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Abstract

Background: Peripheral biomarkers that identify individuals at risk of developing Alzheimer’s disease (AD) or predicting
high amyloid beta (Aβ) brain burden would be highly valuable. To facilitate clinical trials of disease-modifying therapies,
plasma concentrations of Aβ species are good candidates for peripheral AD biomarkers, but studies to date have
generated conflicting results.

Methods: The Fundació ACE Healthy Brain Initiative (FACEHBI) study uses a convenience sample of 200 individuals
diagnosed with subjective cognitive decline (SCD) at the Fundació ACE (Barcelona, Spain) who underwent amyloid
florbetaben(18F) (FBB) positron emission tomography (PET) brain imaging. Baseline plasma samples from FACEHBI
subjects (aged 65.9 ± 7.2 years) were analyzed using the ABtest (Araclon Biotech). This test directly determines the free
plasma (FP) and total plasma (TP) levels of Aβ40 and Aβ42 peptides. The association between Aβ40 and Aβ42 plasma
levels and FBB-PET global standardized uptake value ratio (SUVR) was determined using correlations and linear
regression-based methods. The effect of the APOE genotype on plasma Aβ levels and FBB-PET was also assessed.
Finally, various models including different combinations of demographics, genetics, and Aβ plasma levels were
constructed using logistic regression and area under the receiver operating characteristic curve (AUROC) analyses to
evaluate their ability for discriminating which subjects presented brain amyloidosis.
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Results: FBB-PET global SUVR correlated weakly but significantly with Aβ42/40 plasma ratios. For TP42/40, this observation
persisted after controlling for age and APOE ε4 allele carrier status (R2 = 0.193, p= 1.01E-09). The ROC curve demonstrated
that plasma Aβ measurements are not superior to APOE and age in combination in predicting brain amyloidosis. It is
noteworthy that using a simple preselection tool (the TP42/40 ratio with an empirical cut-off value of 0.08) optimizes the
sensitivity and reduces the number of individuals subjected to Aβ FBB-PET scanners to 52.8%. No significant dependency
was observed between APOE genotype and plasma Aβ measurements (p value for interaction = 0.105).

Conclusion: Brain and plasma Aβ levels are partially correlated in individuals diagnosed with SCD. Aβ plasma
measurements, particularly the TP42/40 ratio, could generate a new recruitment strategy independent of the
APOE genotype that would improve identification of SCD subjects with brain amyloidosis and reduce the rate
of screening failures in preclinical AD studies. Independent replication of these findings is warranted.

Keywords: Subjective cognitive decline, Preclinical AD, Alzheimer’s disease, Amyloid β, Plasma biomarker, TP42/40,
PET, Florbetaben

Highlights

� Brain and plasma Aβ levels are partially correlated
in SCD subjects.

� Plasma Aβ measurements are independent of APOE
genotype.

� The model including only plasma TP42/40 level as a
variable achieved the highest sensitivity in predicting
Aβ PET positivity (83%).

� A simple preselection step using the TP42/40
classifier with an empirical cut-off value of 0.08
would reduce the number of individuals subjected to
Aβ FBB-PET by 52.8%.

Background
Alzheimer’s disease (AD), the most common cause of
dementia, is a neurodegenerative disorder characterized
by progressive memory loss and cognitive decline [1].
Pathological findings of AD include deposits of amyloid
beta (Aβ) peptides in the brain conforming extracellular
amyloid plaques together with intracellular deposits of
hyperphosphorylated tau [2]. The progressive increase of
both pathological hallmarks is associated with gradual
synaptic and neuronal loss resulting in the clinical deteri-
oration of patients [3].
There are no effective disease-modifying therapies for

