reverse the neurodegeneration in AD and
Parkinson’s disease [118, 119].

Conclusions
In summary, our study revealed significant associations
of several SNPs at genome-wide or suggestive levels of
significance which were not reported before. Most of the
SNPs that were located outside the APOE cluster gene
region were not in LD with previously discovered
AD-associated polymorphisms that had p < 5E–06
(Table 2). These SNPs were mapped to 21 genes in 19
chromosomal regions. Of these, 8 genes/regions had not
been associated with AD in previous GWAS with p <
5E–06. Also, 26 genes located outside the chromosome
19q13 region, and 26 pathways, showed evidence of as-
sociations with AD at the FDR level of 0.05 in our
TWA, gene-based, and pathway-based analyses. Thirteen
of these 26 genes were located in chromosomal regions
with no AD-associated SNPs at the genome-wide or sug-
gestive level of significance. Most of the significantly de-
tected SNPs and genes as well as several AD-associated

pathways were sex specific, indicating sex disparities in
the genetic basis of AD. By detecting a number of novel
potential AD-associated SNPs and discovering sug-
gestive associations of several genes and transcripts,
our study provides new insight into the genetic archi-
tecture of AD. Particularly, identifying sex-specific
genetic contributors can advance our understanding
of AD pathogenesis.
Despite the rigor of this study, there are some limita-

tions. The case/control status in the four cohorts used in
this study was mainly determined clinically. The routine
clinical diagnosis of AD based on the symptoms and
neurologic examinations may not provide the optimal
case/control classification. Instead, the National Institute
on Aging and the Alzheimer’s Association suggested that
integrating additional paraclinical tests (e.g., histopatho-
logic findings in brain biopsy, measuring AD-related
cerebrospinal fluid (CSF) biomarkers, or detecting neu-
rodegeneration by the imaging study) into the diagnostic
protocols can aid researchers to more accurately identify
AD patients and healthy controls [120, 121]. Beach et al.
[122] investigated the accuracy of clinical diagnosis of
AD by comparing such diagnoses to the histopathology
findings from brain autopsies in a sample of 1198 sub-
jects. They found that the sensitivity and specificity of
clinical diagnostic classification were 70.9–87.3% and
44.3–70.8%, respectively, indicating a relatively high pos-
sibility of clinically false-negative and false-positive clas-
sification of subjects as controls and cases, respectively
[122]. Finally, since the power of GWA analyses is af-
fected by the sample sizes, and in particular the number
of cases, the current study with 2741 cases and 14,739
controls may not have the optimal power. Further
studies, possibly with larger sample sizes, are needed
to clarify the genotype–phenotype relationships in AD.
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