AD available at the current time. Neuropsychological
assessment [4], cerebrospinal fluid [5] (CSF) analysis,
and amyloid positron emission tomography (PET) scans
are common methods used for prodromal AD detection.
CSF and amyloid PET provide the most reliable in-vivo
biomarkers of prodromal AD, but they are not suitable
for population screening purposes due to the invasive
CSF sampling procedure and the high cost and limited
availability of amyloid PET imaging [6, 7]. Magnetic reson-
ance imaging (MRI)-based AD biomarkers have demon-
strated high sensitivity to prodromal AD [8]; however, the
specificity of MRI is limited for predicting conversion of

mild cognitive impairment (MCI) to dementia [9] and MRI
is also impractical in patients with some types of pace-
makers, metal implants, or claustrophobia. Consequently,
despite the robustness of these biomarkers, they are not
suitable for broad population screening in primary care
clinical settings. Therefore, there is a growing need for
accurate identification of asymptomatic (preclinical)
individuals with underlying AD pathology to improve
diagnosis and subject inclusion in prevention trials of
prodromal and presymptomatic AD.
Discovery of blood-based AD biomarkers would entail

important cost-benefit and scalability advantages over
current techniques, potentially enabling broader clinical
access and efficient population screening. The plasma
concentration of Aβ is a logical candidate, but studies to
date have produced conflicting results on its utility [10].
Several longitudinal studies with large cohorts such as
the Framingham Study [11] with 2189 dementia-free
participants followed from baseline until they developed
dementia, died, or had been followed for 10 years and
the Rotterdam Study [12] with 1756 participants and
392 incident dementia cases identified (follow-up mean
8.6 years) have reported increased risk of dementia associ-
ated with lower Aβ42/40 plasma ratios and that a reduction
in plasma Aβ42 levels over time is linked with cognitive
decline [13, 14]. A recent publication [15] studied the
ability of Aβ precursor protein (APP/Aβ42), Aβ40/Aβ42
ratios, and their composites to predict individual brain
Aβ+/− status determined by Aβ-PET imaging. The results
showed that all test biomarkers correlated with both Aβ
PET burden and levels of Aβ42 in CSF in two independent
cohorts, demonstrating that the three different types of
Aβ-related biomarkers (plasma, CSF, and PET imaging)
are highly correlated with each other, clearly indicating the
potential utility of plasma biomarkers. Furthermore, an
independent study [16] suggests that individuals with sub-
jective cognitive decline (SCD) exhibit significantly higher
Aβ42 plasma concentrations compared with participants
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with no complaints. However, other studies have reported
a weak or even a lack of association of plasma Aβ42/40 ratio
with AD diagnosis [17–19].
Given that both subjective complaints and impaired

episodic memory are present in MCI, the existence of an
earlier distinct clinical stage where subjective complaints
exist in the absence of detectable objective cognitive
deficits is plausible [20]. There is evidence suggesting that
SCD may increase the risk of progression to cognitive
impairment and dementia [21], and that individuals with
SCD have a higher risk of developing AD [22], and present
more functional deficits [23] and AD brain pathology than
non-SCD participants [24]. SCD might represent the
earliest point on the continuum of clinical Alzheimer’s
symptomatology [25–27], even anticipating the onset of
subtle but detectable neuropsychological or biological
alterations. Hence, a better understanding of the baseline
characteristics of this group of patients may enhance our
knowledge of early AD processes, facilitating early diagnosis,
follow-up, and preventive treatment, making SCD an
interesting target population to study.
The primary aim of this study was to assess the associ-

ation between plasma Aβ levels and amyloid brain burden.
Specifically, we measured Aβ42 and Aβ40 plasma levels
using two specific sandwich enzyme-linked immunosorbent
assay (ELISA) kits, ABtest40 and ABtest42 (Araclon Biotech,
Zaragoza, Spain), and quantified amyloid brain burden using
florbetaben(18F) (FBB)-PET global standardized uptake value
ratio (SUVR) in 200 individuals with SCD. We evaluated
whether plasma Aβ ratios may be useful biomarkers for AD
and a screening tool for amyloidosis in healthy populations.

Methods
The FACEHBI cohort
The Fundació ACE Healthy Brain Initiative (FACEHBI)
uses a convenience sample of 200 individuals (mean age
65.8 ± 7.2 years; 37.5% males) diagnosed with SCD at
Fundació ACE (Barcelona, Spain) recruited from Open
House initiatives [28]. The cohort comprised of 52 (26%)
APOE ε4 allele carriers and 18 (9%) individuals with a
positive (SUVR > 1.45) FBB-PET scan. The demographic
characteristics of the study cohort are summarized in
Table 1 and Additional file 1 (Table S1) by FBB-PET
status.
The SCD criteria used to recruit subjects in this study

have been described previously [29]. Briefly, inclusion
criteria were: 1) subjective cognitive complaints defined
as a score of ≥ 8 on MFE-30, the Spanish version of the
Memory Failures in Everyday Life Questionnaire [30]; 2)
Mini-Mental State Examination (MMSE) score ≥ 27; 3)
Clinical Dementia Rating (CDR) = 0; and 4) performance on
the Fundació ACE Neuropsychological Battery (NBACE)
[31] within the normal range for age and educational level.

Exclusion criteria were as follows: 1) relevant symptoms
of anxiety or depression defined as a score of ≥ 11 on
the Hospital Anxiety and Depression Scale (HADS)
[32]; 2) presence of other psychiatric diagnosis; 3) history
of alcoholism and epilepsy; and 4) known renal or liver
failure.
Cognitive assessment was performed according to the

routines of the Memory Clinic of Fundació ACE as
described elsewhere [33]. Baseline MRI of these subjects
demonstrated the absence of signs indicative of brain
pathology. All participants gave written consent and the
protocol was approved by the ethics committee of the
Hospital Clinic i Provincial (Barcelona, Spain) (EudraCT:
2014–000798-38).

MRI acquisition
All MRI scans were acquired prior to FBB-PET. MRI
were performed on a 1.5-T Siemens Magneton Aera
(Erlangen, Germany) using a 32-channel head coil.
Anatomical T1-weighted images were acquired using a
rapid acquisition gradient-echo three-dimensional (3D)
magnetization-prepared rapid gradient-echo (MPRAGE)
sequence with the following parameters: repetition time
(TR) 2.200 ms, echo time (TE) 2.66 ms, inversion time (TI)
900 ms, slip angle 8°, field of view (FOV) 250 mm, slice
thickness 1 mm, and isotropic voxel size 1 × 1 × 1 mm.
Subjects also received axial T2-weighted, 3D isotropic fast
fluid-attenuated inversion recovery (FLAIR) and axial
T2*-weighted sequences to detect significant vascular
pathology or microbleeds.

Table 1 Demographics and clinical characteristics of the study
cohort (FACEHBI [29])

Variable SCD

Subjects, n 200

Age, years 65.87 (7.23)

Education, years 14.76 (4.73)

Gender, % males 37.5

APOE, % e4 allele carriers 26

Creatinine, mg/dl 0.92 (0.15)

Body mass index, kg/m2 26.64 (4.32)

Hematocrit, % 43.15 (4.93)

FBB-PET SUVR 1.2 (0.15)

FP42/40 0.04 (0.03)

TP42/40 0.09 (0.06)

FP40/TP40 0.44 (0.06)

BP42/40 0.13 (0.09)

FP42/TP42 0.24 (0.21)

Data are shown as mean (SD) unless otherwise specified
APOE apolipoprotein, BP bound peptide, FBB florbetaben(18F), FP free plasma,
PET positron emission tomography, SCD subjective cognitive decline, SUVR
standardized uptake value ratio, TP total plasma
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FBB-PET acquisition
FBB-PET scans were obtained with a Siemens© Biograph
molecular-CT machine. PET images were acquired in
20 min starting from 90 min after intravenous adminis-
tration of 300 Mbq of Florbetaben(18F) radio tracer
(NeuraCeq©), administered as a single slow intravenous
bolus (6 s/ml) in a total volume of up to 10 ml.

SUVR estimation
MRI cortical [34] and subcortical [35] parcellations were
carried out with Freesurfer 5.3 (http://surfer.nmr.mgh.
harvard.edu/), following the pipeline described in
https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all.
FBB-PET were coregistered to the MRI labeled data with

the FSL 5.0 software package (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki) by means of MCFLIRT, it is an intra-modal motion
correction tool based on optimization and registration
techniques from FLIRT (FMRIB's Linear Image Registra-
tion Tool), which next was also used. These are fully auto-
mated tools implemented in FSL 5.0 for linear (affine)
intra- and inter-modal brain image registration [36, 37].
Amyloid cortical SUVR was determined as the average of

the standardized uptake value normalized by the uptake in
the cerebellar grey matter, with this reference region being
selected from the MRI cerebellum external and cortex
segments. Based on previous studies [38], a cut-off for
SUVR above or equal to 1.45 was selected as the amyloid
positivity criterion.

Blood sampling, APOE genotyping, biochemical
determinations, and Aβ measurements
Blood samples and the APOE genotype from each partici-
pant were routinely processed in Fundació ACE as previ-
ously described [29, 39]. In brief, blood samples were
obtained in the morning after an overnight fast, collected
in polypropylene vials with ethylenediaminetetraacetic acid
(EDTA) and immediately refrigerated. Samples were cen-
trifuged within 24 h from extraction to collect the plasma
and then aliquoted and frozen at −80 °C until assayed. Bio-
chemical and hematologic measurements were determined
in a reference laboratory according to clinical standards.
For plasma amyloid testing, four determinations were

made (Additional file 2). Total plasma (TP) and free
plasma (FP) Aβ40 and Aβ42 levels were quantified using
two specific sandwich ELISA kits, Aβtest40 and Aβtest42
(Araclon Biotech, Zaragoza, Spain), in accordance with
the manufacturer’s instructions as described elsewhere
[39]. Briefly, before analysis, each plasma sample was split
into two aliquots: an undiluted aliquot and another aliquot
pretreated by 1:3 dilutions in a formulated sample buffer
(phosphate-buffered saline (PBS) 0.5 M, 0.5% Tween-20,
1% blocking polymer) intended to break Aβ interactions
with other plasma components. Thus, levels of free
and total Aβ40 and Aβ42 were separately determined

in undiluted and diluted plasma, respectively. The differ-
ence between TP and FP concentration corresponds to the
amount of amyloid peptide bound to plasma components
(BP). The Aβ42/Aβ40 ratios in each of these plasma
fractions (FP42/40, TP42/40, BP42/40, FP40/TP40, and
FP42/TP42) were calculated and served as the target
plasma biomarkers for this study.
The levels of TP and FP obtained from plasma samples

were expressed as picograms (pg) of Aβ peptide per milliliter
(ml) of plasma. The analyses were always performed in
duplicates of the same aliquot and in a coded manner
to ensure blindness of the operator.
Both inter-assay and intra-assay coefficients of variation

were below 5% and 8–20% for ABtest40 and ABtest42,
respectively. The detection limit was 3.13 and 200 pg/ml
for ABtest40 and 1.56 and 100 pg/ml for ABtest42. One
sample was removed from the original FACEHBI cohort
[29] because both ABtest determinations were outside the
upper limit of quantification (> ULQ). In ABtest42, 84 of
400 (21%) determinations were also outside the quantifica-
tion range, either because they were below the lower limit
of quantification (< LLQ) or due to undetectable peptide
levels. We assigned the minimum value of quantification
(1.56 pg/ml) to these samples.

Statistical analysis
We performed several correlation and regression analyses
to explore the association between plasma amyloid ratios
and FBB-PET brain amyloid burden. First, we conducted a
linear regression analysis using FBB-PET global SUVR as
the quantitative response variable in SCD subjects. FBB-
PET global SUVR was log-transformed for all analyses
since it was not normally distributed. The distribution of
variables and Shapiro-Wilk test are given in Additional
file 3 (Figure S1). We conducted an exploratory analysis
with three different transformations for the plasma
Aβ42/Aβ40 ratios: dichotomous (with regard to the
median of the population), quartile, and logarithmic.
First, we performed Pearson and Spearman correlation
analyses between log-transformed FBB-PET global SUVR
and the raw values of each plasma Aβ measure of interest
as well as the transformed plasma Aβ ratios (Table 2 and
Additional file 4: Table S2). Next, we performed a linear
regression analysis using a backward-selection procedure
with FBB-PET global SUVR as the quantitative dependent
variable, with age, gender, education, APOE ε4 carrier
status, and the best performing log-transformed plasma
Aβ42/40 ratio as independent variables (Table 3 and
Additional file 5: Table S3). Bonferroni correction was
used to adjust for multiple comparisons.
We used logistic regression to construct four different

models (Table 4) to evaluate the usefulness of the covari-
ates selected from the backward regression model for
discriminating which SCD participants were FBB-PET
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amyloid positive (> 1.45) in 199 participants. The models
were structured to reflect categories of predictive informa-
tion by the ease of its acquisition. Accordingly, the first
model (model #1) included only predictors that can be
easily obtained (age). The second model additionally
requires a blood extraction and includes two parts: model
#2a for APOE ε4 carrier status (0–1) which served as the
reference model for discrimination of amyloid PET-positive
subjects as proposed by Petersen [25], and model #2b for a
plasma determination of TP42/40 in log units. The third
model (model #3) included the three variables described
above (age, APOE, and TP42/40). Finally, the fourth model
(model #4) only included the target plasma biomarker
(logTP42/40). We used the area under the receiver operat-
ing characteristic curve (AUROC) from the models as a
measure of how well the model discriminated between
FBB-PET positive and negative subjects. The criterion for
choosing the operating point along the ROC curve was
Youden’s index maximum. The logistic models allowed us
to assign a predicted probability of being FBB-PET SUVR
positive to each subject based on values for the selected
variables in the model. In addition to sensitivity/specificity
performance measures, the predictive values (positive
(PPV) and negative (NPV)) of the models were calculated.
Finally, the effect of APOE genotype on plasma Aβ levels

was assessed by comparing Aβ plasma measurements
between APOE ε4 carriers and noncarriers by analysis

of variance (ANOVA) (Additional file 6: Table S4) by
performing separate regression analyses between logTP42/
40 and FBB-PET global SUVR in APOE ε4 carriers and
noncarriers (Additional file 7: Figure S4), and by testing
the interaction term between APOE ε4 carrier status and
logTP42/40 in the logistic regression model #3 described
above. Statistical analysis was performed with SPSS 19 and
RStudio Version 1.0.136. The Ggplot2 package was used
for graphic representations.

Results
Relationship between Aβ plasma ratio and FBB-PET
The FACEHBI study has been designed to identify the
most important factors related to preclinical AD [29]. To
evaluate the strength of the association between plasma
amyloid biomarkers and Aβ-PET burden, we conducted
correlation analyses. Logarithmic TP42/40 and FP42/40
showed significant negative Pearson’s correlations with
amyloid PET burden, although only TP42/40 exceeds
the Bonferroni correction (r = −0.248 (−0.374 to −0.113);
p = 4.04E-04). In contrast, direct plasma levels of Aβ40
and Aβ42 did not significantly correlate with FBB-PET
global SUVR (Additional file 4: Table S2C). BP42/40 was
excluded from further analyses due to collinearity with
TP42/40 (Pearson’s r = 0.972 (0.963–0.979); p < 2.2E-16;
Additional file 4: Table S2A).
Backward regression analysis identified age, APOE ε4

status (0–1), and logTP42/40 as significant covariates of
the best model predicting FBB-PET global SUVR (R2 = 0.193
and p value = 1.01E-09; Table 3). The inverse association
between FBB-PET SUVR and TP42/40 is graphically
represented with raw data in Fig. 1. The associations
with the other Aβ plasma biomarkers are shown in
Additional file 8 (Figure S2). After stratifying for APOE
ε4, the linear regression analysis showed a negative
relationship between plasma TP42/40 and FBB-PET uptake
(r = −0.523 (−0.185 to −0.067); p = 8.12E-05) exclusively in
APOE ε4 carriers (Additional file 9: Figure S3).
To assess the relevance of the plasma biomarkers in

predicting amyloid PET positivity, the TP42/40 model was
selected for the subsequent AUROC analysis. Education
and gender were excluded due to their lack of significance

Table 2 Correlation between direct Aβ plasma and log-transformed FBB-PET SUVR

Logarithmic

L_PET FP42/40 TP42/40 FP42/TP42 FP40/TP40

Pearson’s r (n = 199) −0.160* −0.248** 0.100 0.085

p value (2-tailed) 0.024 4.04E-04 0.162 0.231

95% confidence interval −0.292 to −0.021 −0.374 to −0.113 − 0.04 to 0.236 −0.055 to 0.221

Plasma amyloid beta (Aβ)42/40 ratios were transformed in logarithmic scale
Bonferroni correction was used to adjust for multiple comparisons (< 1.92E-03)
FP free plasma, L_PET, logarithmic transformed positron emission tomography score, TP total plasma
*p ≤ 0.05
**p ≤ 0.01

Table 3 Backward selection regression analysis: amyloid beta
plasma TP42/40 ratio and log FBB-PET global SUVR with covariates

Estimate Standard error T value p value

(Intercept) −0.0701 0.030 −2.301 0.022*

Age 0.0015 4.45E-04 3.573 4.45E-04***

APOE 0.035 0.007 5.107 7.75E-07***

Log TP42/40 −0.041 0.011 −3.794 1.98E-04***

Residual standard error = 0.042 on 195 degrees of freedom (DF)
Adjusted R2 = 0.193; F = 16.75 on 3 and 195 DF; p value = 1.01E-09
Backward selection regression analysis adjusting for age, APOE and TP42/40;
statistical significance was set to p < 1.92E-03 after Bonferroni correction for
multiple comparisons
APOE apolipoprotein, FBB florbetaben(18F), PET positron emission tomography,
SUVR standardized uptake value ratio, TP total plasma
*p ≤ 0.05
***p < 0.001
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in the backward regression model. When Aβ-PET was
used as the standard classifier for Aβ+/Aβ– status, all
models worked in a similar way to the reference discrim-
ination model #2a with age and APOE as predictors
(AUROCs of 0.702, 0.806, 0.754, 0.818, and 0.681 for
models #1, #2a, #2b, #3, and #4 respectively; Table 4, Fig. 2).
The effect and significance of TP42/40 was maintained in
the different models indicating a robust association with
Aβ-PET positivity. Model #2a presented the best balance
between PPV/NPV (34.3–96.3%, respectively), but at the
same time showed the lowest sensitivity (66.7%). On the
other hand, TP42/40 alone (model #4) achieved the best
sensitivity (83.3%) and a good NPV (97.2%), indicating its
value as a potential screening tool for detecting brain
amyloidosis (Table 4). Using an empirical cut-off point
of TP42/40 = 0.08, individuals with a TP42/40 plasma
ratio < 0.08 (52.8%) would be prescreened with a FBB-
PET scan, capturing 83% of the positive amyloid cases,
thus reducing the prescreening number of Aβ FBB-PET
(sensitivity = 83.3%; specificity = 51.9%; NPV = 96.9%;
PPV = 14.7%; Fig. 1).

Effect of APOE genotype on plasma Aβ levels
In the current study, we found no association between
APOE genotype and plasma Aβ measurements, indicating

independence between both variables. No plasma Aβ
measure significantly differed between APOE ε4 carriers
and noncarriers (Additional file 6: Table S4 and Additional
file 7: Figure 4). This independence, confirmed by the
absence of significance for the interaction term between
APOE ε4 and logTP42/40 (Additional file 10: Table S5)
(odds ratio (OR) 0.022, 95% confidence interval (CI)
2.30E-04 to 2.201); p = 0.105) could be an advantage if
using this biomarker as a screening tool since it would
avoid bias resulting from APOE screening.

Discussion
The FACEHBI study has been designed to identify the
most relevant factors related to preclinical AD in a cohort
of individuals with SCD [29]. FACEHBI has a 9% preva-
lence of amyloid PET positivity, which is lower than similar
series reported in the literature. Ossenkoppele et al. [40]
estimated a prevalence of 11% brain amyloid positivity in a
cohort of healthy controls aged 55–64 years, and 22% in
those aged 65–74 years. In a meta-analysis [41], Jansen et
al. reported a prevalence of amyloid PET positivity of ap-
proximately 20% at age 65 years. The Mayo Clinic popula-
tion study [42] showed a prevalence of amyloid PET
positivity of 13% in the age group 60–64 years and 32% in
those aged 65 to 69 years. A possible cause for the low

Fig. 1 Linear regression between florbetaben(18F) (FBB)-positron emission tomography (PET) global SUVR and Aβ total plasma (TP)42/40 plasma
ratio in SCD subjects. Inverse association between Aβ TP42/40 plasma ratio and FBB-PET scan. Experimental cut-off point of Aβ plasma ratio TP42/40
established at 0.08 to reduce the prescreening number of Aβ FBB-PET scans to 52.8%. CI confidence interval, NPV negative predictive value, PPV
positive predictive value

de Rojas et al. Alzheimer's Research & Therapy          (2018) 10:119 Page 7 of 12



prevalence of amyloid PET positivity in the FACEHBI
cohort is that a strict definition of cognitive normality was
used. A score of 1.5 SD below the mean according to age
and level of education in any single NBACE [43] test
precluded individuals from enrolling into the FACEHBI
study. Other studies with a more liberal definition of
cognitive normality included patients that would have been
considered to have MCI by our standards, presumably
increasing their prevalence of amyloid PET positivity.
Secondly, the setting of the study is relevant, as it is
well known that participants from clinical samples tend to
show higher risk of cognitive progression (and probably
greater brain amyloidosis) than those from population-
based samples and healthy volunteers, even though both
groups are considered to be cognitively normal. In this
regard, FACEHBI is a mixed sample, but most of our
participants (70%) are healthy volunteers from the com-
munity who came to check their cognition for free through
Open Door Initiatives. This could partly explain a lower
prevalence of brain amyloidosis in our FACEHBI partici-
pants compared with pure clinical samples.
The main finding of this study is that lower plasma

Aβ42/40 ratios (particularly the TP42/40 ratio) correlate
with higher cerebral Aβ plaque burden assessed by amyloid
FBB-PET imaging in the FACEHBI SCD cohort. This

inverse correlation is presumably driven by the reduction
of Aβ42 and the increase of Aβ40 in the Aβ+ population
(Additional file 11: Figure S5). These results are independ-
ent of previous explorations and are in line with other
promising results reporting similar associations between
plasma Aβ42/40 ratio and cortical fibrillary Aβ burden
[15, 44–50] (for review see [51–53]). This study provides
added value as it is one of few [48, 49] that explores the
association between Aβ plasma ratios and Aβ brain bur-
den within a population of cognitively normal individuals,
avoiding the possibility of potential circular associations
related to inclusion of MCI and AD subjects along with
healthy controls in the same models. Nevertheless, dis-
crepant results from other studies [17–19, 54–56] that
assessed the performance of plasma Aβ levels in predict-
ing the Aβ brain status cannot be disregarded. Part of this
controversy could be explained by the mixed distribution
of individuals with and without cerebral Aβ deposition (as
quantified by amyloid PET and/or by CSF analysis) among
healthy controls, MCI, and demented individuals.
It is believed that the clearance of brain Aβ is reduced

in AD patients compared with healthy controls. This is
consistent with a report by Giedraitis et al. [57] who
found a correlation between CSF and plasma levels of
both Aβ40 and Aβ42 in healthy individuals, whereas no

Fig. 2 Area under the receiver operating characteristic curve (AUROC) models. AUROC analysis evaluated the discrimination between FBB-PET
SUVR positive and negative subjects in different models from Table 4. APOE apolipoprotein E, TP total plasma
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correlations were seen in AD or MCI patients. Thus, the
search for an association between blood and brain Aβ
levels should be directed towards the earliest stages of
the disease (preclinical/prodromal AD), which is also when
it is of maximum clinical interest especially as a target
population for the development of novel disease-modifying
therapies. However, it has been difficult to draw definite
conclusions with respect to changes in plasma Aβ concen-
tration in AD [52] because of the inconsistency of the avail-
able data. Stringent standardization is required to obtain
reliable data that facilitate comparison between studies. In
this study we used Aβ42/Aβ40 plasma ratios (particularly
the TP42/40 ratio) instead of single peptide measurements
to attenuate possible bias in single Aβ peptide level quanti-
fications caused by inconsistencies in sample handling [58].
The regression model that included only the TP42/40

ratio did not show sufficient predictive ability to identify
those individuals with a positive FBB-PET scan, account-
ing for only 20% of the variance. Clearly, screening with
these factors would not be an acceptable option for
determining amyloid PET positivity in the clinical practice
setting. Nevertheless, the plasma TP42/40 ratio showed a
significant negative correlation with FBB-PET SUVR. This
suggests that this plasma Aβ biomarker could be useful as
an enrichment tool to identify potential candidates for
clinical trials focused on preclinical AD. To prove this, we
would need to reproduce the results in a controlled trial
with an independent sample. Our analyses suggest that
inclusion of the TP42/40 plasma biomarker in a classifier
model could reduce unnecessary amyloid PET scans,
facilitating recruitment for clinical trials. Taking this into
account, in a clinical trial recruiting scenario targeting
cognitively normal people, a prescreening step using a
TP42/40 classifier (cut-off value = 0.08) would reduce the
number of individuals undergoing Aβ FBB-PET scans
to 52.8%. The cortical Aβ burden of these subjects
would have to then be confirmed by Aβ FBB-PET scans.
Consequently, this strategy would reduce the costs [59]
of identifying individuals with brain amyloidosis for AD
prevention trials [60].
We observed an association of age with plasma Aβ

ratios as described in previous studies [41, 42, 59, 61].
No association was found between the APOE ε4 geno-
type and Aβ plasma ratios, demonstrating independence
between APOE ε4 genotype and this candidate plasma
biomarker. The linear regression analysis stratifying for
APOE ε4 showed a negative relationship between TP42/
40 and FBB-PET SUVR in APOE ε4 carriers but not in
noncarrier SCD individuals. At first glance, these results
seem contradictory with other studies reporting a signifi-
cant negative relationship between plasma Aβ and amyloid
PET only in APOE ε4 noncarriers [46, 48, 62, 63]. One
possible explanation could stem from the difference in co-
hort composition, as the previous studies included patients

with MCI and AD diagnosis, while our sample is com-
prised only of SCD individuals. Therefore, their APOE ε4
carrier group included participants who were older and
more cognitively impaired than ours, whereas their APOE
ε4 noncarrier group could be more similar to our APOE ε4
carrier group in terms of demographics and cognition.
Therefore, they observed a negative correlation between
Aβ plasma and PET in APOE ε4 noncarriers that would be
equivalent to the correlation in APOE ε4 carriers in our
study. We attribute this finding to the potential enrich-
ment of preclinical AD cases in the APOE ε4+ SCD
subgroup. Specifically, our hypothesis is that the rate of
genuine AD cases contained in a study population
might distort the correlation between Aβ-PET and plasma
amyloid measurements.
We consider one of the main strengths of this study is

that it includes a well-defined homogeneous population
putatively positioned at a very early stage of the disease.
We know that the main risk factors such as age and
APOE do not follow the correlation expected in advanced
stages of AD [64], and we have previously reported [64]
that the APOE ε4 genotype had significant effects on the
association with FBB-PET global SUVR in SCD subjects.
Thus, AD does not behave linearly, and it could be that
the TP42/40 ratio behaves independently from APOE
when positioned to the left of the disease continuum. Our
data show that refraining from strict inclusion criteria,
such as APOE ε4 positivity, will be important to avoid de-
tection bias.
An important limitation of this study is the fact that

the FBB-PET cut-off value for positivity is arbitrary in
SCD populations. The global SUVR > 1.45 cut-off value
has been calculated for dementia patients but perhaps it
should be adjusted for populations with different degrees
of cognitive impairment or even on different segments
of the AD continuum. Another limitation is the small
sample size which warrants independent replication.
Although Fandos et al. [49] reported similar results
from the AIBL dataset in cognitively healthy and SCD
individuals [65], it would be interesting to repeat the
same analysis by Aβ cluster and replicate our findings
in a larger population with a higher rate of amyloid
PET-positive individuals to improve discrimination and
accuracy of the plasma amyloid cut-off point.
Future research should address whether the association

between brain and plasma Aβ levels in SCD participants is
able to discriminate those older adults who will experience
a fast cognitive decline from those who will remain stable
over time.

Conclusion
The present data show an inverse association between
plasma Aβ42/40 ratios and brain fibrillary Aβ deposition
in SCD participants. Including the TP42/40 plasma ratio
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could help generate a more cost-effective recruitment
strategy for clinical trials independent of the APOE
genotype (reflecting the real diversity of the APOE
genotype in preclinical AD) and reducing the associated
costs of preselecting subjects using expensive imaging
techniques.
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